×
20.08.2014
216.012.e9ad

Результат интеллектуальной деятельности: СТЕНД ДЛЯ ИЗМЕРЕНИЯ МАССЫ И КООРДИНАТ ЦЕНТРА МАСС ИЗДЕЛИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной техники и может быть использовано для электрических измерений механических величин в космической технике, судостроении и авиастроении. Стенд содержит раму, к которой крепится изделие, динамометрическую платформу с установленным на ней узлом поворота рамы, динамометры, пружины, датчик угла поворота и станину, пластину, закрепленную на динамометрической платформе и установленную в центре тяжести платформы, которая опирается на центральный динамометр с полусферическим шарниром, установленным на станине при помощи стойки, два динамометра, а также четыре динамометрические цепочки, содержащие пружины. Технический результат заключается в защите от перегрузки динамометров и повышении точности измерений координат центра масс. 4 ил.
Основные результаты: Стенд для измерения массы и координат центра масс изделий, содержащий раму, к которой крепится изделие, динамометрическую платформу с установленным на ней узлом поворота рамы, динамометры, пружины, датчик угла поворота и станину, отличающийся тем, что стенд снабжен пластиной, закрепленной на динамометрической платформе и установленной в центре тяжести платформы, которая опирается на центральный динамометр с полусферическим шарниром, установленным на станине при помощи стойки, два динамометра установлены на станине вдоль оси Z на расстоянии L друг от друга с зазором δ между верхними контактными поверхностями динамометров и динамометрической платформой, между которой и станиной в плоскости XY стенда установлены две малые динамометрические цепочки на расстоянии Y друг от друга, состоящие из динамометра, тендера и мембранных пружин, коэффициент жесткости пружин c и зазор δ связаны соотношением: , где R - реакция одного из динамометров, установленных вдоль оси Z, причем в плоскости XZ стенда к динамометрической платформе присоединены две динамометрические цепочки с расстоянием L между ними, которые соединяют правую и левую консоли платформы со станиной и состоят из последовательно соединенных динамометра, упругого шарнира, тендера и узла переключения, включающего в себя пружины.

Изобретение относится к области электрических измерений механических величин. Область применения - космическая техника, судостроение и авиастроение.

Задача управления движением изделий космической техники, скоростных судов и др. требует для своего решения знания массы, координат центра масс изделий и их элементов. Наиболее достоверным методом определения комплекса указанных параметров является их измерение.

Известен стенд для измерения массы и координат центра масс изделий силовых установок скоростных судов. Стенд в качестве отдельной единицы входит в измерительный комплекс (см. Богданов В.В., Волобуев B.C. и другие «Комплекс для измерения масс и моментов инерции машиностроительных изделий». Измерительная техника №2, 2002 г., ст.37-39). Стенд состоит из двух горизонтальных балок, на которых установлены две пары вертикальных пружин. На пружины с помощью специальных хомутов установлено изделие. При помощи вертикальных стержней балки подвешены к четырем динамометрам. Основания динамометров жестко соединены с опорными стойками, которые закреплены на силовом фундаменте. Вдоль стержней действуют силы реакции, которые измеряются динамометрами.

Комбинируя сигналы динамометров, измеряют массу изделия и две координаты центра масс вдоль горизонтальных осей. Для измерения вертикальной координаты необходимо повернуть изделие на угол 90° вдоль продольной горизонтальной оси.

Основными недостатками стенда являются следующие:

- необходимость поворота изделия на угол 90° для получения результатов измерений. В нашем случае это сделать невозможно по техническим условиям на изделия,

- недостаточная точность измерения центра масс.

Наиболее близким техническим решением, принятым за прототип, является «Стенд для измерения массы, координат центра масс и тензора инерции изделия» (Патент РФ на изобретение №2368880, 27.09.2008, МПК G01M 1/10). Стенд содержит раму, к которой крепится изделие, динамометры, датчики угла, пружины, станину, динамометрическую платформу с узлом поворота рамы, устройство задания колебаний, состоящее из подвижных рам, соединенных между собой и со станиной шарнирами и системой пружин, соединенных с рамами при помощи консолей, при этом оси шарниров соединены с осями датчиков угла.

Все необходимые измерения выполняются при одной установке изделия на стенде.

Стенд имеет два режима работы - статический и динамический. В дальнейшем нас будет интересовать лишь статический режим.

