×
20.08.2014
216.012.e957

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОВИСКЕРНЫХ СТРУКТУР ОКСИДНЫХ ВОЛЬФРАМОВЫХ БРОНЗ НА УГОЛЬНОМ МАТЕРИАЛЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения нановискерных структур оксидных вольфрамовых бронз на угольном материале, в котором электролиз ведут в импульсном потенциостатическом режиме при перенапряжении 300 мВ в расплаве, содержащем 30 мол. % KWO, 25 мол. % LiWO и 45 мол. % WO, с использованием платинового анода, при этом электроосаждение ведут на катоде из угольного материала с высокой удельной поверхностью, перед подачей на электрод импульса перенапряжения катод пропитывают расплавом в течение времени, достаточного для пропитки, но недостаточного для активного выгорания углерода из угольного катода. Использование настоящего способа позволяет получить нановискерные структуры вольфрамовых бронз на угольном материале, которые могут использоваться как катализаторы с высокой активностью, обладающие технологическими свойствами для процессов органического и нефтехимического синтеза. 3 пр., 1 табл., 6 ил.
Основные результаты: Способ получения нановискерных структур оксидных вольфрамовых бронз на угольном материале, в котором электролиз ведут в импульсном потенциостатическом режиме при перенапряжении 300 мВ в расплаве, содержащем 30 мол. % KWO, 25 мол. % LiWO и 45 мол. % WO, с использованием платинового анода, отличающийся тем, что электроосаждение ведут на катоде из угольного материала с высокой удельной поверхностью, перед подачей на электрод импульса перенапряжения катод пропитывают расплавом в течение времени, достаточного для пропитки, но недостаточного для активного выгорания углерода из угольного катода.

Изобретение относится к области высокотемпературной электрохимии, в частности к электролитическому получению нановискерных структур оксидных вольфрамовых бронз (ОВБ) на угольном материале, и может быть использовано, в частности, для формирования каталитических систем окислительно-восстановительных процессов технологий органического и нефтехимического синтеза, к которым относятся получение витаминов, органических кислот, обессеривание нефтепродуктов и др.

Известна высокая каталазная активность, проявленная нанокристаллическими ОВБ (Вакарин С.В., Меляева А.А., Семерикова О.Л., Кондратюк B.C., Панкратов А.А., Плаксин С.В., Поротникова Н.М., Зайков Ю.П., Петров Л.А., Микушина Ю.В., Шишмаков А.Б. А.Б., Чупахин О.Н. Каталазная активность крупнозернистых и наноразмерных оксидных вольфрамовых бронз, полученных электролизом расплавленных солей. Известия Академии Наук. Серия химическая. 2011, №10, 1951-1954) [1]. Известна также способность поливольфраматного расплава в процессе электролитического нанесения ОВБ окислять поверхность помещенных в него материалов.

При этом нанесенные катализаторы (Кт) на основе активных углей (АУ) в течение последних лет привлекают внимание исследователей. Существуют различные методы осаждения активного материала (X) на носитель: пропитка, адсорбция, ионный обмен и др. (Стайлз Э.Б., Носители и нанесенные катализаторы. Теория и практика, Москва: Химия, 1991) [2]; (Тарковская И.А. Окисленный уголь, Киев: Наук. думка, 1981) [3]; (Семиколенов В.А. Успехи химии, 1992, 61(2), 320-331) [4]; (Катализ и нефтехимия, 2003, №11, С.51) [5]. Однако с позиций возможности применения таких систем важным является формирование активной фазы с высокой степенью дисперсности и требуемым составом и строением поверхности носителя, поскольку эти факторы определяют активность и селективность получаемых Х/АУ-контактов (Журн. физ. химии, 1993, 67 (11), 2328-2332) [6]. Однако среди многочисленных способов нанесения различных материалов на поверхность угля в мировой научной и патентной литературе нет сведений о высокотемпературном электрохимическом способе формирования нанокристаллических ОВБ на угольном материале.

