×
20.07.2014
216.012.ded2

Результат интеллектуальной деятельности: БИОЛОГИЧЕСКИЙ ДНК МАРКЕР ДЛЯ ИДЕНТИФИКАЦИИ ГЕНА УСТОЙЧИВОСТИ К Х ВИРУСУ КАРТОФЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области биохимии, в частности к биологическому ДНК маркеру, позволяющему идентифицировать ген Rx у культурного картофеля S. tuberosum и его гомологи у родственных дикорастущих видов рода Solanum sect. Petota. Изобретение позволяет эффективно идентифицировать ген Rx у культурного картофеля S. tuberosum и его гомологи у родственных дикорастущих видов рода Solanum sect. Petota. 2 ил., 1 пр.
Основные результаты: Биологический ДНК маркер, представляющий собой пару олигонуклеотидных последовательностей: SEQ ID №1-5′ GGTCTCTGCTTTTGTCTACATGATG 3′ и SEQ ID №2-5′ GCCACTGGATTTAGCCTTTGCG, позволяющий идентифицировать ген Rx у культурного картофеля S. tuberosum и его гомологи у родственных дикорастущих видов рода Solanum sect. Petota.

Описание изобретения.

Изобретение относится к генетике и биотехнологии растений, в частности к молекулярно-генетическим исследованиям, и связанно с идентификацией генов устойчивости к Х вирусу картофеля (PVX).

В качестве настоящего изобретения предложен биологический ДНК маркер (пара олигонуклеотидных праймеров), позволяющий идентифицировать Rx гены и их гомологи у широкого круга видов клубнеобразующего картофеля рода Solarium секции Petota, использующихся в качестве доноров устойчивости к вирусу PVX при создании новых сортов картофеля.

Результаты реализации данного изобретения могут быть использованы в селекции, а так же в биотехнологии для получения сортов картофеля, устойчивых к X вирусу. Потери урожая картофеля, наносимые Х вирусом картофеля (PVX), могут в неблагоприятные годы достигать 34%. На сегодняшний день не существует надежных химических средств борьбы с вирусными инфекциями, в том числе и с PVX, что связано с биологией их возбудителей. В этой связи единственным наиболее действенным и актуальным подходом является создание сортов картофеля, несущих гены устойчивости к вирусам.

В настоящее время основным алгоритмом создания сортов картофеля, устойчивых к PVX, является идентификация вариантов генов гомологов Rx, определяющих устойчивость к X вирусу у образцов дикорастущих видов картофеля, и введение этих генов гомологов Rx в геном культурного картофеля S. tuberosum. Идентификация генов гомологов Rx позволит выявлять образцы дикорастущих видов клубнеобразующего картофеля, которые можно использовать в качестве доноров устойчивости к PVX при скрещиваниях и отслеживать их наследуемость в поколениях при создании устойчивых сортов. Идентификация Rx генов устойчивости к PVX у образцов вида S. tuberosum и гомологов Rx генов у широкого круга видов клубнеобразующего картофеля рода Solarium секции Petota посредством предложенного изобретения весьма актуальна, так как в настоящий момент полноразмерная последовательность гена Rx известна только для вида культурного картофеля S. tuberosum и его разновидности S. tuberosum spp. Andigena. Другие гомологи гена Rx у Solarium секции Petota в базах данных не приводятся.

Разработанные праймеры позволяют идентифицировать (амплифицировать, секвенировать) новые гены гомологи Rx у широкого круга видов клубнеобразующего картофеля Solanum секции Petota, для которых первичная последовательность этих генов неизвестна.

В настоящее время известен способ получения растений с повышенной устойчивостью к широкому спектру патогенов (вирусы, грибные инфекции и др.), который включает полипептиды и кодирующие их полинуклеотиды, способные активизировать гиперчувствительный ответ, инициируемый патогенами, в частности PVX. Патент также рассматривает ген устойчивости Rx Solanum tuberosum или его различные гомологи (естественные или синтетические), такие как 111h1; 221h2;AC15; Ac64; K39.hom (Европейский патент - WO 9954490).

Известен способ идентификации R-генов устойчивости к фитофторе (Phytophthora pathotypes) у представителей рода Solanum с использованием эффектор-рецепторного подхода (Европейский патент EP 1950304).