В статическом режиме при помощи динамометрической платформы измеряются масса и три координаты центра масс (Ц.М.) изделия. При этом для измерения вертикальной координаты Ц.М. поворотная рама вместе с изделием наклоняется последовательно на ряд углов, которые измеряются датчиком угла. Показания датчика угла и динамометрической платформы используются для определения вертикальной координаты Ц.М. изделия. Основным недостатком данного решения является сравнительно низкая точность измерения малых абсолютных величин горизонтальных координат центра масс. Дело в том, что координаты центра масс и вес изделия определяются одними и теми же динамометрами. Сумма показаний динамометров определяет вес изделия, а по разности показаний пар динамометров и известному расстоянию между ними определяются координаты центра масс.

Точность измерения координат Ц.М. определяется точностью измерения разности показаний пар динамометров. При большом весе изделия и относительно малом смещении его Ц.М. от положения равновесия разность показаний пар динамометров получается исчезающее малой.

В результате измеряются малые разности больших величин, отчего точность измерения малых значений координат Ц.М. оказывается недостаточной.

Изделие установлено на динамометрической платформе, опирается на динамометры D1 и D2, расположенные на расстоянии Ly вдоль горизонтальной оси Y. Приложенная в Ц.М. изделия сила P=mg инициирует реакции R1 и R2, которые измеряются динамометрами. Проекция силы Р на ось Y есть координата yc Ц.М. изделия по этой оси. В результате будем иметь

откуда: P=R1+R2;

средняя квадратическая погрешность измерения yc

где σyc, σLy, σR1, σR2, σp - средние квадратические погрешности измерения: Ly R1 R2, P.

Подставляя (4) в (3) и принимая во внимание равенство погрешностей пары динамометров σR1R2R, окончательно получим

Погрешности , , примерно равны между собой и составляют величину порядков ~0,1%. Расстояние Ly выбирают достаточно большим из условия устойчивости и жесткости всей конструкции. В нашем конкретном случае Ly=3600 мм, а yc задается по Т.З. на изделие: yc≤50 мм. Таким образом, отношение , откуда следует, что с высокой степенью точности выражение (5) можно записать в более простом виде

Получая yc=50 мм, Ly=3600 мм, , получим σyc=2,5 мм. По Т.З. на изделие требуется σyc≤0,5 мм.

Таким образом, классическая схема с двумя динамометрами, используемая в аналоге и прототипе, не обеспечивает требуемой точности измерения горизонтальных координат Ц.М.

Задачей и техническим результатом предлагаемого изобретения является создание стенда, обеспечивающего повышение точности измерения координат центра масс изделий.

Решение поставленной задачи и технический результат достигаются тем, что стенд для измерения массы и координат центра масс изделий, содержащий раму, к которой крепится изделие, динамометрическую платформу с установленным на ней узлом поворота рамы, динамометры, пружины, датчик угла поворота и станину, отличающийся тем, что стенд снабжен пластиной, закрепленной на динамометрической платформе и установленной в центре тяжести платформы, которая опирается на центральный динамометр с полусферическим шарниром, установленным на станине при помощи стойки, два динамометра установлены на станине вдоль оси Z на расстоянии LZ1 друг от друга с зазором δ между верхними контактными поверхностями динамометров и динамометрической платформой, между которой и станиной в плоскости XY стенда установлены две малые динамометрические цепочки на расстоянии Y1 друг от друга, состоящие из динамометра, тендера и мембранных пружин, коэффициент жесткости пружин c и зазор δ связаны соотношением: , где R - реакция одного из динамометров, установленных вдоль оси Z, причем в плоскости XZ стенда к динамометрической платформе присоединены две динамометрические цепочки с расстоянием Lz между ними, которые соединяют правую и левую консоли платформы со станиной и состоят из последовательно соединенных динамометра, упругого шарнира, тендера и узла переключения, включающего в себя пружины.

Для более подробного пояснения предлагаемого изобретения рассмотрим схему стенда, его конструкцию и принцип действия.

На фиг.1 показана конструкция стенда в двух ортогональных проекциях.

На фиг.2 показано расположение динамометров на стенде.

На фиг.3 приведена векторная диаграмма поворота Ц.М. изделия 1 на угол φyi вокруг О.В. с радиусом поворота R.

На фиг.4 показан общий вид модели стенда для измерения массы и координат центра масс изделий.

