×
20.08.2014
216.012.eaf1

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ЛИСТОВ И ПЛИТ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии деформируемых термически неупрочняемых алюминиевых сплавов, предназначенных для использования в качестве конструкционного материала в виде деформируемых полуфабрикатов в морской и авиакосмической технике, транспортном и химическом машиностроении, в т.ч. в криогенной технике, например судах-газовозах для перевозки сжиженных при низких температурах газов. Способ включает получение слитка из алюминиевого сплава, содержащего магний и скандий, методом полунепрерывного литья, гомогенизирующий отжиг при температуре 300-360°C продолжительностью до 8 часов, механическую обработку слитка, нагрев литых заготовок под прокатку при 340-380°C до 8 часов, горячую прокатку с получением листа или плиты и последующий отжиг при температуре 380-440°C до 4 часов. Способ обеспечивает получение высоких механических свойств при комнатной и низких (криогенных) температурах. 1 пр., 1 табл.
Основные результаты: Способ изготовления горячекатаных листов из деформируемых термически неупрочняемых алюминиевых сплавов, содержащих магний и скандий, включающий получение слитков методом полунепрерывного литья, гомогенизацию слитков, механическую обработку слитков, нагрев литых заготовок и их горячую прокатку, отличающийся тем, что гомогенизацию слитков ведут при температуре 300-360°C продолжительностью до 8 часов, нагрев литых заготовок под прокатку ведут при температуре 340-380°C продолжительностью до 8 часов, после чего осуществляют отжиг горячекатаных листов при температуре 380-440°C продолжительностью до 4 часов.

Изобретение относится к области деформируемых термически неупрочняемых алюминиевых сплавов со скандием, предназначенных для использования в качестве конструкционного материала в виде деформируемых полуфабрикатов в различных областях техники: судостроении, авиакосмической и нефтегазодобывающей промышленности, в т.ч. для перевозки сжиженных газов, в транспортном машиностроении и т.д.

Существует ряд деформируемых термически неупрочняемых алюминиевых сплавов, легированных магнием, марганцем, цирконием и другими переходными металлами, из которых наиболее прочными являются сплавы системы Al-Mg-Sc.

Основными механизмами упрочнения сплавов этой системы являются твердорастворный, дисперсионного твердения за счет скандиевой фазы и структурного упрочнения вследствие повышения температуры рекристаллизации. Степень упрочнения определяется температурным воздействием в процессе производства полуфабрикатов, при гомогенизации слитка, при нагреве литой заготовки перед прокаткой и отжиге горячекатаного полуфабриката, а также величиной деформации.

Скандий наряду с другими легирующими элементами (Mg, Mn, Zr, Ti, Be и др.) в процессе плавления образует гомогенный расплав и после затвердевания слитка находится в пересыщенном твердом растворе, небольшая часть скандия, а также циркония и титана, при этом расходуется на модифицирование слитка. Прочность металла на этом этапе определяется твердорастворным механизмом упрочнения.

В процессе последующих нагревов слитка при гомогенизации и под прокатку происходит процесс высокотемпературного распада пересыщенного твердого раствора скандия в алюминии с образованием дисперсных выделений скандиевой фазы, прочность металла значительно увеличивается в результате дисперсного упрочнения. Наибольший упрочняющий эффект достигается при размере дисперсных выделений скандиевой фазы примерно в пределах от 8 до 60 мкм.

Температура обработки сплава в процессе отжигов и нагрева под прокатку не должна быть выше той, при которой происходит разупрочнение сплава в связи с коагуляцией выделений скандиевой фазы.

Температура нагрева литых заготовок из алюминиевых сплавов со скандием под горячую деформацию должна быть по возможности низкой с точки зрения сохранения прочностных свойств полуфабриката и в то же время обеспечивать достаточную пластичность обрабатываемого материала.

Структурное упрочнение происходит в результате пластической деформации и получения нерекристаллизованной фрагментированной структуры листов и плит из алюминиевых сплавов со скандием.

Известен способ получения катаных полуфабрикатов из алюминиевых сплавов системы Al-Mg-Sc, принятый нами за прототип (автореферат диссертации Филатова Ю.А. на соискание ученой степени доктора технических наук «Исследование и разработка новых высокопрочных свариваемых сплавов на основе системы Al-Mg-Sc и технологических параметров производства из них деформированных полуфабрикатов», ОАО «Всероссийский институт легких сплавов», Москва, 2000 г.), который заключается в гомогенизирующем отжиге слитков, полученных методом полунепрерывного литья, при температуре 350-370°С в течение до 24 часов, механической обработке слитков, нагреве литых заготовок под прокатку при температуре 380-410°С в течение 16 часов и последующей горячей прокатке литых заготовок.

