×
20.08.2014
216.012.eaeb

Результат интеллектуальной деятельности: СПОСОБ ИЗВЛЕЧЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ ЭКСТРАКЦИОННОЙ ФОСФОРНОЙ КИСЛОТЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу извлечения концентрата редкоземельных элементов (РЗЭ) из экстракционной фосфорной кислоты. Экстракционную фосфорную кислоту с концентрацией 27-45 мас.%, содержащую РЗЭ и торий, пропускают через сульфоксидный катионит с образованием обедненного по РЗЭ торийсодержащего фосфорнокислого раствора и катионита, насыщенного РЗЭ. При пропускании фосфорной кислоты через сульфоксидный катионит фиксируют концентрацию тория в обедненном по РЗЭ фосфорнокислом растворе, которая дважды становится равной его концентрации в исходной фосфорной кислоте. Когда концентрация тория в обедненном по РЗЭ растворе второй раз становится равной его концентрации в исходной фосфорной кислоте, катионит считают насыщенным РЗЭ и пропускание через него фосфорной кислоты прекращают. Насыщенный катионит промывают водой. Затем проводят десорбцию РЗЭ раствором сульфата или нитрата аммония с концентрацией 275-300 г/л и из полученного десорбата выделяют нерадиоактивный концентрат РЗЭ. Техническим результатом является извлечение РЗЭ в концентрат 96,7-97,4%. 2 з.п. ф-лы, 1 ил., 2 пр.

Изобретение относится к способам выделения концентрата редкоземельных элементов из экстракционной фосфорной кислоты, получаемой в дигидратном процессе переработки апатитового концентрата, и может быть использовано в химической и сопутствующих отраслях промышленности.

При переработке апатитового концентрата, содержащего около 1 мас.% оксидов редкоземельных элементов (РЗЭ) и 0,002-0,003 мас.% тория, на экстракционную фосфорную кислоту (ЭФК) широко используется сернокислотный метод, который реализован в промышленности в виде полугидратного или дигидратного процессов. В дигидратном процессе до 25% РЗЭ апатитового концентрата и около 90% тория переходят в экстракционную фосфорную кислоту. Содержание РЗЭ в экстракционной фосфорной кислоте дигидратного процесса составляет около 1,1-1,4 г/л. По сравнению с исходным апатитовым концентратом сумма РЗЭ в фосфорной кислоте обогащена иттрием и РЗЭ средней и тяжелой групп: диспрозием, гольмием, эрбием, иттербием. Это позволяет рассматривать ЭФК как перспективный источник РЗЭ, однако известные способы не обеспечивают их эффективного извлечения по причине того, что значительная часть содержащегося в ЭФК тория переходит в редкоземельный концентрат.

Известен способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты, содержащей РЗЭ и торий (см. Локшин Э.П., Иваненко В.И., Тареева О.А., Корнейков Р.И. Извлечение лантаноидов из фосфорнокислых растворов с использованием сорбционных методов // ЖПХ. 2009. Т.82. №4. С.544-551), согласно которому экстракционную фосфорную кислоту с концентрацией 38,5 мас.% нейтрализуют аммиаком до pH 1,5-1,7, после чего выделяют РЗЭ сорбцией в течение 1 ч при температуре 70ºC сорбентами на основе гидратированного фосфата титанила в виде гранул крупностью 0,3-0,7 мм с последующей их промывкой водой и десорбцией РЗЭ раствором 3М HNO3. Максимальное извлечение РЗЭ, достигнутое при использовании указанного сорбента, модифицированного цирконием, составило 53%, при этом все РЗЭ сорбировались в сопоставимой степени.

К недостаткам способа следует отнести необходимость проведения предварительной нейтрализации ЭФК аммиаком, что усложняет процесс ее переработки, и относительно невысокое извлечение РЗЭ. В известном способе не решается вопрос выделения концентрата РЗЭ из десорбата, а также не рассматривается отделение тория и других содержащихся в ЭФК примесей при сорбции и десорбции. Все это снижает эффективность способа.