Известен способ конструирования слитых генов для повышения устойчивости к PVX и PVY вирусам картофеля. Метод основан на слиянии СР гена белка оболочки PVX вируса и Nib гена репликазы PVY вируса и конструировании гена RNAiCN с двойной резистентностью. Трансформация картофеля полученной конструкцией повышает устойчивость растений как к PVX, так и к PVY вирусам картофеля (патент Китая CN 101092624).

Известен способ детекции TMV-устойчивых растений с использованием ДНК маркеров или праймеров (Европейский патент - WO 2007097574 (A1)).

Известен способ скрининга генофонда томатов на устойчивость к патогенам и экстремальным факторам среды, а также определения нуклеотидных последовательностей генов устойчивости, локализованных в хромосоме 6 (Mi, MEu-1), обеспечивающих устойчивость этой культуры к нематодам и тлям (Европейский патент KR 20000029896).

Известен способ получения трансгенных сортов картофеля и томата, устойчивых к фитофторозу, который основан на введении в растение ДНК, которая кодирует продукт, способный обеспечивать растение семейства Solanaceae и его потомство устойчивостью к поражению оомицетным грибом Phytophthora infestans (Российский патент №2361920).

Проведенный анализ патентных источников показывает, что, несмотря на возрастающий поток информации о путях достижения устойчивости растений к болезням, имеется острая потребность в идентификации генов и кодируемых ими белков, которые могут в дальнейшем использоваться для селекции сортов сельскохозяйственных растений, обладающих пролонгированной системой резистентности к заболеваниям широкого спектра действия.

Недостатком перечисленных способов является специфичность использования подходов и маркеров только для определенных видов растений и генов. При этом не существует способа, позволяющего идентифицировать последовательности гена Rx, определяющего устойчивость к вирусу PVX у сортов картофеля Solanum tuberosum, а также у представителей рода Solanuum секции Petota, наиболее часто используемых в скрещиваниях при создании новых сортов картофеля.

Задачей предлагаемого изобретения является идентификация Rx генов устойчивости к X вирусу и их гомологов у широкого круга сортов и видов картофеля использованием биологического ДНК маркера, представленного парой специфических олигонуклеотидных праймеров, позволяющих амплифицировать последовательность гена Rx и его гомологов у родственных клубнеобразующих видов Solanum секции Petota, использующихся в скрещиваниях при селекции новых устойчивых сортов.

Таким образом, изобретение - биологический ДНК маркер:

а) должен быть представлен олигонуклеотидными праймерами следующего состава:

RXUF 5′ GGTCTCTGCTTTTGTCTACATGATG 3′

RXUR 5′ GCCACTGGATTTAGCCTTTGCG 3′,

позволяющими амплифицировать ДНК последовательность длиной около 3600 п.н.у дикорастущих клубнеобразующих видов Solanum секции Petota с высокой нуклеотидной гомологией (более 80%) к Rx гену картофеля Solanum tuberosum.

б) должен быть специфичен для гена картофеля Rx, определяющего устойчивость к вирусу PVX, то есть быть пригодным для специфической амплификации именно последовательностей данного гена и его гомологов у клубнеобразующих видов Solanum секции Petota.

в) должен быть применим как для культурного картофеля Solanum tuberosum, так и для родственных дикорастущих видов клубнеобразующего картофеля рода Solanum секции Petota

Вышеуказанный результат достигается тем, что использование биологического ДНК маркера после полимеразной реакции амплификации позволяет получить Rx ген и его гомологи у сортов картофеля Solanum tuberosum и родственных дикорастущих видов клубнеобразующего картофеля рода Solanum секции Petota.

В результате использования биологического ДНК маркера для идентификации гена устойчивости к X вирусу картофеля появляется возможность для поиска новых источников устойчивости к X вирусу среди дикорастущих видов картофеля, а также для повышения эффективности генетико-селекционных мероприятиях, связанных с выведением новых сортов картофеля, устойчивых к X вирусу.

Методика использования изобретения.

Для идентификации функционального гена устойчивости к Х вирусу картофеля собирают живой растительный материал исследуемых образцов или сортов (от 5-10 растений сорта).

Наилучшим материалом для последующего выделения суммарной ДНК являются молодые ткани листьев. При наличии клубневого материала клубни предварительно проращивают до появления из глазковых почек 1-2 листков.