Недостатком этого способа является:

- недостаточно высокий уровень механических свойств алюминиевых сплавов системы Al-Mg-Sc в катаных полуфабрикатах вследствие продолжительного нагрева при температурах выше 350°С;

- наличие грубых первичных интерметаллидов, выделившихся при литье слитка из твердого раствора в алюминии марганца, циркония и титана, которые являются центрами концентраций напряжений, что ведет к снижению механических свойств.

Техническим результатом предложенного изобретения является создание способа изготовления горячекатаных полуфабрикатов, листов и плит, из алюминиевых сплавов, обеспечивающего регламентировано высокие механические свойства листов и плит при комнатной и криогенных температурах, который достигается снижением температуры и продолжительности нагрева слитков при повышенной температуре в процессе изготовления горячекатаных полуфабрикатов и использования последующего кратковременного отжига горячекатаных полуфабрикатов.

Технический результат достигается тем, что изготовление горячекатаных полуфабрикатов из алюминиевых сплавов, включающего получение слитков методом полунепрерывного литья, гомогенизирующий отжиг слитков, механическую обработку слитков, нагрев литых заготовок под прокатку и горячую прокатку литых заготовок, согласно изобретению гомогенизирующий отжиг слитков проводят при температуре 300-360°С продолжительностью до 8 часов, нагрев литых заготовок под прокатку при температуре 340-380°С продолжительностью до 8 часов и отжиг горячекатаных плит при температуре 380-440°С продолжительностью до 4 часов.

Отжиг слитков при температуре 300-360°С продолжительностью до 8 часов достаточен для снятия остаточных напряжений, возникающих в слитке при его охлаждении в процессе полунепрерывного литья. Это предотвращает появление трещин и позволяет проводить механическую обработку слитков перед прокаткой для удаления с поверхности дефектов литейного происхождения.

В процессе отжига при температуре 300-360°С скандий в основном находится в твердом растворе процесс распада твердого раствора и выделения из него дисперсных частиц скандиевой фазы при этих температурах носит замедленный характер.

Повышение температуры отжига слитков свыше 360°С с увеличением продолжительности нагрева, как отмечалось ранее, ускоряет процесс выделений дисперсных частиц скандиевой фазы в слитках и их коагуляцию, что в итоге приводит к снижению механических свойств полуфабрикатов.

Снижение температуры отжига до температуры менее 300°С значительно увеличивает продолжительность отжига для снятия остаточных термических напряжений, и процесс отжига становится экономически невыгоден.

Температура нагрева литых заготовок под прокатку в пределах 340-380°С соответствует области технологической пластичности сплава со скандием, и снижение температуры нагрева по сравнению с прототипом позволит замедлить процесс распада твердого раствора и выделения дисперсных частиц скандиевой фазы и их коагуляции. Снижение температуры нагрева под прокатку менее 340°С сопровождается увеличением прочностных свойств сплава и соответственно значительным сопротивлением деформации, что затрудняет или делает невозможным процесс прокатки.

Помимо температуры нагрева на динамику процесса выделений частиц скандиевой фазы и их роста влияет продолжительность нагрева.

Увеличение общей продолжительности нагрева литых заготовок во время отжига и перед прокаткой свыше 16 часов приводит к коагуляции дисперсных частиц и снижению механических свойств катаных полуфабрикатов.

Гомогенизирующий отжиг слитков при температурах 300-360°С и их нагрев под прокатку при температурах 340-380°С при ограничении продолжительности нагрева позволяет предотвратить не только коагуляцию дисперсных частиц скандиевой фазы, но и затормозить сам процесс распада твердого раствора и выделений дисперсных частиц скандиевой фазы.

Ограниченный 4 часами во времени отжиг горячекатаных плит при температурах 360-440°С позволяет обеспечить:

- Полный распад твердого раствора скандия в алюминии;

- Контроль степени коагуляции дисперсных частиц скандиевой фазы, получая требуемый размер дисперсных частиц, изменяя температуру нагрева и время выдержки при температуре отжига. Это позволяет получать катаные полуфабрикаты с регламентируемым сочетанием прочностных и пластических свойств;

- Растворение грубых включений интерметаллидов переходных металлов (марганца, хрома, циркония и др.), которые являются концентраторами напряжений и оказывают отрицательное влияние на механические свойства полуфабрикатов;

- Растворение 8-фазы, выделившегося из пересыщенного магнием твердого раствора, что обеспечивает высокие коррозионные свойства.