Известен также принятый в качестве прототипа способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты, содержащей РЗЭ и торий (см. пат. 2465207 РФ, МПК C01F 17/00, С22В 59/00 (2006.01), 2012), согласно которому исходную фосфорную кислоту с концентрацией 28-38,5 мас.% пропускают через сульфоксидный катионит и при температуре 20-85ºC сорбируют РЗЭ и торий с образованием обедненного по РЗЭ и торию фосфорнокислого раствора и катионита, насыщенного РЗЭ и торием. Насыщенный катионит промывают водой до обеспечения содержания фосфат-иона в промывной воде не более 2 г/л и затем десорбируют из него РЗЭ и торий раствором сульфата аммония с концентрацией 200-300 г/л (NH4)2SO4. Полученный десорбат обрабатывают аммонийсодержащим осадителем - карбонатом аммония или газообразным аммиаком, который вводят в две стадии, при этом на первой стадии осадитель вводят до обеспечения pH 4,5-5,0 с осаждением и отделением торийсодержащего осадка, а на второй стадии - до обеспечения pH не менее 7 с осаждением и отделением карбонатного или гидроксидного концентрата РЗЭ. Способ позволяет извлекать из экстракционной фосфорной кислоты 97,1-97,4% РЗЭ с получением нерадиоактивного концентрата РЗЭ.

Недостатком известного способа является образование торийсодержащего осадка - отхода с высокой удельной радиоактивностью, обработка которого и его последующее хранение затрудняют и удорожают реализацию способа, снижая его эффективность.

Настоящее изобретение направлено на достижение технического результата, заключающегося в повышении эффективности способа за счет исключения образования радиоактивного торийсодержащего осадка при обеспечении высокой степени извлечения редкоземельных элементов из экстракционной фосфорной кислоты в нерадиоактивный концентрат РЗЭ.

Технический результат достигается тем, что в способе извлечения редкоземельных элементов из экстракционной фосфорной кислоты, содержащей РЗЭ и торий, включающем пропускание исходной фосфорной кислоты через сульфоксидный катионит с образованием обедненного по РЗЭ торийсодержащего фосфорнокислого раствора и катионита, насыщенного РЗЭ, промывку катионита, десорбцию РЗЭ концентрированным раствором соли аммония и обработку полученного десорбата с выделением концентрата РЗЭ, согласно изобретению при пропускании фосфорной кислоты через сульфоксидный катионит фиксируют концентрацию тория в обедненном по РЗЭ торийсодержащем фосфорнокислом растворе и при дважды установленной концентрации тория в обедненном по РЗЭ растворе, равной его концентрации в исходной фосфорной кислоте, катионит считают насыщенным РЗЭ и пропускание через него фосфорной кислоты прекращают.

На достижение технического результата направлено то, что используют экстракционную фосфорную кислоту с концентрацией 27-45 мас.%.

На достижение технического результата направлено также то, что десорбцию РЗЭ ведут раствором сульфата или нитрата аммония с концентрацией 275-300 г/л.

Существенные признаки заявленного изобретения, определяющие объем испрашиваемой правовой охраны и достаточные для получения вышеуказанного технического результата, выполняют функции и соотносятся с результатом следующим образом.

На Фиг. приведена зависимость концентрации тория CTh в обедненном по РЗЭ торийсодержащем фосфорнокислом растворе от объема пропущенной через катионит экстракционной фосфорной кислоты.

Фиксирование концентрации тория в обедненном по РЗЭ торийсодержащем фосфорнокислом растворе при пропускании фосфорной кислоты через сульфоксидный катионит обусловлено следующим. Как показали исследования, при сорбции сульфоксидным катионитом наиболее эффективно (в порядке убывания) сорбируются катионы РЗЭ, щелочноземельных элементов - кальция и магния и щелочных элементов - натрия и калия. Вначале, когда сорбент ненасыщен, он эффективно поглощает из ЭФК указанные катионы, а также катионы трехвалентных элементов - алюминия, железа и четырехвалентных элементов - титана, тория. По мере насыщения сорбента сорбция катионов алюминия, железа, титана и тория сначала снижается, а затем эти элементы перестают поглощаться сорбентом и начинают вытесняться из него катионами РЗЭ и щелочноземельных металлов, образующими более прочные ассоциаты с сульфогруппами сорбента, в обедненный по РЗЭ торийсодержащий фосфорнокислый раствор. При этом наступает момент (см. Фиг.), когда концентрации тория в поступающей на сорбцию ЭФК и в обедненном по РЗЭ торийсодержащем фосфорнокислом растворе выравниваются. Затем концентрация тория в обедненном по РЗЭ торийсодержащем фосфорнокислом растворе начинает повышаться, превышая его концентрацию в поступающей на сорбцию ЭФК. По мере снижения количества тория, поглощенного сорбентом, его концентрация в обедненном по РЗЭ фосфорнокислом растворе начинает снижаться и в какой-то момент повторно становится равной его концентрации в исходной фосфорной кислоте. Одновременно прекращается сорбция РЗЭ, особенно иттриевой и средней групп. При этом катионит считают насыщенным РЗЭ и пропускание через него фосфорной кислоты прекращают. Практически весь торий остается в обедненном по РЗЭ фосфорнокислом растворе, что позволяет в итоге получить нерадиоактивный концентрат РЗЭ. Радиоактивный торийсодержащий осадок при этом не образуется. Все это повышает эффективность способа. С учетом незначительной концентрации тория (0,01-0,02 г/л ThO2) фосфорнокислый раствор может быть использован при производстве удобрений. Возникающие в процессе сорбции колебания концентрации тория незначительно влияют на общую радиоактивность раствора.

Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в повышении эффективности способа за счет исключения образования радиоактивного торийсодержащего осадка при обеспечении высокой степени извлечения редкоземельных элементов из экстракционной фосфорной кислоты в нерадиоактивный концентрат РЗЭ.

В частных случаях осуществления изобретения предпочтительны следующие режимные параметры.

Использование экстракционной фосфорной кислоты с концентрацией 27-45 мас.% позволяет применить способ для извлечения редкоземельных элементов как из оборотной ЭФК, направляемой на разложение апатитового концентрата, так и из продукционной ЭФК.

Проведение десорбции РЗЭ концентрированным раствором соли аммония обеспечивает эффективный перевод РЗЭ и щелочноземельных элементов в десорбат. Использование для десорбции РЗЭ растворов сульфата или нитрата аммония с концентрацией 275-300 г/л обеспечивает концентрацию свободного катиона NH4+ в пределах 3,4-3,5 М, что обеспечивает высокое извлечение РЗЭ в десорбат.

Извлечение РЗЭ из десорбата может быть осуществлено различными известными методами, в частности осаждением с использованием карбоната аммония или газообразного аммиака с получением карбонатного или гидроксидного концентрата РЗЭ либо экстракцией фосфорорганическими экстрагентами.

Вышеуказанные частные признаки изобретения позволяют осуществить способ в оптимальном режиме с точки зрения исключения образования торийсодержащего осадка при обеспечении высокой степени извлечения редкоземельных элементов из экстракционной фосфорной кислоты с получением нерадиоактивных концентратов РЗЭ.

Сущность и преимущества заявленного способа могут быть более наглядно проиллюстрированы следующими примерами.

Пример 1. Берут 0,5 л экстракционной фосфорной кислоты ОАО «ФосАгро-Череповец» с концентрацией 45 мас.%, содержащей, г/л: 1,01 ∑Tr2O3, 0,0152 ThO2, 0,0027 UO2, 0,851 Na2O, 0,757 MgO, 2,68 CaO, 5,19 Al2O3, 1,44 TiO2, 3,5 Fe2O3. Кислоту пропускают при температуре 80ºC со скоростью 1,5 м/ч через изготовленную из полипропилена термостатированную сорбционную колонку, содержащую 400 г сульфоксидного катионита КУ-2-8чС, имеющего статическую обменную емкость 1,8 мг-экв/см3, с образованием обедненного по РЗЭ торийсодержащего фосфорнокислого раствора и катионита, насыщенного РЗЭ. В процессе сорбции фиксируют концентрацию тория в обедненном по РЗЭ фосфорнокислом растворе, которая дважды (см. Фиг.) становится равной его концентрации 0,0152 г/л ThO2 в исходной фосфорной кислоте. Когда концентрация тория в обедненном по РЗЭ фосфорнокислом растворе второй раз становится равной его концентрации в исходной фосфорной кислоте, катионит считают насыщенным РЗЭ и пропускание через него фосфорной кислоты прекращают. Количество РЗЭ, сорбированных катеонитом, составило 18,5 мг-экв, тория - 0,000152 мг-экв. Сорбция РЗЭ составила 98,4%. Насыщенный катионит промывают 900 мл воды до обеспечения содержания фосфат-иона в промывной воде 1,2 г/л. Затем производят десорбцию РЗЭ 0,5 л раствора сульфата аммония с концентрацией 275 г/л (NH4)2SO4 с образованием 0,5 л десорбата, имеющего pH 1. Извлечение катионов РЗЭ в десорбат составило 99,1%. Полученный десорбат обрабатывают газообразным аммиаком до обеспечения pH 7,35 с осаждением и отделением фильтрацией гидроксидного концентрата РЗЭ. Извлечение РЗЭ из десорбата в гидроксидный концентрат - 99,2%. Остаточное содержание тория относительно суммы РЗЭ в гидроксидном концентрате РЗЭ равно 0,002 мас.%, что соответствует удельной эффективной радиоактивности АЭфф=64 Бк/кг, т.е. гидроксидный концентрат РЗЭ относится к 1 классу материалов (Aэфф≤740 Бк/кг), обращение с которыми осуществляется без ограничений. Сквозное извлечение РЗЭ из ЭФК в нерадиоактивный гидроксидный концентрат составило 96,7%.