Наиболее близким по технической сущности к заявляемому способу является способ получения наноигольчатых катализаторов окислительно-восстановительных процессов на основе оксидных вольфрамовых бронз (RU 2456079, опубл. 20.07.2012, бюл. №20) [7]. В известном способе электролиз ведут в импульсном потенциостатическом режиме при перенапряжении 170-300 мВ в расплаве, содержащем 30 мол.% K2WO4, 25 мол.% Li2WO4 и 45 мол.% WO3, с использованием платинового анода, при этом процесс электроосаждения ведут на вольфрамовом катоде. Способ позволяет получать нанокристаллический порошок бронзы гексагональной структуры, состоящий из микрокристаллов, где каждый микрокристалл - ориентированная наноигольчатая структура. Все иглы имеют одну ориентацию и вытянуты в направлении <0001>. Толщина игл составляет порядка 30-100 нм. Удельная поверхность наработанного порошка, полученного при перенапряжении 200 мВ, составляет 0.92 м2/г. Каталазная активность (разложение пероксида водорода - тестовая реакция на активность гетерогенных катализаторов в пероксидных процессах окисления) образцов, полученных данным способом, в 5 и 10 раз выше, чем у порошков бронз кубической и тетрагональной структур соответственно. Однако для формирования более эффективной каталитической системы предпочтительно активный материал нанести на какой либо носитель.

Задача изобретения заключается в разработке высокотемпературного электрохимического способа получения системы «нанокристаллическая ОВБ - носитель» с целью создания катализаторов с высокими активностью, технологическими свойствами для процессов органического и нефтехимического синтеза.

Для решения поставленной задачи предложен способ, в котором электролиз ведут в импульсном потенциостатическом режиме при перенапряжении 300 мВ в расплаве, содержащем 30 мол.% K2WO4, 25 мол.% Li2WO4 и 45 мол.% WO3, с использованием платинового анода, при том, что электроосаждение ведут на катоде из угольного материала с высокой удельной поверхностью, перед подачей на электрод импульса перенапряжения катод пропитывают расплавом в течение времени, достаточного для пропитки, но не достаточного для активного выгорания углерода из угольного катода.

Использованный в заявленном способе режим электролиза позволяет из расплава солей нанести ОВБ непосредственно на угольную подложку. В процессе исследований обнаружено, что при осаждении ОВБ в среде кислородсодержащего расплава на углеродную подложку происходит образование активных кислотных центров Бернстеда и Льюиса, в результате чего каталитическая активность системы «ОВБ - подложка» повышается в электрофильных процессах органического синтеза. Однако использование угольного материала в качестве катода требует соблюдения некоторых определенных условий. Например, угольная ткань представляет собой волокнистую структуру, и при опускании ее в расплав в начальный момент времени она может оказаться недостаточно хорошо смоченной электролитом, что сделает неэффективным процесс электролиза. С другой стороны, слишком длительная выдержка в кислородсодержащем расплаве может привести к значительному выгоранию угольных волокон из катода.

Таким образом, при осаждении ОВБ в вышеописанных условиях на угольную ткань одновременно будут протекать два процесса: электролитическое образование наноструктур ОВБ и окисление угля. Это явление может привести к получению новых высокоактивных каталитических систем.

Использование в качестве носителя угольного материала, обладающего высокими электропроводностью и удельной поверхностью, позволит создать новый полифункциональный катализатор, содержащий центры ОВБ с окислительно-восстановительными свойствами и обладающий дополнительно кислородными кислотными центрами.

Новый технический результат, достигаемый заявленным способом, заключается в повышении активности и технологических свойств катализаторов для процессов органического и нефтехимического синтеза.

Экспериментальную проверку способа осуществляли следующим образом. Использовали расплав K2WO4 - 30 мол.%; Li2WO4 - 25 мол.%; WO3 - 45 мол.%. Электролиз проводили в трехэлектродной ячейке с использованием импульсного потенциостатического режима. Анодом служила платиновая проволока, электродом сравнения - платиновая фольга площадью 1 см2, полупогруженная в расплав, а катодом - угольная ткань марки «Бусофит Т-1». Контейнером являлся платиновый тигель. Температуру процесса поддерживали постоянной, равной 700°C. Равновесный потенциал устанавливали равным 760 мВ, величину катодного импульса перенапряжения устанавливали равным 300 мВ, время импульса - 0.1 с.

