×
20.08.2014
216.012.ec04

Результат интеллектуальной деятельности: УПРУГИЙ ЭЛЕМЕНТ ТЕНЗОРЕЗИСТОРНОГО ДАТЧИКА СИЛЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к весовой технике, в частности к упругим элементам датчиков силы, предназначенных для точного измерения силы небольшой величины в широком диапазоне. Заявленный упругий элемент тензорезисторного датчика силы выполнен за одно целое и содержит упругое кольцо, силовводящие рычаги, примыкающие к внутренней боковой поверхности упругого кольца по всей высоте, поперечные тяги, присоединенные к средней части упругого кольца вблизи плоскости симметрии, перпендикулярной к его оси, и эта плоскость симметрии упругого кольца совпадает с плоскостью симметрии тяг, расположенных симметрично второму диаметральному направлению упругого кольца, причем расстояние между осями тяг не больше половины диаметра внешней боковой поверхности кольца, а в средней части упругого кольца выполнены сквозные пазы, которые имеют высоту, равную толщине поперечных тяг, и расположены симметрично относительно их плоскости симметрии, при этом пазы в окружном направлении расположены между тягами и силовводящими рычагами. Технический результат заключается в повышении точности измерения усилий небольшой величины при малых габаритных размерах упругого элемента, обладающего меньшей жесткостью, что позволяет расширять диапазон измерения в сторону малых нагрузок. 2 ил.
Основные результаты: Упругий элемент тензорезисторного датчика силы содержит упругое кольцо, силовводящие рычаги, поперечные тяги и выполнен за одно целое, а в средней части упругого кольца выполнены сквозные пазы, и на его боковой поверхности вблизи торцов навиты тензорезисторы, причем в одном диаметральном направлении упругого кольца с противоположных сторон присоединены силовводящие рычаги, расположенные внутри упругого кольца, продольные оси которых параллельны оси упругого кольца, а поперечные тяги расположены параллельно второму перпендикулярному диаметральному направлению упругого кольца, отличающийся тем, что силовводящие рычаги примыкают к внутренней боковой поверхности упругого кольца по всей высоте, а к средней части упругого кольца вблизи плоскости симметрии, перпендикулярной к его оси, присоединены две поперечные тяги, и эта плоскость симметрии упругого кольца совпадает с плоскостью симметрии тяг, которые расположены симметрично второму диаметральному направлению упругого кольца, причем расстояние между осями тяг не больше половины диаметра внешней боковой поверхности кольца, а сквозные пазы имеют высоту, равную толщине поперечных тяг, и расположены симметрично относительно их плоскости симметрии, при этом пазы в окружном направлении расположены между тягами и силовводящими рычагами.

Изобретение относится к весовой технике, в частности к упругим элементам датчиков силы, предназначенных для точного измерения силы небольшой величины в широком диапазоне.

Известен тензорезисторный датчик силы (патент на полезную модель 46849, МПК G01L 1/22, опубл. 27.07.2005), содержащий два параллельно расположенных упругих элемента, соединенных между собой перемычкой, имеющих каждый тензорезисторный полумост и силовоспринимающие поверхности, причем на каждом упругом элементе симметрично силовоспринимающих поверхностей выполнен широкий сквозной паз прямоугольной формы, на параллельных сторонах внутренней поверхности которого наклеены, как зеркальное отображение друг друга, тензорезисторы полумоста и залиты компаундом, стойким к воздействию температур в диапазоне от -60°C до +60°C, при этом упругие элементы с силовоспринимающими поверхностями выполнены с возможностью ограниченного поворота относительно друг друга в параллельных плоскостях.

Недостатком указанной конструкции является достаточно высокая жесткость, которая складывается из жесткостей двух упругих элементов. Поэтому его применяют для измерения усилий более 2 кН. Кроме того, конструкция датчика силы не позволяет в широком диапазоне измерять усилия. Это связано с тем, что каждый упругий элемент рассчитан на заданную нагрузку. Причем из-за неточности изготовления датчика деформация тензорезисторного полумоста в каждом упругом элементе неодинакова. Следует также отметить различие деформаций, получаемых на параллельных внутренних и внешних поверхностях сквозного паза. Все это снижает полезный электрический сигнал. Поэтому точность измерения усилий невысока.