Выделение ДНК.

Выделение тотальной ДНК проводили по следующей методике.

1. Лизис клеток.

К листовой высечке (~0.05 мг) в пробирке типа Eppendorf объемом 1,5 мл добавляют 400 мкл лизирующего буфера (200 мМ трис - HCl, pH=7,5; 250 мМ NaCl; 25 мМ EDTA; 0,5% SDS). Растительный материал в буфере при комнатной температуре гомогенизируют с помощью специальных пестиков. Смесь инкубируют в термостате или водяной бане в течение 20 минут при 65°C.

2. Депротеинизация ДНК.

В пробирку со смесью, содержащей лизированные клетки и ядра, добавляют 200 мкл предварительно охлажденного 5 М ацетата калия, перемешивают и инкубируют на ледяной бане 20 мин. После инкубации смесь центрифугируют 15 мин при 16000 g.

Полученный надосадочный супернатант (около 450 мкл) переносят в новую пробирку и подвергают двукратной очистке равным объемом смеси фенол (содержит 0.1% антиоксидантов 8-оксихинолина и 0.2% меркаптоэтанола)/хлороформ (смесь хлороформа и изоамилового спирта (24:1)). Супернатант и смесь фенол/хлороформ плавно перемешивают до образования эмульсии, а затем центрифугируют 5 минут при 16000 g. После чего верхнюю фазу с растворенной ДНК отбирают пипеткой в чистую пробирку. Фенолхлороформная депротеинизация повторяется 2-3 раза до полной очистки раствора ДНК от белков.

3. Осаждение ДНК.

Осаждение ДНК производят путем добавления к очищенному супернатанту 0.6 V изопропанола; смесь перемешивают и центрифугируют в течение 15 мин при 16000 g. Спирт сливают и осадок промывают 70% этанолом не менее 3 раз, просушивают и растворяют в 20-25 мкл бидистиллированной стерильной воды.

Оценка качества и количества экстрагированной ДНК.

Оценку качества и количества экстрагированной ДНК производят путем измерения оптической плотности раствора ДНК на анализаторе типа Биофотометр (Bio Photometer, Eppendorf) либо путем проведения аналитического электрофореза.

После определения концентрации и чистоты ДНК (на спектрофотометре/или в геле) концентрации ДНК в пробах стандартизируют путем разведения в стерильной бидистиллированной воде до 100 мкг/мкл.

Полимеразная цепная реакция (ПЦР).

1. Проведение ПЦР

Выделенную ДНК используют в качестве матрицы в реакции амплификации.

Амплификацию ДНК проводят в реакционной смеси объемом 15 мкл, содержащей 10х буфер для соответствующей полимеразы, 0,16 мМ каждого dNTP, 1.2 мМ MgCl2, 0.6 мкМ биологического ДНК маркера, 0.3 ед DreamTaq полимеразы (Fermentas, Литва) и 100 нг геномной ДНК в термоциклере «Applied Biosystems 2700» (США) в режиме: денатурация - 30 сек - 94°C; отжиг - 45 сек - 60°C; синтез ДНК - 3 мин 20 сек- 72°C (35 циклов) с предварительной денатурацией - 5 мин (94°C) и заключительной элонгацией PCR-фрагментов 10 мин - 72°C.

2. Электрофоретическое разделение и визуализация ПНР-продуктов.

Продукты амплификации подвергают аналитическому электрофорезу в 0.8% агарозном геле толщиной 5-7 мм, содержащем бромистый этидий в 1х ТВЕ буфере. В качестве маркеров молекулярного веса используется Gene RuleTM DNA Ladder Mix (″Fermentas″, Литва). Вхождение фрагментов в гель осуществляют при 50 V в течение 10-20 минут, а разделение фрагментов - в течение 1-2 часов при 75-90 V.

Визуализацию осуществляют путем окрашивания гелей бромистым этидием согласно инструкции производителя, с последующим фотодокументированием.

Положительным результатом считается получение уникального фрагмента ДНК размером около 3600 п.н. Размер амплифицируемых продуктов определяют с помощью маркера молекулярных масс GeneRuleTM DNA Ladder mix (″Fermentas″, Литва).