Для проведения эксперимента электрохимическую ячейку помещали в шахтную печь, температуру в которой поддерживали с помощью терморегулятора «Варта ТП 703». Вблизи электродов (в электролите) температуру измеряли с помощью платина-платинородиевой термопары.

Источником питания являлся потенциостат ПИ50-1.1. Величина и длительность зарождающего импульса задавались с помощью программатора ПР-8.

По окончании опыта катодный осадок отмывали в щелочном растворе, затем промывали в дистиллированной воде и сушили при комнатной температуре. Полученные покрытия исследовали на электронном микроскопе JSM-5900 LV, на котором проследили влияние электрохимических параметров на морфологию осадков, а также рентгеновским методом. Рентгеноструктурный анализ проводили на установке “RIGAKU” DNAX 2200РС в монохроматизированном Cu Kα излучении.

Для установления связи состава, строения и дисперсности образцов оксидных вольфрамовых бронз (ОВБ), в том числе нанокристаллических, с каталитическими свойствами использовали модельную реакцию разложения пероксида водорода (каталазная активность). Этот тест, характеризующий участие материалов в окислительно-восстановительных процессах, удобен для скрининговых исследований потенциально эффективных каталитических систем перекисного окисления органических субстратов (ароматических, карбонильных, гетероциклических и др. соединений), (В.Р. Пен, Н.В. Каретникова, И.Л. Шапиро, И.В. Мирошниченко. Успехи современного естествознания, 2010, №9, С.212) [8]; (В. Zapata, F. Pedraza, М.А. Valenzuela, Catal. Today 106 (2005) 219-221) [9].

Сравнительные кинетические исследования по изучению распада пероксида водорода в присутствии образцов бронз проводили в термостатируемом реакторе, снабженном обратным холодильником, при перемешивании водного раствора H2O2 посредством барботажа воздухом. Температура реакции 50°C. Начальная концентрация H2O2 - 0.64 моль/л, навеска образцов - 0.1 г. С целью минимизации ошибок при работе с наноразмерными катализаторами по истечении определенного времени процесс прекращали, раствор декантировали и центрифугировали при 6000 об/мин. Содержание оставшегося пероксида водорода определяли иодометрическим методом (Справочник химика. М.: ГОСХИМИЗДАТ. 1962) [10]. Каталазную активность оценивали по величине начальной скорости каталитичекого разложения пероксида водорода (W0).

Продолжительность каждого процесса составляла 5, 10, 20 и 30 минут.

На фиг.1-2 приведена структура исходной угольной ткани. Для определения времени, необходимого для пропитки расплавом всей поверхности угольной ткани, был проведен ряд экспериментов. Перед подачей импульса тока катод выдерживали в расплаве от 0 до 150 с, после чего поднимали над расплавом на время, необходимое для замерзания расплава, и вновь погружали в расплав на 2 с для равномерного прогрева. После этого на катод накладывали импульс напряжения прямоугольной формы, затем вынимали электрод из расплава, отмывали от электролита в растворе 10-15 мас.% KOH, дистиллированной воде и сушили при комнатной температуре.

На угольной ткани протекают параллельно два процесса - обгорание угля в кислородсодержащем расплаве (фиг.3) и электроосаждение гексагональной ОВБ (фиг.4-5). На фиг.5 видно, что осадок ОВБ состоит из вискеров нанометровой толщины. Толщина вискеров лежит в интервале 30-150 нм, а длина достигает 5000 нм. Наблюдения показали, что при времени бестоковой выдержки менее 2 мин катод из угольной ткани оказывается недостаточно пропитанным расплавом, а при времени более 2 мин слишком активно протекает процесс выгорания угольных волокон. На фиг.6 приведена рентгенограмма осадка ОВБ на угольной ткани. Проведенный РФА показал наличие гексагональной ОВБ изоструктурной K0,33W0,94O3. Установлено, что угольная ткань с нанесенными на нее нановискерными ОВБ проявляет существенную активность в каталитическом разложении пероксида водорода.