Известен также силочувствительный элемент (а.с. 1439417, МПК G01L 1/22, опубл. 23.11.88. Бюл. №43), в котором верхнее и нижнее упругие соосные кольца с тензорезисторами, намотанными на их боковой поверхности, соединены с радиальными рычагами с помощью выреза в кольце небольшой высоты трапецеидального элемента, большим основанием примыкающего к верхнему упругому кольцу, а меньшим основанием к радиальному рычагу, имеющего в плане форму трапеции с криволинейными основаниями, и все такие рычаги расположены равномерно в радиальном направлении. Нижнее кольцо соединено с указанными радиальными рычагами таким же образом. При этом внешние части рычагов опираются или крепятся к кольцевой опоре, а внутренние участки рычагов соединены с жестким силовоспринимающим центром. Причем чувствительный элемент и эти силопередающие звенья устанавливается в корпусе, защищающем тензорезисторы от воздействий внешней среды.

Недостатком указанной конструкции является то, что невозможно с одинаковой точностью измерять малые нагрузки в широком диапазоне. Это связано с тем, что длина рычагов не может быть измененной при его установке в измерительную цепь, так как они расположены внутри корпуса. Применение отдельно, без корпуса, чувствительного элемента возможно в случаях, когда вся измерительная цепь ограждена от внешней среды. Однако изменение длины силопередающих рычагов в этом случае приводит к снижению точности измерения нагрузки. Это объясняется тем, что при нагрузке возникает трение между опорными поверхностями рычагов и опорными поверхностями силопередающих звеньев. Кроме того, сам механизм регулировки изменения длины рычагов достаточно сложен, что в свою очередь вносит дополнительную погрешность измерения. Поэтому такие чувствительные элементы применяются только для измерения усилий в узком диапазоне.

Наиболее близким по технической сущности и достигаемому результату является упругий элемент тензорезисторного датчика силы (а.с. 1522050, МПК G01L 1/22, опубл. 15.11.89. Бюл. №42), который состоит из соосно расположенных внутреннего и наружного упругих колец, поперечных и продольных тяг, расположенных попарно вблизи противоположных торцовых поверхностей этих колец, рычагов, продольные оси которых параллельны оси соосных упругих колец, тензорезисторов, навитых с натягом на внешней поверхности внутреннего и наружного упругих колец. Соосные кольца, тяги и рычаги выполнены за одно целое. В средней части соосных упругих колец выполнены пазы, равномерно расположенные в окружном направлении.

Недостатком указанной конструкции является достаточно высокая жесткость упругого элемента. Это объясняется тем, что жесткость определяется двумя соосными упругими кольцами, поэтому при изготовлении упругого элемента для измерения усилий менее 2 кН увеличивают длину его рычагов, что повышает геометрические размеры всего датчика силы. В связи с этим снижается универсальность конструкции и сокращается возможность широкого применения его в различных технологических процессах. Кроме того, деформация колец с тензорезисторами в окружном направлении неравномерная. Это снижает полезный электрический сигнал. Следует также отметить различие деформаций, получаемых на внутренних и внешних упругих кольцах, что приводит к снижению уровня электрического сигнала. Поэтому точность измерения усилий невысока.

В этой связи важнейшей задачей является создание новой конструкции датчика силы, позволяющей измерять усилия меньшей величины по сравнению с прототипом и в широком диапазоне с высокой точностью, при этом упругий элемент должен иметь меньшие габаритные размеры, чем у прототипа.

Технический результат: повышение точности измерения усилий небольшой величины при малых габаритных размерах упругого элемента, обладающего меньшей жесткостью, что позволяет расширять диапазон измерения в сторону малых нагрузок.