Соответствие полученных фрагментов искомым последовательностям генов Rx проверяется по следующей методике:

1. Клонирование полученных фрагментов в вектор.

Полученные продукты ПЦР реакции клонируют с использованием системы Qiagen cloning plus kit (Qiagen, Нидерланды). Лигирование с вектором проводят в 10 мкл реакционной смеси, которая включала 1 мкл вектора (pDrive Cloning Vector (50 нг/мкл)), 3 мкл ПЦР продукта, 5 мкл Ligation Master Mix и очищенную воду.

Для трансформации используют QIAGEN EZ Competent Cells (из соответствующего набора). К 1 мл раствора, содержащего компетентные клетки, добавляют 2 мкл лигазной смеси и инкубируют на льду в течение 5 минут. Затем смесь нагревают на водяной бане при 42°C в течение 30 секунд, с последующим охлаждением на льду в течение 2 минут. К охлажденным клеткам добавляют 250 мкл среды SOC (из соответствующего набора). Полученную смесь разносят по чашкам Петри со средой LBA (Luria-Bertani - бакто-триптон, бакто-дрожжевой экстракт, NaCI, агар), содержащей ампицилин (100 мг/мл), XGal (40 мг/мл) и IPTG (100 мМ) по 100 мкл на чашку.

Отбор колоний на наличие вставки проводился при помощи метода бело-голубой селекции. Чашки Петри выдерживали при температуре 37°C в течение 12 часов, затем отбирали белые колонии. Белые колонии используют в качестве матрицы в реакции амплификации.

2. Амплификация клонированных генов устойчивости к X вирусу.

Амплификацию ДНК проводят в реакционной смеси объемом 15 мкл, содержащей 10х буфер для соответствующей полимеразы, 0,16 мМ каждого dNTP, 1.2 мМ MgCl2, 0.3 мкМ биологического ДНК маркера, представленного последовательностями RXUF и RXUR, 0.3 ед DreamTaq полимеразы (Fermentas, Литва) и клетки бактериальной колонии (~0.3 мкл) в термоциклере «Applied Biosystems 2700» (США) в режиме: денатурация - 30 сек - 94°C; отжиг праймера - 45 сек - 60°C; синтез ДНК - 3 мин 20 сек- 72°C (35 циклов) с предварительной денатурацией - 5 мин (94°C) и заключительной элонгацией PCR-фрагментов 10 мин - 72°C.

Применение праймерной пары должно приводить к образованию фрагмента ДНК длиной ~3600 п.н.

Продукты амплификации подвергают аналитическому электрофорезу в 0.8% агарозном геле толщиной 5-7 мм, содержащем бромистый этидий в 1х ТВЕ буфере. В качестве маркеров молекулярного веса используется Gene RuleTM DNA Ladder Mix (″Fermentas″, Литва). Вхождение фрагментов в гель осуществляют при 50 V в течение 10-20 минут, а разделение фрагментов - в течение 1-2 часов при 75-90 V.

Первичные последовательности ДНК полученных ПЦР продуктов определяют при помощи метода Сэнгера на автоматическом анализаторе ДНК ABI3730 (Applied Biosystems, США).

Установленные последовательности ДНК анализируют при помощи программы BLAST (Altschul et al., 1990) на соответствие известным последовательностям функциональных генов устойчивости к X вирусу картофеля.

Пример выполнения предлагаемого способа.

Способ идентификации гена устойчивости к Х вирусу у образцов дикорастущих видов картофеля.

Из растительного материала образцов 3 видов клубнеобразующего картофеля S. megistacrolobum, S. acaule, S. berthaultii получают ДНК с использованием вышеописанного метода. ДНК, выделенную из каждого образца, используют в качестве матрицы для проведения полимеразной цепной реакции при описанных выше условиях с использованием биологического ДНК маркера, представленного последовательностями RXUF и RXUR. Полученные продукты амплификации визуализируют путем электрофореза в геле и клонируют в бактериальном векторе способом описанным выше. Последовательности клонированных ДНК фрагментов амплифицируют с использованием биологического ДНК маркера, представленного последовательностями RXUF и RXUR. Размер полученных фрагментов должен составлять ~ 3600 п.н. (фиг.1).