Изделие 1 соединено с поворотной рамой 2, которая установлена на узле поворота рамы 3, закрепленном своим нижним основанием на динамометрической платформе 4, опирающейся на центральный динамометр с полусферическим шарниром 5, который с помощью стойки 6 установлен на станине 7, на два динамометра 8, установленных на стойки 9 также на станине 7 и расположенных вдоль оси Z стенда симметрично относительно вертикальной оси Х на расстоянии LZ1 между ними, с зазором δ между платформой 4 и опорными поверхностями динамометров. На нижней плоскости динамометрической платформы 4 в центре тяжести установлена пластина 10. На динамометрической платформе 4 установлен кронштейн 11, на котором закреплен двигатель 12 со штоком 13. К динамометрической платформе 4 присоединены попарно четыре динамометрические цепочки. Две цепочки, ориентированные вдоль оси Z и расположенные на расстоянии Lz друг от друга, соединяют правую и левую консоли платформы 4 со станиной 7 и включают в себя динамометры 14 и 15. Пара же малых цепочек, ориентированная по оси Y (расстояние между цепочками Y1), включает в себя динамометры 16 и 17. Первая пара цепочек помимо динамометров 14 и 15 включает в себя последовательно соединенные упругий шарнир 18, тендер 19 и узел переключения с пружинами 20. На валу поворотной рамы 2 расположен датчик угла 21. Малая пара включает в себя так же мембранные пружины 22 и тендеры 23.

Всего в состав стенда входят семь динамометров: центральный динамометр 5, S-образный динамометр 14, S-образный динамометр 15, S-образный динамометр 16, S-образный динамометр 17, два динамометра 8.

Стенд работает следующим образом: при измерении массы изделия поворотная рама 2 занимает строго горизонтальное положение. Сила тяжести P=mg (m - массы изделия, g - ускорение свободного падения) действует на динамометрическую платформу 4 и воспринимается динамометром 5 и четырьмя динамометрическими цепочками, включающими динамометры 14÷17 (Фиг.1). Сумма показаний динамометров 14÷17 и центрального динамометра 5 - Pi равна силе тяжести

Горизонтальные координаты yc, zc измеряются по разности показаний динамометров 14÷17.

Моменты MZ и MY (фиг.2)

;

Силы реакции динамометров от действия моментов

; ; ; ; откуда

;

В формуле изобретения R14 обозначено как R.

Выражение (9) являются уравнениями измерений горизонтальных координата yc, zc.

В данном случае большой вес изделия не нагружает динамометры 14÷17, т.к. вес уравновешивается центральным динамометром 5 с полусферическим шарниром. При измерении малых значений координат yc, zc чувствительность динамометров 14÷17 выбирается из условия измерения с требуемой точностью малых разностей реакции (9). Полусферический шарнир динамометра 5 и пластина 10 на раме 4 позволяют с высокой точностью передавать малые значения моментов MZ и MY на динамометры 14÷17 (Фиг.1).

Для увеличения точности измерения малых разностей реакций создается предварительная нагрузка на динамометры 14÷17 при помощи пар тендеров 19 и 23 соответственно. Величина нагрузки поддерживается пружинами 20, 22 и выбирается такой, чтобы силы реакции динамометров 14÷17 всегда имели один знак и не переходили через ноль. Практика показывает, что в таких условиях точность измерения динамометрами значительно более высокая, что в сочетании с их высокой чувствительностью обеспечивается высокая точность измерений малых значений горизонтальных координат yc, zc.

При измерении вертикальной координаты xc рама 2 вместе с изделием 1 при помощи двигателя 12 и штока 13 поворачиваются на n последовательных углов наклона φyi, где i=0, 1…n.

При повороте горизонтальная координата 2-е получает приращение Δ zci

Δ zci=(zci-zc)=R·sin(φyoyi)-R·sinφyo

Учитывая что

xc=R·cosφyo и zc=R·sinφyo

получим:

С другой стороны

где Myi - текущее значение момента при φ=φyi; Myi=zci·P,

Myo - начальный момент при φyi=0; My0=zc-P

Выражение (11) является уравнением измерения вертикальной координаты xc. Для «n» значений наклона угла φyi будем иметь систему из «n» уравнений, которая решается методом наименьших квадратов относительно xc.