Поставленный технический результат достигается тем, что упругий элемент тензорезисторного датчика силы содержит упругое кольцо, силовводящие рычаги, поперечные тяги и выполнен за одно целое, а в средней части упругого кольца выполнены сквозные пазы, и на его боковой поверхности вблизи торцов навиты тензорезисторы, причем в одном диаметральном направлении упругого кольца с противоположных сторон присоединены силовводящие рычаги, расположенные внутри упругого кольца, продольные оси которых параллельны оси упругого кольца, а поперечные тяги расположены параллельно второму перпендикулярному диаметральному направлению упругого кольца, при этом силовводящие рычаги примыкают к внутренней боковой поверхности упругого кольца по всей высоте, а к средней части упругого кольца вблизи плоскости симметрии, перпендикулярной к его оси, присоединены две поперечные тяги, и эта плоскость симметрии упругого кольца совпадает с плоскостью симметрии тяг, которые расположены симметрично второму диаметральному направлению упругого кольца, причем расстояние между осями тяг не больше половины диаметра внешней боковой поверхности кольца, а сквозные пазы имеют высоту, равную толщине поперечных тяг, и расположены симметрично относительно их плоскости симметрии, при этом пазы в окружном направлении расположены между тягами и силовводящими рычагами.

В упругом элементе деформируются только две небольшие части упругого кольца с тензорезисторами, то есть деформируется непосредственно необходимая часть упругого элемента. Введение поперечных тяг способствует преобразованию радиальных перемещений боковой поверхности упругого кольца в деформацию ее поворота. Выполнение в упругом кольце сквозных пазов, расположенных в средней части симметрично, влечет обратную симметрию деформации остальных частей кольца. Поэтому тензорезисторы, включенные в электрический мостик Уинстона, получат деформацию, способствующую увеличению электрического сигнала при воздействии усилий небольшой величины, при малых габаритных размерах упругого элемента, обладающего меньшей жесткостью, что позволяет расширять диапазон измерения в сторону малых нагрузок.

В конструкции предлагаемого датчика силы задача расширения диапазона измерения усилий в сторону малых нагрузок достигается тем, что упругий элемент тензорезисторного датчика силы выполнен из упругого кольца, ослабленного в средней части сквозными пазами. Кроме того, в средней части упругого кольца имеются две поперечные тяги, которые лежат в плоскости симметрии упругого кольца. Причем силовводящие рычаги расположены в плоскости, проходящей через ось вращения кольца. Измеряемая сила Р приложена к концам рычагов и вызывает деформацию упругого кольца, только той его части, где размещены тензорезисторы, то есть деформируется только его минимальная необходимая часть. Препятствие растяжению, выполненное в виде двух поперечных тяг, расположенных в местах начала, позволяет преобразовать деформацию растяжения в деформацию поворота в окружном направлении более равномерно, что, по сравнению с прототипом, увеличит точность измерения усилий в начальном диапазоне.

На фиг.1 изображен упругий элемент, вид спереди, и сечение плоскостью, проходящей через оси силовводящих рычагов, - разрез А-А; на фиг.2 - вид сверху и сечение, проходящее через оси поперечных тяг, - разрез Б-Б.

Устройство упругого элемента представлено на фиг.1 и фиг.2 и состоит из упругого кольца 1, силовводящих рычагов 2 и поперечных тяг 3, показаны также сквозные пазы 4 и условно тензорезисторы 5 и 6. Ось упругого кольца обозначена позицией 7. Причем силовводящие рычаги 2 примыкают к упругому кольцу 1 по всей его высоте и расположены в диаметральном направлении 8, а поперечные тяги 3 расположены в другом перпендикулярном диаметральном направлении 9. Сечение упругого элемента А-А проходит через оси 10 силовводящих рычагов 2 и оси 7 упругого кольца 1, расположенного в диаметральном направлении 8, и приведено на фиг.1. Там же показан след секущей плоскости Б-Б, которая является для упругого кольца 1 плоскостью симметрии, перпендикулярной к его оси 7, и симметрично этой плоскости расположены поперечные тяги 3, и выполнены также симметрично сквозные пазы 4, которые имеют высоту, равную толщине поперечных тяг 3, и расположены симметрично относительно их плоскости симметрии, а в окружном направлении пазы расположены между поперечными тягами 3 и силовводящими рычагами 2.