Пример 2. Берут 0,75 л экстракционной фосфорной кислоты ОАО «Метахим» с концентрацией 27 мас.% содержащей, г/л: 0,905 ∑Tr2O3, 0,011 ThO2, 0,0019 UO2, 0,87 Na2O, 0,53 MgO, 0,75 CaO, 3,52 Al2O3, 0,91 TiO2, 1,77 Fe2O3. Кислоту пропускают при температуре 80ºC со скоростью 1,5 м/ч через изготовленную из полипропилена термостатированную сорбционную колонку, содержащую 400 г сульфоксидного катионита КУ-2-8 чС, имеющего статическую обменную емкость 1,8 мг-экв/см3, с образованием обедненного по РЗЭ торийсодержащего фосфорнокислого раствора и катионита, насыщенного РЗЭ. В процессе сорбции фиксируют концентрацию тория в обедненном по РЗЭ фосфорнокислом растворе, которая дважды (см. Фиг.) становится равной его концентрации 0,011 г/л ThO2 в исходной фосфорной кислоте. Когда концентрация тория в обедненном по РЗЭ фосфорнокислом растворе второй раз становится равной его концентрации в исходной фосфорной кислоте, катионит считают насыщенным РЗЭ и пропускание через него фосфорной кислоты прекращают. Количество РЗЭ, сорбированных катионитом, составило 12,17 мг-экв, тория - 0,0025 мг-экв. Сорбция РЗЭ составила 98,6%. Насыщенный катионит промывают 800 мл воды до обеспечения содержания фосфат-иона в промывной воде 1,0 г/л. Затем производят десорбцию РЗЭ 0,25 л раствора нитрата аммония с концентрацией 300 г/л NH4NO3 с образованием 0,25 л десорбата, имеющего pH 1. Извлечение катионов РЗЭ в десорбат составило 99,5%. Полученный десорбат обрабатывают карбонатом аммония до обеспечения pH 7,45 с осаждением и отделением фильтрацией карбонатного концентрата РЗЭ. Извлечение РЗЭ из десорбата в карбонатный концентрат - 99,3%. Остаточное содержание тория относительно суммы РЗЭ в карбонатном концентрате РЗЭ равно 0,004 мас.%, что соответствует удельной эффективной радиоактивности АЭфф=130 Бк/кг, т.е. карбонатный концентрат РЗЭ относится к 1 классу материалов (Aэфф≤740 Бк/кг), обращение с которыми осуществляется без ограничений. Сквозное извлечение РЗЭ из ЭФК в нерадиоактивный карбонатный концентрат составило 97,4%.

Из приведенных Примеров видно, что заявляемый способ позволяет исключить образование радиоактивного торийсодержащего осадка и извлекать из экстракционной фосфорной кислоты 96,7-97,4% РЗЭ, что соответствует степени извлечения РЗЭ по прототипу. При этом получают нерадиоактивный концентрат РЗЭ, дальнейшая переработка которого на индивидуальные соединения РЗЭ может быть осуществлена известными приемами. Заявляемый способ является более эффективным, он относительно прост и может быть реализован промышленным способом на базе стандартного оборудования.


СПОСОБ ИЗВЛЕЧЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ ЭКСТРАКЦИОННОЙ ФОСФОРНОЙ КИСЛОТЫ
Источник поступления информации: Роспатент

Показаны записи 61-66 из 66.
19.01.2018
№218.016.05f0

Способ переработки фторидного редкоземельного концентрата

Изобретение относится к способу переработки фторсодержащих концентратов редкоземельных элементов (РЗЭ) и может быть использовано в гидрометаллургии. Иттрофлюоритовый концентрат, содержащий в мас. %: 40 F, 13,15 ΣТrО, 0,16 ТhO, 66,4 СаО, обрабатывают фтористоводородной кислотой концентрацией...
Тип: Изобретение
Номер охранного документа: 0002630989
Дата охранного документа: 15.09.2017
19.01.2018
№218.016.060c

Способ переработки сернокислого раствора, содержащего примесные элементы

Изобретение относится к гидрометаллургии и может быть использовано при регенерации сернокислых производственных растворов. Сернокислый раствор, содержащий примесные элементы, подвергают экстракционной обработке с переводом основной части серной кислоты в первичный экстракт, а основной части...
Тип: Изобретение
Номер охранного документа: 0002630988
Дата охранного документа: 15.09.2017
19.01.2018
№218.016.0b9f