Первичные последовательности генов устойчивости к X вирусу определяют на автоматическом анализаторе ДНК ABI3730 (Applied Biosystems, США). Соответствие полученных последовательностей гену устойчивости к X вирусу картофеля проверяется с использованием программы BLAST [Altschul et al., 1990] или MEGA 5 [Tamura et al., 2011] (фиг.2). Уровень нуклеотидной гомологии с последовательностью Rx гена картофеля Solanum tuberosum должен составлять более 80%.

Аналогично возможно получить соответствующие последовательности для любого другого образца видов рода Solanum sect. Petota.

Таким образом, использование биологического ДНК маркера приводит к идентификации гена Rx и его гомологов у культурного картофеля Solanum tuberosum и родственных дикорастущих видов клубнеобразующего картофеля рода Solanum секции Petota.

Литература

1. Altschul, S; Gish, W; Miller, W; Myers, E; Lipman, D (October 1990). ″Basic local alignment search tool″. Journal of Molecular Biology 215 (3): 403-410.

2. Tamura К, Peterson D, Peterson N, Stecher G, Nei M, and Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution 28: 2731-2739.

Биологический ДНК маркер, представляющий собой пару олигонуклеотидных последовательностей: SEQ ID №1-5′ GGTCTCTGCTTTTGTCTACATGATG 3′ и SEQ ID №2-5′ GCCACTGGATTTAGCCTTTGCG, позволяющий идентифицировать ген Rx у культурного картофеля S. tuberosum и его гомологи у родственных дикорастущих видов рода Solanum sect. Petota.
БИОЛОГИЧЕСКИЙ ДНК МАРКЕР ДЛЯ ИДЕНТИФИКАЦИИ ГЕНА УСТОЙЧИВОСТИ К Х ВИРУСУ КАРТОФЕЛЯ
БИОЛОГИЧЕСКИЙ ДНК МАРКЕР ДЛЯ ИДЕНТИФИКАЦИИ ГЕНА УСТОЙЧИВОСТИ К Х ВИРУСУ КАРТОФЕЛЯ
БИОЛОГИЧЕСКИЙ ДНК МАРКЕР ДЛЯ ИДЕНТИФИКАЦИИ ГЕНА УСТОЙЧИВОСТИ К Х ВИРУСУ КАРТОФЕЛЯ
Источник поступления информации: Роспатент

Показаны записи 11-19 из 19.
03.03.2019
№219.016.d2a3

Способ получения генетически модифицированных растений картофеля сорта елизавета с помощью agrobacterium tumefaciens

Изобретение относится к селекции и биотехнологии растений. Экспланты растений картофеля сорта “ЕЛИЗАВЕТА” сокультивируют с трансформированным штаммом A. tumefaciens, а затем помещают на питательную среду для инициации каллусообразования с последующей регенерацией из них фертильных трансгенных...
Тип: Изобретение
Номер охранного документа: 02231251
Дата охранного документа: 27.06.2004
13.03.2019
№219.016.ded1

Пептидный вектор, способ его получения, нуклеотидная последовательность, рекомбинантная плазмидная днк и штамм escherichia coli b-8389 вкпм для его получения, способ генетической модификации клеток млекопитающих и человека

Изобретение относится к генной и тканевой инженерии и может быть использовано в биотехнологии, медицине и сельском хозяйстве. Создан простой в конструктивном отношении пептидный вектор (PGE-k), состоящий из полипептидной последовательности эпидермального фактора роста (ЭФР) и модифицированной...
Тип: Изобретение
Номер охранного документа: 0002248983
Дата охранного документа: 27.03.2005
20.03.2019
№219.016.e48f

Средство для регуляции репродуктивной функции и половой активности позвоночных животных и способ регуляции репродуктивной функции и половой активности позвоночных животных

Изобретение относится к области ветеринарии и животноводства. Средство для регуляции репродуктивной функции и половой активности позвоночных животных в качестве прогестагена содержит в эффективном количестве соединение общей формулы I. где R - заместитель, содержащий арильный или гетерильный...
Тип: Изобретение
Номер охранного документа: 02233586
Дата охранного документа: 10.08.2004
05.04.2019
№219.016.fd60

17α-ацетокси-3β-гексаноилокси-6-метилпрегна-4,6-диен-20-он, обладающий гестагенной, контрацептивной и противоопухолевой активностью, и способ его получения