При этом две поперечные тяги 3 расположены симметрично относительно второго диаметрального направления 9, и оси 11 этих поперечных тяг 3 лежат в плоскости сечения Б-Б симметрично (фиг.1, фиг.2). Учитывая свойства симметричности упругого элемента, на фиг.1 и фиг.2, путем совмещения половины вида с половиной разреза, показана полностью геометрическая форма упругого элемента с навитыми тензорезисторами 5 и 6. Причем тензорезисторы 5, навитые на верхней внешней боковой поверхности упругого кольца 1, расположены ближе к месту приложения измеряемого усилия Р (фиг.1, фиг.2), а тензорезисторы 6, навитые на нижней внешней боковой поверхности упругого кольца 1, расположены дальше от места приложения измеряемого усилия Р (фиг.1, фиг.2). Силовводящие рычаги 2 являются мультипликаторами измеряемых усилий и служат для их введения, и их оси 10 расположены в плоскости А-А, проходящей через ось 7 упругого кольца 1 (фиг.1, фиг.2). Расстояние а между осями 11 поперечных тяг 3 не больше половины диаметра внешней боковой поверхности упругого кольца 1, и эти тяги расположены между двух диаметральных, взаимно перпендикулярных направлений 12, являющихся биссектрисами углов, образованных диаметральными направлениями 8 и 9 (фиг.1, фиг.2).

Предлагаемый упругий элемент работает следующим образом (фиг.1, фиг.2). К свободным торцам силовводящих рычагов 2 приложены противоположно направленные усилия Р, действующие коллинеарно одному диаметральному направлению 8 и лежащим в плоскости, проходящей через оси 7 и 10 (фиг.1, фиг.2).

Под действием усилий Р концы силовводящих рычагов 2, расположенных вдали от упругого кольца 1, сближаются, а противоположные концы этих рычагов удаляются друг от друга. Это приведет к тому, что поворачиваются сечения части упругого кольца 1, расположенные вблизи силовводящих рычагов 2. Так как упругое кольцо разделено сквозными пазами 4, то внешняя боковая поверхность упругого кольца 1 с тензорезисторами 5 будет сжиматься, а с тензорезисторами 6 будет растягиваться. Однако величина поворота сечений, расположенных в окружном направлении дальше от силовводящих рычагов 2, будет меньше (фиг.1, фиг.2).

Кроме этого, усилия Р, воздействуя на упругое кольцо 1, вызовут общее сближение силовводящих рычагов 2. Поэтому, внешняя боковая поверхность упругого кольца 1 с тензорезисторами 5 и 6 будет подвергаться еще неравномерной в окружном направлении деформации сжатия. Наличие сквозных пазов 4 позволяет оценивать раздельно деформацию внешней боковой поверхности упругого кольца 1 с тензорезисторами 5 и деформацию внешней боковой поверхности упругого кольца 1 с тензорезисторами 6 (фиг.1, фиг.2).

Поэтому вначале рассмотрим деформацию боковой поверхности упругого кольца 1 с тензорезисторами 5, вызванную действием сил сжатия. Характер этой деформации оценим исходя из известного решения о сжатии упругого кольца усилиями, расположенными в диаметральном направлении, перпендикулярном к его оси. В этом случае сечения упругого кольца, близлежащие к месту приложения сил, будут сближаться в радиальном направлении, а сечения, расположенные вблизи перпендикулярного направления действия сил, будут удаляться, также в радиальном направлении, и кольцо приобретет эллиптическую форму. Поэтому вблизи диаметральных направлений 12 сечение упругого кольца 1 будет неподвижным. Наличие поперечных тяг 3, имеющих повышенную жесткость на растяжение, примыкающих в средней части упругого кольца 1, не позволит удалиться его сечениям, расположенным вблизи этих тяг, то есть по диаметральному направлению 9. Поэтому радиально направленная деформация упругого кольца 1 преобразуется в поворот сечений, расположенных вблизи диаметрального направления 9, что влечет повышение точности измерения усилий (фиг.1, фиг.2).

Деформация боковой поверхности упругого кольца 1 с тензорезисторами 6, вызванная действием сил сжатия, вызовет также эллиптическую форму упругого кольца 1. Наличие поперечных тяг 3, имеющих повышенную жесткость на растяжение, примыкающих в средней части упругого кольца 1, так же как и выше, не позволит удалиться его сечениям, расположенным вблизи этих тяг, то есть по диаметральному направлению 9. Так как его внешняя боковая поверхность с тензорезисторами 6 расположена в осевом направлении 7 дальше от сквозных пазов 4, то радиально направленная деформация упругого кольца 1 преобразуется в поворот сечений, расположенных вблизи диаметрального направления 9. При этом участок внешней боковой поверхности упругого кольца 1 с тензорезисторами 6, расположенный дальше от поперечных тяг 3, будет растягиваться. Следовательно, полученная деформация поворота будет складываться с деформацией, вызванной поворотом силовводящих рычагов 2. Это будет способствовать повышению точности измерения усилий (фиг.1, фиг.2).