Пример 1. Нановискерные каталитические системы «оксидная вольфрамовая бронза - угольный материал» получали из расплава, содержащего 30 мол.% K2WO4, 25 мол.% Li2WO4 и 45 мол.% WO3, с использованием платинового анода, процесс электроосаждения вели на угольном катоде. Угольный электрод предварительно выдерживали в расплаве в течение 1 минуты. На ячейку подавали одиночный импульс перенапряжения прямоугольной формы величиной 300 мВ и длительностью 0,1 с. При этом на электроде осадок ОВБ не образуется, что можно объяснить тем, что материал угольного катода оказывается недостаточно пропитанным расплавом.

Пример 2. Нановискерные каталитические системы «оксидная вольфрамовая бронза - угольный материал» получали из расплава, содержащего 30 мол.% K2WO4, 25 мол.% Li2WO4 и 45 мол.% WO3, с использованием платинового анода, процесс электроосаждения вели на угольном катоде. Угольный электрод предварительно выдерживали в расплаве в течение 2 минут. На ячейку подавали одиночный импульс перенапряжения прямоугольной формы величиной 300 мВ и длительностью 0,1 с. При этом на электроде образуется осадок нановискерных ОВБ (фиг. 4-5).

Полученную систему «ОВБ - носитель» исследовали в реакции разложения пероксида водорода (каталазная активность). В таблице приведены начальные скорости (W0, моль/л·ч) распада, а также удельные конверсии (Kуд, ммоль H2O2/г образца) пероксида водорода за 30 минут в присутствии образцов ОВБ на вольфрамовом и на угольном материале. Как следует из данных таблицы, удельная конверсия, а также начальная скорость разложения пероксида водорода в случае каталитической системы «ОВБ - носитель» почти в тридцать раз превышает аналогичные показатели для порошка гексагональной ОВБ.

Пример 3. Нановискерные каталитические системы «оксидная вольфрамовая бронза - угольный материал» получали из расплава, содержащего 30 мол.% K2WO4, 25 мол.% Li2WO4 и 45 мол.% WO3, с использованием платинового анода, процесс электроосаждения вели на угольном катоде. Угольный электрод предварительно выдерживали в расплаве в течение 2,5 минут. На ячейку подавали одиночный импульс перенапряжения прямоугольной формы величиной 300 мВ и длительностью 0,1 с. При этом происходит разрушение угольных волокон вследствие их выгорания в кислородсодержащем расплаве. Каталитическая система «ОВБ - угольная ткань» не образуется.

Таким образом, приведенные данные подтверждают, что совокупность существенных признаков заявленного способа позволяет высокотемпературным электрохимическим способом получить систему «нанокристаллическая ОВБ - углерод», как катализатор с высокими активностью и технологическими свойствами для процессов органического и нефтехимического синтеза.

Начальные скорости (W0, моль/л·ч) распада, а также удельные конверсии (Kуд, ммоль H2O2/г бронзы) пероксида водорода за 30 минут в присутствии нанокристаллической ОВБ и каталитической системы «нанокристаллическая ОВБ - угольный носитель»
Состав, изоструктурное соединение Структура Образец Удельная поверхность м2 Удельная конверсия H2O2 за 30 мин ммоль/г бронзы Начальная скорость W0 моль/л·час
KxLiyWO3 Гексагональная Нанокристаллическая ОВБ - угольный носитель - 1400 89,3
K0.33W0,94O3
KxLiyWO3 Гексагональная Нанокристаллический порошок ОВБ 0,92 47,8 3,00
K0.26WO3