Изобретение относится к химическому соединению 17α-ацетокси-3β-гексаноилокси-6-метилпрегна-4,6-диен-20-он формулы I, обладающему гестагенной, контрацептивной и противоопухолевой активностью. Изобретение также относится к способу получения соединения формулы I. Технический результат: получено...
Тип: Изобретение
Номер охранного документа: 0002683953
Дата охранного документа: 03.04.2019
10.04.2019
№219.017.013d

Способ получения генетически модифицированных растений картофеля сорта невский с помощью agrobacterium tumefaciens

Изобретение относится к селекции растений. Экспланты растений картофеля сорта Невский сокультивируют с трансформированным штаммом A. tumefaciens, а затем помещают на питательную среду для инициации каллусообразования с последующей регенерацией из них фертильных трансгенных растений....
Тип: Изобретение
Номер охранного документа: 0002231549
Дата охранного документа: 27.06.2004
10.04.2019
№219.017.013f

Способ получения генетически модифицированных растений картофеля сорта чародей с помощью agrobacterium tumefaciens

Изобретение относится к селекции растений. Экспланты растений картофеля сорта Чародей сокультивируют с трансформированным штаммом A. timefaciens, а затем помещают на питательную среду для инициации каллусообразования с последующей регенерацией из них фертильных трансгенных растений....
Тип: Изобретение
Номер охранного документа: 0002231548
Дата охранного документа: 27.06.2004
10.04.2019
№219.017.0140

Способ получения генетически модифицированных растений картофеля сорта голубизна с помощью agrobacterium tumefaciens

Изобретение относится к селекции растений. Экспланты растений картофеля сорта Голубизна сокультивируют с трансформированным штаммом A. tumefaciens, а затем помещают на питательную среду для инициации каллусообразования с последующей регенерацией из них фертильных трансгенных растений....
Тип: Изобретение
Номер охранного документа: 0002231551
Дата охранного документа: 27.06.2004
10.04.2019
№219.017.0144

Способ получения генетически модифицированных растений картофеля сорта луговской с помощью agrobacterium tumefaciens

Изобретение относится к селекции растений. Экспланты растений картофеля сорта Луговской сокультивируют с трансформированным штаммом A. timefaciens, а затем помещают на питательную среду для инициации каллусообразования с последующей регенерацией из них фертильных трансгенных растений....
Тип: Изобретение
Номер охранного документа: 0002231550
Дата охранного документа: 27.06.2004
03.07.2019
№219.017.a4a9

Штамм pimelobacter simplex, проявляющий стероид-1,2-дегидрогеназную активность

Изобретение относится к биотехнологии, а именно микробиологическому получению Δ-кортикостероидов. Штамм Pimelobacter simplex ВКПМ Ас - 1632 способен вводить 1,2-двойную связь в Δ-3-кетостероиды или в Δ-3β-гидроксистероиды прегнанового ряда с образованием кросс-сопряженной системы в кольце А...
Тип: Изобретение
Номер охранного документа: 02215038
Дата охранного документа: 27.10.2003
Показаны записи 11-20 из 34.
29.05.2018
№218.016.58ce

Способ получения 17α-ацетокси-3β-бутаноилокси-6-метил-прегна-4,6-диен-20-она из ацетата мегестрола

Изобретение относится к способу получения 17α-ацетокси-3β-бутаноилокси-6-метил-прегна-4,6-диен-20-она, включающего стадию восстановления ацетата мегестрола борогидридом натрия с последующей стадией ацилирования полученного осадка масляным ангидридом, разложение избытка масляного ангидрида,...
Тип: Изобретение
Номер охранного документа: 0002653507
Дата охранного документа: 10.05.2018
25.06.2018
№218.016.6718

Днк-маркер для количественного определения геномной днк картофеля в растительном сырье и в продуктах, получаемых на его основе, в том числе при количественной идентификации гмо

Изобретение относится к области биохимии, в частности к ДНК-маркеру для количественного определения геномной ДНК картофеля S. tuberosum в растительном сырье, а также в продуктах, получаемых на его основе, путем проведения массового анализа методом ПЦР в режиме реального времени по технологии...
Тип: Изобретение
Номер охранного документа: 0002658352
Дата охранного документа: 20.06.2018
07.02.2019
№219.016.b774