При действии противоположно направленных сил направление смещений сечений кольца 1 будет противоположным, поэтому и направление деформации для тензорезисторов 5 и 6 изменится. В этом случае дополнительную деформацию от действующих растягивающих усилий получат тензорезисторы 5. Описание действия растягивающих сил Р будет аналогичным. Поэтому и в этом случае получим увеличение точности измерения по сравнению с прототипом (фиг.1, фиг.2).

Выполнение двух поперечных тяг 3, примыкающих к кольцу 1 в средней части, расположенных в поперечном направлении относительно направления действия измеряемого усилия и симметрично на расстоянии между осями тяг а, не больше половины диаметра внешней цилиндрической поверхности кольца позволяет уменьшить деформацию сжатия внешней боковой поверхности кольца с тензорезисторами 5 и растяжения внешней боковой поверхности кольца с тензорезисторами 6. Это объясняется тем, что это усилие, приложенное к упругому элементу, воздействуя на упругие кольцо, разлагается на крутящий момент и на усилие сжатия. Крутящий момент вызывает деформацию поворота упругого кольца 1, которая в сечении А-А вблизи осей 10 достигает максимального значения, будет уменьшаться в окружном направлении и вблизи диаметрального направления 9 достигнет своего минимума. Усилие сжатия вызывает в сечениях упругого элемента 1 расположенных вблизи силовводящих рычагов 2, деформацию сжатия, а вблизи поперечного диаметрального направления 9 деформацию растяжения. Наличие поперечных тяг 3, расположенных вблизи диаметрального направления 9, не позволяет растягиваться волокнам упругого кольца 1, расположенным между диаметральными направлениями, отмеченными позициями 12, то есть увеличится жесткость этой части упругого кольца. Поэтому энергия деформации в упругом кольце перераспределится и увеличится поворот упругого кольца 1. Поэтому суммарная деформация поворота упругого кольца 1 в окружном направлении будет распределяться более равномерно, что повлечет увеличение точности измерения усилий (фиг.1, фиг.2).

При всем многообразии конструкций аналогичного назначения конструкция в данном виде предложена впервые. Но именно такая конструкция тензорезисторного датчика силы позволяет эффективно решить задачи использования датчика для измерения с высокой точностью усилий небольшой величины при малых габаритных размерах упругого элемента, обладающего меньшей жесткостью, что позволяет расширять диапазон измерения в сторону малых нагрузок.

Упругий элемент тензорезисторного датчика силы содержит упругое кольцо, силовводящие рычаги, поперечные тяги и выполнен за одно целое, а в средней части упругого кольца выполнены сквозные пазы, и на его боковой поверхности вблизи торцов навиты тензорезисторы, причем в одном диаметральном направлении упругого кольца с противоположных сторон присоединены силовводящие рычаги, расположенные внутри упругого кольца, продольные оси которых параллельны оси упругого кольца, а поперечные тяги расположены параллельно второму перпендикулярному диаметральному направлению упругого кольца, отличающийся тем, что силовводящие рычаги примыкают к внутренней боковой поверхности упругого кольца по всей высоте, а к средней части упругого кольца вблизи плоскости симметрии, перпендикулярной к его оси, присоединены две поперечные тяги, и эта плоскость симметрии упругого кольца совпадает с плоскостью симметрии тяг, которые расположены симметрично второму диаметральному направлению упругого кольца, причем расстояние между осями тяг не больше половины диаметра внешней боковой поверхности кольца, а сквозные пазы имеют высоту, равную толщине поперечных тяг, и расположены симметрично относительно их плоскости симметрии, при этом пазы в окружном направлении расположены между тягами и силовводящими рычагами.
УПРУГИЙ ЭЛЕМЕНТ ТЕНЗОРЕЗИСТОРНОГО ДАТЧИКА СИЛЫ
УПРУГИЙ ЭЛЕМЕНТ ТЕНЗОРЕЗИСТОРНОГО ДАТЧИКА СИЛЫ
Источник поступления информации: Роспатент