Таким образом, предложенный способ изготовления горячекатаных полуфабрикатов замедляет процесс распада твердого раствора скандия в алюминии и коагуляцию дисперсных частиц скандиевой фазы и сохраняет размеры частиц менее критического размера и позволяет получать регламентировано высокий уровень механических и требуемое сочетание прочностных и пластических свойств полуфабрикатов (при комнатной и криогенных температурах).

Пример

С использованием технического алюминия А85, магния Мг90, двойных лигатур алюминий-марганец, алюминий-бериллий, алюминий-цирконий, алюминий-скандий, алюминий-хром и алюминий-титан в электропечи готовили расплав и методом полунепрерывного литья отливали плоские слитки сечением 65×240 мм из алюминиевого сплава следующего состава: масс.% 6,3 Mg-0,64 Mn-0,15 Cr-0,15 Zr-0,16 Sc-0,026 Ti, остальное - алюминий.

В соответствии с предложенным способом слитки для снятия остаточных напряжений отжигались в шахтной электропечи с принудительной вентиляцией воздуха при температурах 300 и 360°С в течение 8 часов, с охлаждением на воздухе, после разрезки слитков на заготовки шириной по 300 и 200 мм, заготовки механически обрабатывались. Боковые поверхности заготовок фрезеровались на глубину 5,0 мм, а на малых гранях заготовок фрезеровали замок Петрова.

Перед прокаткой заготовки нагревались в электрической печи при температуре 340 и 380°С в течение 8 и 6 часов соответственно.

По запредельному варианту слитки отжигались при температурах 380 и 280°С в течение 10 и 12 часов соответственно, литые заготовки перед прокаткой нагревались при температурах 320 и 400°С в течение 10 часов.

Прокатка заготовок после нагрева при температуре 380°С производилась поперек оси слитка на реверсивном стане ДУО 600 на толщину 10 мм с суммарной относительной деформацией 85%. После нагрева заготовки при температуре 320°С выкатать лист толщиной 10 мм не удалось

После прокатки заготовок, нагретых при температуре 380°С, были изготовлены листы толщиной 10 мм, шириной 300 мм, длиной 1700 мм.

В соответствии с прототипом слитки, полученные методом полунепрерывного литья, подвергались гомогенизирующему отжигу в шахтной электропечи с принудительной вентиляцией воздуха при температуре 370°С в течение 24 часов с последующим охлаждением на воздухе. После разрезки слитков на заготовки и их механической обработки заготовки нагревались в электропечи при температуре 400°С в течение 14 часов, прокатка заготовок производилась по режиму аналогичному в предлагаемом способе на толщину 10 мм.

Из полученных плит вырезались пятикратные образцы для испытания на растяжение при комнатной и криогенных температурах.

Результаты механических испытаний образцов, вырезанных из плит, полученных по предлагаемому способу и по прототипу, приведены в таблице.

Как видно из приведенных данных у горячекатаных плит, изготовленных по предлагаемому способу, механические свойства выше, чем у прототипа, особенно это преимущество проявляется при криогенных температурах (-153 - -253°С).

Механические свойства горячекатаных листов, изготовленных по предлагаемому способу и прототипу
Варианты Параметры способа Т°С испытания Механические свойства
Отжиг слитков Нагрев для прокатки Отжиг ГК плит
Т°С час Т°С час Т°С τ, час σв, МПа σ0,2, МПа δ, % ψ, %
Предлагаемый способ 20 445 322 19,8 32,7
300 8 380 6 380 4 -60 459 335 20,8 33,5
-196 574 402 21,2, 22,8
20 425 312 20,8 32
360 6 340 8 440 2 -60 439 315 21,4 30,5
-196 562 394 24,2 24,8
Запредельный способ 20 388 240 18,6 34
380 10 400 10 460 5 -60 394 252 19,0 33,8
-196 480 320 19,8 29,0
20
280 12 320 10 - - -60 - - - -
-196
Прототип 406 280 18,8 34,6
370 24 400 14 - - 424 290 19,4 34,2
- 480 345 20,4 32,2
Примечание:
В таблице приведены средние значения результатов испытаний 3 образцов на точку. После нагрева при 320°С прокатка заготовки не удалась

Технико-экономический эффект от использования изобретения по сравнению с прототипом заключается в повышении прочностных и снижении массогабаритных характеристик конструкций за счет увеличения механических свойств листов и плит, особенно при низких температурах, и в расширении областей применения деформируемых термически не упрочняемых алюминиевых сплавов в морской и авиа космической технике, транспортном и химическом машиностроении, в криогенной технике, например, в корпусных конструкциях по хранению и перевозке сжиженного газа при низких температурах и в нагруженных конструкциях двойного назначения

