Вид РИД
Изобретение
Изобретение относится к области измерительной техники и может быть использовано для измерения параметров ускорения в виброметрии, сейсмологии и акустике.
Известен трехкомпонентный акселерометр, содержащий корпус, который закреплен на базовом основании и закрыт колпачком. Корпус выполнен из металла в форме трехгранной пирамиды с тремя ортогональными плоскостями, на каждой из которых консольно закреплены по одному пьезоэлектрическому чувствительному элементу. Чувствительные элементы выполнены в виде пьезоэлектрических или биморфных пластин (Патент №2383025, кл. G01P 15/09, 2010 г.).
Недостатком трехкомпонентного акселерометра является слабая чувствительность к высоким частотам из-за консольного закрепления чувствительных элементов.
Наиболее близким по конструкции, совпадающим по характеру работы с заявленным, является однокомпонентный акселерометр, принятый за прототип предлагаемого трехкомпонентного акселерометра.
Прототип содержит предусилитель и концентрично расположенные кольцевые инерционную массу, корпус и пьезочувствительный элемент в виде трех пьезоэлектирческих секторов, один из которых выполнен с осевой поляризацией, и электродов, контактирующих с боковыми поверхностями пьезоэлектрических секторов, при этом кольцевой корпус выполнен из электропроводного материала с возможностью контактирования с боковыми поверхностями кольцевых пьезоэлектрических секторов, причем электроды подключены к предусилителю (Патент №2098831, кл. G01P 15/09, 1998 г.).
Недостатком прототипа является ограниченность его применения случаем измерения одной компоненты ускорения.
Техническим результатом, получаемым от внедрения изобретения, является получение возможного измерения трех компонент ускорения.
Данный технический результат достигается за счет того, что в известный пьезоакселерометр, содержащий предусилитель и концентрично расположенные кольцевые инерционную массу, корпус и пьезочувствительный элемент в виде трех пьезоэлектирческих секторов, один из которых выполнен с осевой поляризацией, и электродов, контактирующих с боковыми поверхностями пьезоэлектрических секторов, при этом кольцевой корпус выполнен из электропроводного материала с возможностью контактирования с боковыми поверхностями пьезоэлектрических секторов, причем электроды подключены к предусилителю, дополнительно введены второй и третий предусилители, при этом второй и третий пьезоэлектрические сектора выполнены с радиальной поляризацией и подключены ко второму и третьему предусилителям.
Второй и третий пьезоэлектрические сектора пьезоакселерометра могут быть установлены таким образом, что линии, проведенные из центра данного кольцевого сечения пьезоакселерометра через середины второго и третьего пьезоэлектрических секторов, образуют прямой угол.
Изобретение поясняется чертежами, где
на фиг. 1 представлена конструктивная схема пьезоакселерометра; на фиг. 2 - его электронная схема.
Пьезокселерометр содержит концентрично расположенные кольцевые инерционную массу 1, корпус 2 и пьезочувствительный элемент 3 в виде трех пьезоэлектрических секторов (на фиг. 1 не соприкасающихся друг с другом).
Один из трех пьезочувствительных элементов, например 4, выполнен с осевой поляризацией, а два других пьезочувствительных элемента, например 51 52, выполнены с радиальной поляризацией, в частном случае расположенных под углом 90° друг к другу (сечение А-А справа).
Имеются также электроды 6, 7, контактирующие с боковыми поверхностями газоэлектрических секторов. При этом кольцевой корпус 2 выполнен из электропроводного материала с возможностью контактирования с боковыми поверхностями пьезоэлектрических секторов 51 и 52.
Электрическая схема пьезоакселерометра включает в себя три предусилителя 8, 9, 10, к входам которых подключены соответственно пьезоэлетрйческие сектора 51 52 и 4 по количеству измеряемых компонент х, у, z, как показано на фиг. 2.
Конкретное выполнение электродов 6, 7 в пьезоакселерометре является НОУ-ХАУ заявителя.
Пьезоакселерометр работает следующим образом.
Закрепляют корпус пьезоакселерометра на исследуемом изделии (элементы крепления пьезоакселерометра не приведены).
При колебаниях корпуса 2 в среде вдоль осей х, у, z на пьезоэлементы 4, 51 и 52 действует сила инерции, деформирующая пьезоэлементы. На выходах пьезоэлементов появляются напряжения Ux, Uy, Uz, пропорциональные измеряемым компонентам вектора ускорения.
Таким образом, область применения акселерометра, работающего на деформации сдвига, расширена па случай измерения параметров вектора ускорения. Этим достигается поставленный технический результат.