Показаны записи 131-140 из 213.
10.09.2015
№216.013.7ac5

Способ приготовления резиновой смеси на основе хлоропренового каучука

Изобретение относится к резиновой промышленности, в частности к разработке способа приготовления резиновой смеси на основе хлоропренового каучука, изделия из которой характеризуются улучшенными деформационно-прочностными свойствами и могут быть использованы в качестве уплотнителей в...
Тип: Изобретение
Номер охранного документа: 0002563018
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7acf

Теплозащитный материал

Изобретение относится к теплозащитным материалам на основе этиленпропилендиеновых каучуков, которые могут использоваться в авиа- и ракетостроении. Теплозащитный материал на основе этиленпропилендиенового каучука содержит вулканизующие агенты, ускоритель вулканизации - производное бензотиазола,...
Тип: Изобретение
Номер охранного документа: 0002563036
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7c3c

Способ механической обработки глубокого отверстия в трубной заготовке

Изобретение относится к машиностроению и может быть использовано при механической обработке глубоких отверстий в трубных заготовках. Для осуществления способа используют борштангу с режущим инструментом, расположенную на эксцентричных подшипниках в пиноли, выполненной с режущими и дорнующими...
Тип: Изобретение
Номер охранного документа: 0002563401
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7c42

Способ получения композиционных изделий с внутренними полостями сваркой взрывом

Изобретение относится к технологии получения изделий с внутренними полостями с помощью энергии взрыва и может быть использовано при изготовлении, например, деталей термического и химического оборудования и т.п. Составляют трехслойный пакет с размещением между пластинами из титана медной...
Тип: Изобретение
Номер охранного документа: 0002563407
Дата охранного документа: 20.09.2015
10.10.2015
№216.013.81ce

Установка для испытания материалов на абразивное изнашивание

Изобретение относится к испытательной технике, в частности к устройствам для испытания металлов и сплавов, а также композиционных материалов и покрытий на стойкость к абразивному изнашиванию при нормальной и повышенных температурах. Установка содержит основание, на котором установлены привод...
Тип: Изобретение
Номер охранного документа: 0002564827
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.82b0

Способ получения амидов карбоновых кислот

Изобретение относится к способу получения производных карбоновых кислот, которые находят применение в качестве полупродуктов в синтезе аминов, нитрилов и гетероциклических соединений, в качестве растворителей. Способ получения амидов карбоновых кислот заключается во взаимодействии карбоновой...
Тип: Изобретение
Номер охранного документа: 0002565059
Дата охранного документа: 20.10.2015
20.12.2015
№216.013.9974

Способ получения 4-(1-адамантил)анилина

Изобретение относится к способу получения 4-(1-адамантил)анилина, который является исходным соединением для получения производных адамантана, обладающих различными видами биологической активности, а также являющиеся мономерами при синтезе полимеров с улучшенными эксплуатационными...
Тип: Изобретение
Номер охранного документа: 0002570909
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9ac7

Матричный сплав на основе меди для получения композиционных материалов пропиткой углеграфитового каркаса

Изобретение относится к области получения литых композиционных материалов и может быть использовано для получения пропиткой композиционных материалов с углеграфитовым каркасом, которые работают в условиях трения в качестве электротехнических изделий, таких как токосъемники, вставки пантографов,...
Тип: Изобретение
Номер охранного документа: 0002571248
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9ac9

Способ обработки стальных изделий из сталей низкой твердости

Изобретение относится к технологии машиностроения, в частности к обработке наводороживанием поверхности стальных изделий, и может быть использовано для подготовки изделий из сталей низкой твердости к эксплуатации после финишной механической обработки. Для упрощения способа обработки и...
Тип: Изобретение
Номер охранного документа: 0002571250
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9af6

Способ изготовления композиционных материалов

Изобретение относится к области металлургии, а именно к способу изготовления композиционных материалов пропиткой пористого каркаса, имеющих высокую электропроводность, антифрикционные свойства, стойкость в агрессивных средах. В расплав матричного сплава погружают пористую заготовку....
Тип: Изобретение
Номер охранного документа: 0002571295
Дата охранного документа: 20.12.2015
Показаны записи 131-140 из 283.
10.11.2014
№216.013.04c1