Источник поступления информации: Роспатент

Показаны записи 151-160 из 254.
20.05.2016
№216.015.41b3

Электроизоляционный эпоксидный лак

Изобретение относится к эпоксидным электроизоляционным составам, в частности составам на основе эпоксидных или полиэфирных смол в органическом растворителе, и может быть использовано в производстве изделий радиотехники и электроники, к которым предъявляются высокие требования по электрической...
Тип: Изобретение
Номер охранного документа: 0002584734
Дата охранного документа: 20.05.2016
10.08.2016
№216.015.523d

Универсальный стенд для определения характеристик электроприводов и движителей действующих моделей бпла

Изобретение относится к области авиации, в частности к средствам для проведения испытаний приводов и движителей летательных аппаратов. Стенд для определения характеристик электроприводов и движителей беспилотных летательных аппаратов содержит корпус стенда, основание с кронштейнами крепления...
Тип: Изобретение
Номер охранного документа: 0002594048
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5513

Способ изготовления полой металлической панели, предназначенной для соединения ее с корпусом судна

Изобретение может быть использовано при изготовлении трехслойных металлических полых панелей для соединения их с корпусом судна при создании, например, переборок, выгородок, палуб, стенок рубок и надстроек судов. Полая металлическая панель состоит из наружных обшивок и размещенных между ними...
Тип: Изобретение
Номер охранного документа: 0002593250
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.55e1

Устройство для определения спектральной излучательной способности теплозащитных материалов при высоких температурах

Изобретение относится к области измерительной техники и касается устройства для измерения излучательной способности материалов. Устройство содержит вакуумную камеру, исследуемый образец, механизм вращения образца, омический нагреватель, спектрометр, компьютер и модель черного тела. При этом в...
Тип: Изобретение
Номер охранного документа: 0002593445
Дата охранного документа: 10.08.2016
10.07.2016
№216.015.569f

Способ изготовления аэродинамических поверхностей лопаток роторов газотурбинных двигателей на станках с чпу

Изобретение относится к машиностроению и может быть использовано при обработке профиля пера рабочих лопаток газотурбинных двигателей на станках с ЧПУ. Способ включает обработку концевой торовой фрезой, которую перемещают эквидистантно обрабатываемой поверхности. Выбирают оптимальную частоту...
Тип: Изобретение
Номер охранного документа: 0002588757
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5cb6

Способ получения на летательном аппарате (ла) улучшенного изображения подстилающей поверхности

Изобретение относится к способам моделирования, анализа и обработки изображений и может быть использовано в системах повышения ситуационной осведомленности пилотов летательных аппаратов (ЛА), а также в системах внешнего ориентирования и распознавания по видеоинформации в мобильных роботах и в...
Тип: Изобретение
Номер охранного документа: 0002591029
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.74ea

Электроизоляционный заливочный компаунд

Изобретение относится к электроизоляционным компаундам, которые могут быть использованы для заливки или пропитки частей электрических машин, приборов, токопроводящих схем и деталей в радиотехнической, электротехнической и электронной промышленностях. Компаунд состоит из диглицидилового эфира...
Тип: Изобретение
Номер охранного документа: 0002598861
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.85ea

Бронебойный боеприпас

Изобретение относится к области вооружения, а именно к бронебойным боеприпасам, в частности к снарядам с реактивным двигателем, запускаемым из ствола орудия. Бронебойный боеприпас содержит гильзу с метательным зарядом и снаряд. Последний включает поддон, закрепленный в нем бронебойный сердечник...
Тип: Изобретение
Номер охранного документа: 0002603688
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8628

Нитратор для получения жидких нитроэфиров

Изобретение относится к области производства эфиров азотной кислоты, используемых при получении баллиститных порохов, промышленных взрывчатых веществ и жидких унитарных топлив, конкретно к нитратору для получения жидких нитроэфиров. Предлагаемый нитратор содержит заключенную в корпус с крышкой...
Тип: Изобретение
Номер охранного документа: 0002603773
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8929

Необрастающая эмаль прогидроф

Изобретение относится к лакокрасочным материалам и предназначено для получения гидрофобных необрастающих покрытий, используется в судостроении и для защиты металлических изделий и конструкций, эксплуатируемых в атмосферных условиях. Описана необрастающая эмаль, состоящая из отвердителя...
Тип: Изобретение
Номер охранного документа: 0002602553
Дата охранного документа: 20.11.2016
Показаны записи 151-160 из 196.
20.01.2016
№216.013.a2c3