Штамм streptomyces hygroscopicus bkm ac-2737d - продуцент антибиотика рапамицина и способ увеличения его продуктивности

Группа изобретений относится к биотехнологии и может быть использована для производства макролидного антибиотика рапамицина - лекарственного средства, широко используемого в трансплантологии и терапии опухолевых процессов. Предложен штамм Streptomyces hygroscopicus ВКМ Ac-2737D и способ...
Тип: Изобретение
Номер охранного документа: 0002679051
Дата охранного документа: 05.02.2019
03.03.2019
№219.016.d2ac

Способ получения низкомолекулярного гепарина

Изобретение относится к медицине, точнее к технологии получения лекарственных средств, предназначенных для лечения тромботических состояний. Предложен способ получения низкомолекулярного гепарина с помощью ферментативной деполимеризации, который характеризуется тем, что лизоцим в сухом виде...
Тип: Изобретение
Номер охранного документа: 0002377993
Дата охранного документа: 10.01.2010
03.03.2019
№219.016.d2b1

Термостабильная алкогольдегидрогеназа из археи thermococcus sibiricus

Изобретение относится к биотехнологии и представляет собой рекомбинантную термостабильную алкогольдегидрогеназу TsAdh319 из археи Thermococcus sibiricus, проявляющую активность в реакциях окисления спиртов и сахаров до соответствующих альдегидов и кетонов и в обратных реакциях восстановления...
Тип: Изобретение
Номер охранного документа: 0002413766
Дата охранного документа: 10.03.2011
03.03.2019
№219.016.d2b2

Биологический днк маркер для определения сортов картофеля, набор и способ сортовой идентификации картофеля

Для определения сортовой принадлежности растений картофеля выделяют ДНК из свежего растительного материала и исследуют ее с помощью ПЦР. ПЦР проводят, используя набор, содержащий биологический маркер, реакционную смесь, состоящую из 160 мкМ каждого динуклеотидтрифосфата dNTP, 1.6 мМ MgCl, 0.3...
Тип: Изобретение
Номер охранного документа: 0002413774
Дата охранного документа: 10.03.2011
11.03.2019
№219.016.d6f5

Способ получения гепаринов с низкой молекулярной массой

Изобретение относится к области медицины. Предлагается способ получения низкомолекулярных гепаринов с помощью ферментативного расщепления. Для ферментной деполимеризации используются папаин, химотрипсин или комплексы гидролаз, содержащиеся в препаратах «протеаза С» и целловиридин, которые...
Тип: Изобретение
Номер охранного документа: 0002295538
Дата охранного документа: 20.03.2007
11.03.2019
№219.016.dc5f

Способ получения 14α-гидроксипроизводных δ-3,17-дикето-андростенов

Изобретение относится к области биотехнологии. Предложен способ 14α-гидроксилирования Δ-3,17-дикетоандростенов с помощью нового штамма гриба Curvularia lunata ВКПМ F-981. Мицелий гриба Curvularia lunata ВКПМ F-981 суспендируют в водной среде, не содержащей компонентов, необходимых для роста...
Тип: Изобретение
Номер охранного документа: 0002407800
Дата охранного документа: 27.12.2010
13.03.2019
№219.016.ded4

Рекомбинантный вирусный вектор для продукции в растениях белка е1 вируса краснухи (варианты) и система экспрессии белка е1 вируса краснухи в клетках растения (варианты)

Конструируют синтетические гены, кодирующие модифицированные белки Е1 и Е12 вируса краснухи. Для продукции этих белков в растениях синтетические гены встраивают в вирусный вектор на основе генома X-вируса картофеля. Растения инфицируют агробактериями, содержащими полученный рекомбинантный...
Тип: Изобретение
Номер охранного документа: 0002390563
Дата охранного документа: 27.05.2010
13.03.2019
№219.016.ded6

Способ получения гепарина с низкой молекулярной массой и антикоагулянтной активностью

Изобретение относится к области медицины. Предложен способ получения низкомолекулярных гепаринов с помощью ферментативного расщепления. Для ферментной деполимеризации используют лизоцим и в иммобилизованном виде. Полученный низкомолекулярный гепарин обладает увеличенной ингибиторной активностью...
Тип: Изобретение
Номер охранного документа: 0002396282
Дата охранного документа: 10.08.2010
+ добавить свой РИД