Состав для пропитки абразивного инструмента

Изобретение относится к области абразивной обработки и может быть использовано при изготовлении и эксплуатации абразивных инструментов. Состав для пропитки абразивного инструмента содержит в качестве органического вещества газообразователь - гексахлорпараксилол (1,4-бис-трихлорметилбензол), а в...
Тип: Изобретение
Номер охранного документа: 0002532615
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.07dd

Трансмисионное масло

Настоящее изобретение относится к трансмиссионному маслу, содержащему диалкилдитиофосфат цинка, полиметакрилат, кремнийорганическую присадку, серусодержащую присадку - продукт взаимодействия фракции α-олефинов с серой при нагревании в присутствии катализатора, нефтяное масло, при этом...
Тип: Изобретение
Номер охранного документа: 0002533414
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.07de

Трансмиссионное масло

Настоящее изобретение относится к трансмиссионному маслу, содержащему, мас.%: серусодержащая присадка - 3,8; диалкилдитиофосфат цинка - 0,5; полиметакрилат - 1,5; кремнийорганическая присадка - 0,003; нефтяное масло до 100. Серусодержащая присадка представляет собой продукт, полученный в...
Тип: Изобретение
Номер охранного документа: 0002533415
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.07df

Трансмиссионное масло

Настоящее изобретение относится к трансмиссионному маслу, содержащему, % масс.: серусодержащая присадка - 3,8; диалкилдитиофосфат цинка - 0,5; полиметакрилат - 1,5; кремнийорганическая присадка - 0,003; нефтяное масло - до 100. Серусодержащая присадка представляет собой продукт взаимодействия...
Тип: Изобретение
Номер охранного документа: 0002533416
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.07e0

Трансмиссионное масло

Настоящее изобретение относится к трансмиссионному маслу, содержащему, мас.%: серусодержащая присадка - 3,8; диалкилдитиофосфат цинка - 0,5; полиметакрилат - 1,5; кремнийорганическая присадка - 0,003; нефтяное масло до 100. Серусодержащая присадка представляет собой продукт, полученный в...
Тип: Изобретение
Номер охранного документа: 0002533417
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.07e3

Способ совместного получения 1,2-эпоксидодекана и 1,2-додекандиола

Изобретение относится к способу эпоксидирования малоактивных длинноцепочных олефинов, при котором получаются эпоксиды и диолы. Додекандиол обеспечивает эластичность полиэфирных смол (покрытий, высококачественных полиуретановых покрытий), его используют в качестве полупродукта в синтезе...
Тип: Изобретение
Номер охранного документа: 0002533420
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.07e5

Трансмиссионное масло

Настоящее изобретение относится к трансмиссионному маслу, содержащему, % масс.: серусодержащая присадка - 3,8; диалкилдитиофосфат цинка - 0,5; полиметакрилат - 1,5; кремнийорганическая присадка - 0,003; нефтяное масло до 100, при этом серусодержащая присадка представляет собой продукт...
Тип: Изобретение
Номер охранного документа: 0002533422
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.083b

Способ получения композиционного материала медь-титан

Изобретение может быть использовано при изготовлении сваркой взрывом деталей термического, химического оборудования, теплорегуляторов. Составляют трехслойный пакет с симметричным расположением титановой пластины относительно медных с заданным соотношением толщин слоев. Сваривают пакет взрывом и...
Тип: Изобретение
Номер охранного документа: 0002533508
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0857

Тензорезисторный датчик силы

Изобретение относится к весовой технике, в частности к тензорезисторным датчикам силы, предназначенным для точного измерения сил, в том числе в агрессивных средах. Тензорезисторный датчик силы содержит жесткий центр, силовводяшую оболочку, кольцевой силопреобразователь, ограниченный изнутри...
Тип: Изобретение
Номер охранного документа: 0002533536
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.086c

Способ получения 5-аминозамещенных 1-(1-адамантил)-3,4-динитро-1н-пиразолов

Изобретение относится к химии адамантилзамещенных пиразолов, а именно к способу получения 5-аминозамещенных 1-(1-адамантил)-3,4-динитро-1H-пиразолов, представленных общей формулой (1), где R и R независимо представляют собой H, C-C алкильную группу с разветвленной или неразветвленной цепью,...
Тип: Изобретение
Номер охранного документа: 0002533557
Дата охранного документа: 20.11.2014
+ добавить свой РИД