Способ получения оксида алюминия

Изобретение может быть использовано при получении оксида алюминия с низким содержанием примесей, используемого для выращивания кристаллов, производства керамики и огнеупоров. Нитрат алюминия Al(NO)⋅9HO или хлорид алюминия AlCl⋅6HO смешивают с карбонатом аммония или со смесью карбоната аммония и...
Тип: Изобретение
Номер охранного документа: 0002632437
Дата охранного документа: 04.10.2017
20.03.2019
№219.016.e822

Способ переработки фосфогипса для производства концентрата редкоземельных элементов (рзэ) и гипса

Изобретение относится к технологии комплексной переработки фосфогипса, получаемого в сернокислотном производстве минеральных удобрений из апатитового концентрата, и может быть использовано для производства концентрата редкоземельных элементов (РЗЭ), а также гипсовых строительных материалов и...
Тип: Изобретение
Номер охранного документа: 0002458999
Дата охранного документа: 20.08.2012
29.04.2019
№219.017.464e

Способ переработки титансодержащего концентрата

Изобретение может быть использовано в химической промышленности. Способ переработки титансодержащего концентрата включает разложение титансодержащего концентрата раствором серной кислоты при нагревании с переводом титана в сернокислый раствор и последующим отделением твердого остатка. В...
Тип: Изобретение
Номер охранного документа: 0002467953
Дата охранного документа: 27.11.2012
29.04.2019
№219.017.4682

Способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты

Изобретение относится к способам выделения концентрата редкоземельных элементов (РЗЭ) из экстракционной фосфорной кислоты, получаемой в дигидратном процессе переработки апатитового концентрата, и может быть использовано в химической и сопутствующих отраслях промышленности. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002465207
Дата охранного документа: 27.10.2012
Показаны записи 81-86 из 86.
09.06.2019
№219.017.7a5a

Способ очистки сточных вод от фтора

Изобретение относится к сорбционно-осадительным способам очистки сточных вод от фтора и может быть использовано в горнодобывающей, металлургической, химической и других отраслях промышленности. Для осуществления способа проводят взаимодействие воды с церийсодержащим реагентом в виде сульфата...
Тип: Изобретение
Номер охранного документа: 0002382738
Дата охранного документа: 27.02.2010
10.07.2019
№219.017.ae88

Способ получения наноразмерного порошка сегнетоэлектрика

Изобретение относится к получению материалов для производства сегнетоэлектрической керамики, используемой в электронной технике. Способ включает гидролиз соединения редкого металла с образованием осадка редкого металла. Осадок отделяют и суспендируют. В суспензию вводят соединение щелочного или...
Тип: Изобретение
Номер охранного документа: 0002362741
Дата охранного документа: 27.07.2009
10.07.2019
№219.017.af10

Способ извлечения рения из металлических отходов никельсодержащих жаропрочных сплавов

Изобретение относится к гидрометаллургии редких элементов и может быть использовано для способа извлечения рения из металлических отходов никельсодержащих жаропрочных сплавов. Способ включает обработку отходов серной кислотой при повышенной температуре и подаче пероксида водорода с переводом в...
Тип: Изобретение
Номер охранного документа: 0002412267
Дата охранного документа: 20.02.2011
10.07.2019
№219.017.b002

Способ получения твердого ионного электролита rbagi

Изобретение относится к способам получения твердого электролита с высокой ионной проводимостью при комнатной температуре и может быть использовано в электронной промышленности, в частности, при изготовлении миниатюрных суперконденсаторов высокой емкости - варисторов, которые находят различное...
Тип: Изобретение
Номер охранного документа: 0002407090
Дата охранного документа: 20.12.2010
02.10.2019
№219.017.cd3c

Способ переработки фторидного редкоземельного концентрата

Изобретение относится к переработке фторсодержащих концентратов редкоземельных элементов (РЗЭ). Бастнезитовый концентрат обрабатывают низкоконцентрированной минеральной кислотой при повышенной температуре в присутствии сульфоксидного катионита с переводом редкоземельных элементов, кальция и...
Тип: Изобретение
Номер охранного документа: 0002701577
Дата охранного документа: 30.09.2019
23.07.2020
№220.018.3590

Способ извлечения редкоземельного концентрата

Изобретение относится к способу извлечения редкоземельного концентрата из раствора, полученного при переработке редкоземельного сырья, и может быть использовано в химической и металлургической промышленности. Осуществляют ступенчатую нейтрализацию раствора, содержащего нитрат или хлорид натрия,...
Тип: Изобретение
Номер охранного документа: 0002727129
Дата охранного документа: 20.07.2020
+ добавить свой РИД