Способ получения нановискерных структур оксидных вольфрамовых бронз на угольном материале, в котором электролиз ведут в импульсном потенциостатическом режиме при перенапряжении 300 мВ в расплаве, содержащем 30 мол. % KWO, 25 мол. % LiWO и 45 мол. % WO, с использованием платинового анода, отличающийся тем, что электроосаждение ведут на катоде из угольного материала с высокой удельной поверхностью, перед подачей на электрод импульса перенапряжения катод пропитывают расплавом в течение времени, достаточного для пропитки, но недостаточного для активного выгорания углерода из угольного катода.
СПОСОБ ПОЛУЧЕНИЯ НАНОВИСКЕРНЫХ СТРУКТУР ОКСИДНЫХ ВОЛЬФРАМОВЫХ БРОНЗ НА УГОЛЬНОМ МАТЕРИАЛЕ
СПОСОБ ПОЛУЧЕНИЯ НАНОВИСКЕРНЫХ СТРУКТУР ОКСИДНЫХ ВОЛЬФРАМОВЫХ БРОНЗ НА УГОЛЬНОМ МАТЕРИАЛЕ
СПОСОБ ПОЛУЧЕНИЯ НАНОВИСКЕРНЫХ СТРУКТУР ОКСИДНЫХ ВОЛЬФРАМОВЫХ БРОНЗ НА УГОЛЬНОМ МАТЕРИАЛЕ
СПОСОБ ПОЛУЧЕНИЯ НАНОВИСКЕРНЫХ СТРУКТУР ОКСИДНЫХ ВОЛЬФРАМОВЫХ БРОНЗ НА УГОЛЬНОМ МАТЕРИАЛЕ
СПОСОБ ПОЛУЧЕНИЯ НАНОВИСКЕРНЫХ СТРУКТУР ОКСИДНЫХ ВОЛЬФРАМОВЫХ БРОНЗ НА УГОЛЬНОМ МАТЕРИАЛЕ
СПОСОБ ПОЛУЧЕНИЯ НАНОВИСКЕРНЫХ СТРУКТУР ОКСИДНЫХ ВОЛЬФРАМОВЫХ БРОНЗ НА УГОЛЬНОМ МАТЕРИАЛЕ
Источник поступления информации: Роспатент

Показаны записи 81-90 из 175.
10.05.2016
№216.015.3c21

Средство для местного лечения красного плоского лишая слизистой оболочки полости рта и способ лечения красного плоского лишая слизистой оболочки полости рта

Изобретение относится к фармацевтической промышленности и медицине и касается лекарственного средства для местного консервативного лечения красного плоского лишая слизистой оболочки полости рта. Предлагаемое средство содержит в качестве гидрофильной мукоадгезивной основы...
Тип: Изобретение
Номер охранного документа: 0002583945
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3c7e

Способ измерения влажности воздуха

Изобретение относится к аналитической технике и может быть использовано для измерения влажности воздуха. Способ измерения влажности воздуха заключается в том, что помещают в поток анализируемого воздуха электрохимическую ячейку с полостью, образованной диском из протонпроводящего электролита и...
Тип: Изобретение
Номер охранного документа: 0002583164
Дата охранного документа: 10.05.2016
10.06.2016
№216.015.45d8

Инъекционный или инфузионный раствор l-аргининиевой соли 5-метил-6-нитро-1,2,4-триазоло[1,5-а]пиримидин-7-она моногидрата для терапии гриппа и других вирусных инфекций

Заявляются композиции инъекционных и инфузионных растворов противовирусного препарата широкого спектра действия - L-аргининиевая соль 5-метил-6-нитро-1,2,4-триазоло[1,5-а]пиримидин-7-она моногидрата, включающие вспомогательные компоненты. Инфузионные и инъекционные растворы L-аргининиевой соли...
Тип: Изобретение
Номер охранного документа: 0002586283
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.46b6

Химический способ получения искусственных алмазов

Изобретение относится к неорганическому синтезу искусственных алмазов размером до 150 мкм, которые могут найти промышленное применение в производстве абразивов и алмазных смазок, буровой технике. Синтез алмазов осуществляют в расплавленной металлической матрице при непосредственном...
Тип: Изобретение
Номер охранного документа: 0002586140
Дата охранного документа: 10.06.2016
10.08.2016
№216.015.5626