Как отмечалось ранее, диапазон измерения сил динамометрами 14÷17 выбирается малым из условия точного измерения малых значений горизонтальных координат yc и zc. Например, для одного из изделий

ym=zcm=±50 мм

При этом максимальный вес изделия:

Pm=5·103 кгс

Продольная база стенда и радиус поворота

Lz=3000 мм; R=5·103 мм

Откуда расчетные силы реакции динамометров 14÷15 (именно они нас в первую очередь интересуют)

При наклоне изделия 1 его положение Ц.М. на оси Z определяется соотношением:

Zcm=R·sinφym

где φym - максимальный угол наклона (при i=n) φym=8°

Максимальные абсолютные значения сил реакций динамометров 14÷15

Таким образом, перегрузка динамометров 14÷15 составила бы величину

Такая перегрузка вывела бы динамометр из строя.

Для защиты динамометров 14÷15 от перегрузки и повышения точности измерений координат Ц.М. в конструкции стенда предусмотрена пара динамометров 8, рассчитанная на большие силы.

При наклоне изделия 1 вертикальная пара сил растягивает правую пружину 20 и сжимает левую (фиг.1) до тех пор, пока зазор «δ» между верхней контактной точкой динамометра 8 и рамой 4 не станет равным нулю. С этого момента динамометр 5, рассчитанный на большие нагрузки, измеряет реакцию R5i.

При этом нагрузка на динамометр 14 остается постоянной и равной |R14| (12). Указанное равенство достигается при вполне определенном коэффициенте жесткости пружин 20 и величине зазора «δ». Непосредственно из схемы фиг.1 находим

По технологическим соображениям

δ=1 мм

LZ=3000 мм; LZ1=2700 мм; |R14|=83,3 кгс,

откуда c=75 кгс/мм

Точность измерения координат центра масс повышается за счет разгрузки динамометров, отвечающих за измерение малых значений координат центра масс, от действия веса изделий и установки нового динамометра с полусферическим шарниром, на который опирается пластина, установленная на раме.

Изготовлен и установлен в ФГУП НПО им. С.А. Лавочкина в г.Химки опытный образец предлагаемого стенда, испытания которого подтвердили ожидаемый технический результат.

Стенд для измерения массы и координат центра масс изделий, содержащий раму, к которой крепится изделие, динамометрическую платформу с установленным на ней узлом поворота рамы, динамометры, пружины, датчик угла поворота и станину, отличающийся тем, что стенд снабжен пластиной, закрепленной на динамометрической платформе и установленной в центре тяжести платформы, которая опирается на центральный динамометр с полусферическим шарниром, установленным на станине при помощи стойки, два динамометра установлены на станине вдоль оси Z на расстоянии L друг от друга с зазором δ между верхними контактными поверхностями динамометров и динамометрической платформой, между которой и станиной в плоскости XY стенда установлены две малые динамометрические цепочки на расстоянии Y друг от друга, состоящие из динамометра, тендера и мембранных пружин, коэффициент жесткости пружин c и зазор δ связаны соотношением: , где R - реакция одного из динамометров, установленных вдоль оси Z, причем в плоскости XZ стенда к динамометрической платформе присоединены две динамометрические цепочки с расстоянием L между ними, которые соединяют правую и левую консоли платформы со станиной и состоят из последовательно соединенных динамометра, упругого шарнира, тендера и узла переключения, включающего в себя пружины.
СТЕНД ДЛЯ ИЗМЕРЕНИЯ МАССЫ И КООРДИНАТ ЦЕНТРА МАСС ИЗДЕЛИЙ
СТЕНД ДЛЯ ИЗМЕРЕНИЯ МАССЫ И КООРДИНАТ ЦЕНТРА МАСС ИЗДЕЛИЙ
СТЕНД ДЛЯ ИЗМЕРЕНИЯ МАССЫ И КООРДИНАТ ЦЕНТРА МАСС ИЗДЕЛИЙ
СТЕНД ДЛЯ ИЗМЕРЕНИЯ МАССЫ И КООРДИНАТ ЦЕНТРА МАСС ИЗДЕЛИЙ
СТЕНД ДЛЯ ИЗМЕРЕНИЯ МАССЫ И КООРДИНАТ ЦЕНТРА МАСС ИЗДЕЛИЙ
Источник поступления информации: Роспатент