Способ получения композиционного армированного порошкового материала

Изобретение относится к получению композиционного армированного порошкового материала для нанесения покрытий холодным сверхзвуковым газодинамическим напылением. Смешивают матричный порошок металлов или их сплавов и армирующий нанопорошок с размером частиц от 1 нм до 100 нм, в полученную смесь...
Тип: Изобретение
Номер охранного документа: 0002573309
Дата охранного документа: 20.01.2016
10.03.2016
№216.014.bde5

Антифрикционный композиционный материал на основе порошковой меди

Изобретение относится к антифрикционным композиционным материалам, получаемым методами порошковой металлургии, которые могут быть использованы при изготовлении тяжелонагруженных подшипников скольжения коленчатых валов двигателей внутреннего сгорания, преимущественно дизельных двигателей....
Тип: Изобретение
Номер охранного документа: 0002576740
Дата охранного документа: 10.03.2016
27.02.2016
№216.014.bf1e

Способ получения полидисперсного порошка карбида бора

Изобретение относится к производству неорганических соединений, конкретно к карботермическому способу получения полидисперсных порошков карбида бора, предназначенных для получения на их основе абразивных порошков для шлифования и ударопрочной керамики. Способ включает смешивание борной кислоты...
Тип: Изобретение
Номер охранного документа: 0002576041
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c12c

Способ термической обработки изделий из высокопрочных алюминиевых сплавов

Изобретение относится к области металлургии, в частности к технологии термической обработки изделий из высокопрочных алюминиевых сплавов для использования в судостроении и конструкциях, эксплуатирующихся в морских условиях, авиакосмической технике, транспортном машиностроении. Способ...
Тип: Изобретение
Номер охранного документа: 0002576283
Дата охранного документа: 27.02.2016
10.02.2016
№216.014.c22f

Аппарат на воздушной подушке

Изобретение относится к авиации и касается аппаратов на воздушной подушке (АВП) с системами демпфирования колебаний по высоте и автоматического управления по углам крена и тангажа. АВП содержит ограждение ВП, снабженное воздуховодом, расположенным вдоль периметра корпуса и разделенным на две...
Тип: Изобретение
Номер охранного документа: 0002574649
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c32e

Способ увеличения подъемной силы самолета и устройство для его реализации

Способ и устройство увеличения аэродинамической подъемной силы самолета с силовой установкой, имеющей сопло, расположенное у задней кромки крыла. Для увеличения подъемной силы самолета с силовой установкой, имеющей сопло в области задней кромки крыла, используют нижнюю внешнюю поверхность...
Тип: Изобретение
Номер охранного документа: 0002574676
Дата охранного документа: 10.02.2016
20.06.2016
№217.015.044a

Состав эпоксибисмалеимидной смолы и способ ее получения

Изобретение относится к области получения полимерных композиционных материалов, применяемых в авиакосмической технике, в частности к составу эпоксибисмалеимидной смолы и способу получения состава. Состав эпоксибисмалеимидной смолы содержит в мас.%: 29,2-47,6...
Тип: Изобретение
Номер охранного документа: 0002587169
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2bd1

Способ определения термомеханических характеристик материалов, обладающих эффектом памяти формы

Изобретение относится к неразрушающему контролю материалов с памятью формы, а именно сплавов на основе никелида титана, и может быть использовано во всех областях народного хозяйства для определения и контроля радиальных напряжений термомеханического возврата, необходимых для обеспечения...
Тип: Изобретение
Номер охранного документа: 0002579174
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c3d

Способ повышения чувствительности электромагнитных датчиков пульсаций скорости преобразователей гидрофизических полей

Изобретение относится к измерительной технике и предназначено для измерения скорости потока электропроводящей жидкости, например морской воды. Способ повышения чувствительности электромагнитных датчиков пульсаций скорости преобразователей гидрофизических полей согласно изобретению включает...
Тип: Изобретение
Номер охранного документа: 0002579805
Дата охранного документа: 10.04.2016
27.04.2016
№216.015.38e7

Пьезоакселерометр

Изобретение относится к области измерительной техники и может быть использовано для измерения параметров ускорения в виброметрии, сейсмологии и акустики. Техническим результатом, получаемым от внедрения изобретения, является измерение трех компонент вектора ускорения с помощью...
Тип: Изобретение
Номер охранного документа: 0002582910
Дата охранного документа: 27.04.2016
+ добавить свой РИД