Способ получения лигатуры алюминий-скандий

Изобретение относится к области металлургии цветных металлов и может быть использовано для получения лигатуры алюминий-скандий. Способ включает приготовление и расплавление смеси, содержащей фториды алюминия, фториды натрия и алюминий, подачу оксида скандия, алюмотермическое восстановление...
Тип: Изобретение
Номер охранного документа: 0002593246
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5c32

Препарат и способ его применения при эндометритах у коров

Заявленная группа изобретений относится к области ветеринарии и предназначено для лечения эндометритов у коров. Заявлен комплексный препарат, состоящий из окситетрациклина гидрохлорида, стрептоцида, фурацилина, диметилглицеролатов кремния, глицеролатов кремния, ксантановой смолы как...
Тип: Изобретение
Номер охранного документа: 0002589902
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5f1b

Способ получения гранул сшитого хитозана

Изобретение относится к области полимерных материалов, а именно к способу получения гранул сшитого хитозана, который включает сшивание хитозана глутаровым альдегидом с использованием раствора соляной кислоты, содержащего глутаровый альдегид, при мольном соотношении хитозан : соляная кислота :...
Тип: Изобретение
Номер охранного документа: 0002590982
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.7438

Применение соединений класса 1,3,4-тиадиазина в качестве средства коррекции экспериментального аллоксанового сахарного диабета

Изобретение относится к области медицины, в частности к экспериментальной фармакологии, новым биологически активным соединениям общей формулы I, представляющим собой 2-морфолино-5-фенил-6Н-1,3,4-тиадиазин, гидробромид (L-17); 2-морфолино-5-(4′-фторфенил)-6Н-1,3,4-тиадиазин, гидробромид (L-31),...
Тип: Изобретение
Номер охранного документа: 0002597764
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.779a

Амиды n-(2-аминопурин-6-ил)-6-аминокапроновой кислоты, обладающие противоопухолевой активностью, и способ их получения

Изобретение относится к амидам N-(2-ацетамидопурин-6-ил)-6-аминокапроновой кислоты общей формулы 1, которые обладают высокой противоопухолевой активностью и низкой токсичностью. В общей формуле 1 (1a) R=Me, R'=H, X=O, Y=Z=F; (1b) R=H, R'=Me, X=O, Y=Z=F; (1c) R=Me, R'=H, X=CH, Y=Z=H; (1d) R=H,...
Тип: Изобретение
Номер охранного документа: 0002599577
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.79b0

Электролитический способ непрерывного получения алюминиевого сплава со скандием

Изобретение относится к области металлургии цветных металлов, в частности к получению сплава алюминия с редкоземельными металлами, и может быть использовано для получения алюминиевого сплава с 0,2-0,4 мас. % скандия в условиях промышленного производства алюминия. Способ электролитического...
Тип: Изобретение
Номер охранного документа: 0002599312
Дата охранного документа: 10.10.2016
Показаны записи 81-90 из 180.
12.01.2017
№217.015.5c32

Препарат и способ его применения при эндометритах у коров

Заявленная группа изобретений относится к области ветеринарии и предназначено для лечения эндометритов у коров. Заявлен комплексный препарат, состоящий из окситетрациклина гидрохлорида, стрептоцида, фурацилина, диметилглицеролатов кремния, глицеролатов кремния, ксантановой смолы как...
Тип: Изобретение
Номер охранного документа: 0002589902
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5f1b

Способ получения гранул сшитого хитозана

Изобретение относится к области полимерных материалов, а именно к способу получения гранул сшитого хитозана, который включает сшивание хитозана глутаровым альдегидом с использованием раствора соляной кислоты, содержащего глутаровый альдегид, при мольном соотношении хитозан : соляная кислота :...
Тип: Изобретение
Номер охранного документа: 0002590982
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.7438

Применение соединений класса 1,3,4-тиадиазина в качестве средства коррекции экспериментального аллоксанового сахарного диабета