Показаны записи 151-160 из 256.
27.04.2016
№216.015.38e7

Пьезоакселерометр

Изобретение относится к области измерительной техники и может быть использовано для измерения параметров ускорения в виброметрии, сейсмологии и акустики. Техническим результатом, получаемым от внедрения изобретения, является измерение трех компонент вектора ускорения с помощью...
Тип: Изобретение
Номер охранного документа: 0002582910
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3c71

Распылитель форсунки

Изобретение относится к двигателестроению, в частности к распылителям топливных форсунок двигателей внутреннего сгорания с воспламенением от сжатия. Предложен распылитель топливной форсунки, содержащий корпус 1 с топливоподающими каналами 2, кольцевой полостью 3 высокого давления, отверстиями...
Тип: Изобретение
Номер охранного документа: 0002583199
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.41b3

Электроизоляционный эпоксидный лак

Изобретение относится к эпоксидным электроизоляционным составам, в частности составам на основе эпоксидных или полиэфирных смол в органическом растворителе, и может быть использовано в производстве изделий радиотехники и электроники, к которым предъявляются высокие требования по электрической...
Тип: Изобретение
Номер охранного документа: 0002584734
Дата охранного документа: 20.05.2016
10.08.2016
№216.015.523d

Универсальный стенд для определения характеристик электроприводов и движителей действующих моделей бпла

Изобретение относится к области авиации, в частности к средствам для проведения испытаний приводов и движителей летательных аппаратов. Стенд для определения характеристик электроприводов и движителей беспилотных летательных аппаратов содержит корпус стенда, основание с кронштейнами крепления...
Тип: Изобретение
Номер охранного документа: 0002594048
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.55e1

Устройство для определения спектральной излучательной способности теплозащитных материалов при высоких температурах

Изобретение относится к области измерительной техники и касается устройства для измерения излучательной способности материалов. Устройство содержит вакуумную камеру, исследуемый образец, механизм вращения образца, омический нагреватель, спектрометр, компьютер и модель черного тела. При этом в...
Тип: Изобретение
Номер охранного документа: 0002593445
Дата охранного документа: 10.08.2016
10.07.2016
№216.015.569f

Способ изготовления аэродинамических поверхностей лопаток роторов газотурбинных двигателей на станках с чпу

Изобретение относится к машиностроению и может быть использовано при обработке профиля пера рабочих лопаток газотурбинных двигателей на станках с ЧПУ. Способ включает обработку концевой торовой фрезой, которую перемещают эквидистантно обрабатываемой поверхности. Выбирают оптимальную частоту...
Тип: Изобретение
Номер охранного документа: 0002588757
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5cb6

Способ получения на летательном аппарате (ла) улучшенного изображения подстилающей поверхности

Изобретение относится к способам моделирования, анализа и обработки изображений и может быть использовано в системах повышения ситуационной осведомленности пилотов летательных аппаратов (ЛА), а также в системах внешнего ориентирования и распознавания по видеоинформации в мобильных роботах и в...
Тип: Изобретение
Номер охранного документа: 0002591029
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.74ea

Электроизоляционный заливочный компаунд

Изобретение относится к электроизоляционным компаундам, которые могут быть использованы для заливки или пропитки частей электрических машин, приборов, токопроводящих схем и деталей в радиотехнической, электротехнической и электронной промышленностях. Компаунд состоит из диглицидилового эфира...
Тип: Изобретение
Номер охранного документа: 0002598861
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.85ea

Бронебойный боеприпас

Изобретение относится к области вооружения, а именно к бронебойным боеприпасам, в частности к снарядам с реактивным двигателем, запускаемым из ствола орудия. Бронебойный боеприпас содержит гильзу с метательным зарядом и снаряд. Последний включает поддон, закрепленный в нем бронебойный сердечник...
Тип: Изобретение
Номер охранного документа: 0002603688
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8628

Нитратор для получения жидких нитроэфиров

Изобретение относится к области производства эфиров азотной кислоты, используемых при получении баллиститных порохов, промышленных взрывчатых веществ и жидких унитарных топлив, конкретно к нитратору для получения жидких нитроэфиров. Предлагаемый нитратор содержит заключенную в корпус с крышкой...
Тип: Изобретение
Номер охранного документа: 0002603773
Дата охранного документа: 27.11.2016
Показаны записи 151-160 из 196.
20.12.2015
№216.013.9a84

Устройство для контроля подводного шума плавсредства

Изобретение относится к области гидроакустики и может быть использовано для оперативного контроля параметров подводного шума плавсредства с помощью гидроакустического рабочего средства измерений (РСИ) с самого плавсредства. С самого плавсредства в режиме стабилизации и без хода плавсредства за...
Тип: Изобретение
Номер охранного документа: 0002571181
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9cc4

Композиционный порошок на основе нитрида кремния

Изобретение относится к области получения тугоплавких неорганических соединений, в частности к получению композиционных порошков на основе нитрида кремния, которые могут быть использованы в качестве исходного сырья для получения конструкционной и функциональной керамики, в автомобильной и...
Тип: Изобретение
Номер охранного документа: 0002571757
Дата охранного документа: 20.12.2015
20.01.2016
№216.013.a2c3

Способ получения композиционного армированного порошкового материала

Изобретение относится к получению композиционного армированного порошкового материала для нанесения покрытий холодным сверхзвуковым газодинамическим напылением. Смешивают матричный порошок металлов или их сплавов и армирующий нанопорошок с размером частиц от 1 нм до 100 нм, в полученную смесь...
Тип: Изобретение
Номер охранного документа: 0002573309
Дата охранного документа: 20.01.2016
10.03.2016
№216.014.bde5

Антифрикционный композиционный материал на основе порошковой меди

Изобретение относится к антифрикционным композиционным материалам, получаемым методами порошковой металлургии, которые могут быть использованы при изготовлении тяжелонагруженных подшипников скольжения коленчатых валов двигателей внутреннего сгорания, преимущественно дизельных двигателей....
Тип: Изобретение
Номер охранного документа: 0002576740
Дата охранного документа: 10.03.2016
27.02.2016
№216.014.bf1e

Способ получения полидисперсного порошка карбида бора

Изобретение относится к производству неорганических соединений, конкретно к карботермическому способу получения полидисперсных порошков карбида бора, предназначенных для получения на их основе абразивных порошков для шлифования и ударопрочной керамики. Способ включает смешивание борной кислоты...
Тип: Изобретение
Номер охранного документа: 0002576041
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c12c

Способ термической обработки изделий из высокопрочных алюминиевых сплавов

Изобретение относится к области металлургии, в частности к технологии термической обработки изделий из высокопрочных алюминиевых сплавов для использования в судостроении и конструкциях, эксплуатирующихся в морских условиях, авиакосмической технике, транспортном машиностроении. Способ...
Тип: Изобретение
Номер охранного документа: 0002576283
Дата охранного документа: 27.02.2016
10.02.2016
№216.014.c22f

Аппарат на воздушной подушке

Изобретение относится к авиации и касается аппаратов на воздушной подушке (АВП) с системами демпфирования колебаний по высоте и автоматического управления по углам крена и тангажа. АВП содержит ограждение ВП, снабженное воздуховодом, расположенным вдоль периметра корпуса и разделенным на две...
Тип: Изобретение
Номер охранного документа: 0002574649
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c32e

Способ увеличения подъемной силы самолета и устройство для его реализации

Способ и устройство увеличения аэродинамической подъемной силы самолета с силовой установкой, имеющей сопло, расположенное у задней кромки крыла. Для увеличения подъемной силы самолета с силовой установкой, имеющей сопло в области задней кромки крыла, используют нижнюю внешнюю поверхность...
Тип: Изобретение
Номер охранного документа: 0002574676
Дата охранного документа: 10.02.2016
20.06.2016
№217.015.044a

Состав эпоксибисмалеимидной смолы и способ ее получения

Изобретение относится к области получения полимерных композиционных материалов, применяемых в авиакосмической технике, в частности к составу эпоксибисмалеимидной смолы и способу получения состава. Состав эпоксибисмалеимидной смолы содержит в мас.%: 29,2-47,6...
Тип: Изобретение
Номер охранного документа: 0002587169
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2bd1

Способ определения термомеханических характеристик материалов, обладающих эффектом памяти формы

Изобретение относится к неразрушающему контролю материалов с памятью формы, а именно сплавов на основе никелида титана, и может быть использовано во всех областях народного хозяйства для определения и контроля радиальных напряжений термомеханического возврата, необходимых для обеспечения...
Тип: Изобретение
Номер охранного документа: 0002579174
Дата охранного документа: 10.04.2016
+ добавить свой РИД