Изобретение относится к области медицины, в частности к экспериментальной фармакологии, новым биологически активным соединениям общей формулы I, представляющим собой 2-морфолино-5-фенил-6Н-1,3,4-тиадиазин, гидробромид (L-17); 2-морфолино-5-(4′-фторфенил)-6Н-1,3,4-тиадиазин, гидробромид (L-31),...
Тип: Изобретение
Номер охранного документа: 0002597764
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.779a

Амиды n-(2-аминопурин-6-ил)-6-аминокапроновой кислоты, обладающие противоопухолевой активностью, и способ их получения

Изобретение относится к амидам N-(2-ацетамидопурин-6-ил)-6-аминокапроновой кислоты общей формулы 1, которые обладают высокой противоопухолевой активностью и низкой токсичностью. В общей формуле 1 (1a) R=Me, R'=H, X=O, Y=Z=F; (1b) R=H, R'=Me, X=O, Y=Z=F; (1c) R=Me, R'=H, X=CH, Y=Z=H; (1d) R=H,...
Тип: Изобретение
Номер охранного документа: 0002599577
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.79b0

Электролитический способ непрерывного получения алюминиевого сплава со скандием

Изобретение относится к области металлургии цветных металлов, в частности к получению сплава алюминия с редкоземельными металлами, и может быть использовано для получения алюминиевого сплава с 0,2-0,4 мас. % скандия в условиях промышленного производства алюминия. Способ электролитического...
Тип: Изобретение
Номер охранного документа: 0002599312
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7a9b

Способ электрохимического получения порошка иридия с удельной поверхностью более 5 м/г

Изобретение относится к электрохимическому получению порошкового иридия с высокой удельной поверхностью, который может быть использован в устройствах катализа горения многокомпонентных топлив при температурах до 2100°С без изменения химического состава и потери формы. Электролиз ведут в...
Тип: Изобретение
Номер охранного документа: 0002600305
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.8256

Кремнийборсодержащий глицерогидрогель, обладающий ранозаживляющей, регенерирующей и антимикробной активностью

Изобретение относится к биологически активным химическим веществам. Предложен кремнийборсодержащий глицерогидрогель, обладающий ранозаживляющей, регенерирующей и антимикробной активностью, состав которого отвечает формуле kSi(CHO)·НВ(СНО)·xCHO·yHO, где 0,5≤k≤2, 2,5≤x≤12, 20≤y≤100, полученный...
Тип: Изобретение
Номер охранного документа: 0002601312
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8295

Способ получения n-нитрозо-n-[(2-хлорэтил)карбамоил]-l-орнитина

Изобретение относится к способу получения N-нитрозо-N-[(2-хлорэтил)карбамоил]-L-орнитина формулы , обладающего противоопухолевым действием. Согласно предлагаемому способу N-нитрозо-N-[(2-хлорэтил)карбамоил]-L-орнитин получают из смеси изомеров N-нитрозо-N-[(2-хлорэтил)карбамоил]-L-орнитина и...
Тип: Изобретение
Номер охранного документа: 0002601753
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.86ff

Способ электролитического алитирования изделий из низкоуглеродистой стали

Изобретение относится к области гальванотехники и может быть использовано для нанесения защитного покрытия на изделия из низкоуглеродистой стали, которые могут эксплуатироваться при высоких температурах. Способ включает электролиз галогенидного алюминийсодержащего расплава при использовании...
Тип: Изобретение
Номер охранного документа: 0002603744
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.904a

N-(2-аминопурин-6-ил)глицил-(s)-глутаминовая кислота, обладающая противотуберкулёзной активностью

Изобретение относится к новой N-(2-аминопурин-6-ил)глицил-(S)-глутаминовой кислоте, обладающей высокой противотуберкулезной активностью, в том числе по отношению к штаммам микобактерий с множественной лекарственной устойчивостью. N-(2-Аминопурин-6-ил)глицил-(S)-глутаминовая кислота...
Тип: Изобретение
Номер охранного документа: 0002604068
Дата охранного документа: 10.12.2016
+ добавить свой РИД