×
20.07.2014
216.012.dd82

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ГАЗОПЛОТНОЙ КЕРАМИКИ ДЛЯ ЭЛЕМЕНТОВ ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к изготовлению газоплотной оксидной керамики со смешанной ионно-электронной проводимостью. Заявлен способ изготовления газоплотной керамики для элементов электрохимических устройств, который включает получение оксидо-органической формовочной массы смешиванием оксидного порошка с органической связкой и пластификатором, формирование заготовок заданной формы и обжиг до спекания. В качестве органической связки используют 4%-ный раствор бутадиен-нитрильного каучука марки СКН-26М, полученный в смеси ацетона и бензина, взятых в объемном соотношении 3:2, в качестве пластификатора используют 5%-ный раствор дибутилфталата в бензине, при этом оксидный порошок смешивают с органической связкой в соотношении 1 мл раствора на 1 г порошка, а с пластификатором - в соотношении 1 мл раствора на 40 г порошка. Заявленным способом можно получить керамику на основе кобальтитов и манганитов лантана-стронция, титанато-ферритов стронция, систем на основе оксида циркония. Технический результат - получение оксидо-органической формовочной массы, обладающей улучшенными пластическими свойствами, пригодными для изготовления керамики для элементов электрохимических устройств без ограничения формы и размеров. 8 ил.
Основные результаты: Способ изготовления газоплотной керамики для элементов электрохимических устройств, включающий получение оксидо-органической массы смешиванием оксидного порошка с органической связкой и пластификатором с последующим формированием заготовок заданной формы и обжигом до получения спечённых изделий, отличающийся тем, что при получении оксидо-органической массы в качестве органической связки используют 4%-ный раствор бутадиен-нитрильного каучука марки СКН-26М, полученный в смеси ацетона и бензина, взятых в объемном соотношении 3:2, в качестве пластификатора используют 5%-ный раствор дибутилфталата в бензине, при этом оксидный порошок смешивают с органической связкой в соотношении 1 мл раствора на 1 г порошка, с пластификатором в соотношении 1 мл раствора на 40 г порошка.

Изобретение относится к изготовлению газоплотной оксидной керамики со смешанной ионно-электронной проводимостью и может быть использовано при разработке элементов электрохимических устройств, в частности мембран для получения чистого водорода или кислорода и других.

Известно, например, что газоплотную керамику состава Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) изготавливают шликерным литьем из композиционного оксидного материала (М.-В. Choi, D.-K. Lim, S.-Y. Jeon, H.-S. Kim, S.-J. Song. Oxygen permeation properties of BSCF5582 tubular membrane fabricated by the slip casting method. Ceramics International. 38 (2012), p.1867) [1]. Для получения суспензии оксидного материала оксидный порошок BSCF смешивают с растворителем (этанол), диспергентом (поликарбонат аммония), полиэфиром, пластификатором (полиэтиленгликоль ПЭГ 400) и связкой (поливиниловый спирт). Суспензию заливают в полость микропористой литьевой формы и выдерживают в ней. Под действием капиллярных сил растворитель удаляется из внутренней полости, а на внутренней поверхности литьевой формы образуется слой геля. Остатки суспензии выливают из литьевой формы, а форму высушивают. Заготовки, извлеченные из литьевой формы, спекают до получения готовых газоплотных керамических изделий.

Газоплотную керамику состава La0.7Ca0.3Fe0.85Co0.15O3-δ (LCFC) получают пластической экструзией также из композиционного оксидного материала (М. Trunecw, J. Cihlar. Tubular La0.7Ca0.3Fe0.85Co0.15O3-δ Perovskite Membranes, Part I: Preparation and Properties. J. Am. Ceram. Soc. 89 (2005), p.949) [2]. Для его получения смешивают оксидный порошок материала LCFC и связку, в качестве которой используют смесь этиленвинил ацетата и парафинового воска. Полученную смесь добавляют в стеариновую кислоту, гомогенизируют и высушивают. Высушенную смесь помещают в экструдер, выдавливают через фильеру, полученные заготовки спекают до готовых газоплотных керамических изделий.

Газоплотную двухслойную оксидную керамику состава La0.8Sr0.2MnO3-δ (LSM) трубчатой формы на пористой подложке Zr0.7Y0.3O2-δ (YSZ) получают из композиционного оксидного материала в виде коллоидной суспензии, твердая фаза которой - оксидный порошок LSM, жидкая фаза - смесь поливинилбутираля, рыбьего жира, дибутифталата и сорбитаноолеата Span-80 в смеси толуола и метилэтилкетона (X. Yin, C. Choong, L. Hong, Z. Liu. Crafting La0.2Sr0.8MnO3-δ membrane with dense surface from porous YSZ tube. J. Solid State Electrochem. 10 (2006), p.643) [3]. В эту суспензию погружают пористую трубку, высушивают и спекают до готового изделия.

Керамические изделия, изготовленные вышеперечисленными способами, имеют ограничения по форме и размерам. Так, размеры заготовок в способе шликерного литья определяются размерами литьевой формы, способом пластической экструзии затруднительно получить изделия с толщиной стенок менее 0,25 мм, при использовании метода погружения возникает вероятность получения изделий с неравномерным распределением нанесенного слоя по поверхности пористой подложки.

Кроме того, известные способы характеризуются трудоемкостью изготовления керамических изделий, т.к. требуют соблюдения жесткого технологического контроля за качеством суспензии, точным количеством вводимых в порошок органических компонентов и состоянием вспомогательных устройств, а также узким диапазоном распределения частиц исходного порошка по размерам или необходимостью учета требований, предъявляемых к пористой положке в процессе погружения, используемой в способе [3].

Задача настоящего изобретения заключается в разработке способа изготовления газоплотной керамики для электрохимических устройств различной формы и размеров при упрощении технологии изготовления.

Для решения поставленной задачи предложен способ изготовления газоплотной керамики для элементов электрохимических устройств, включающий получение оксидо-органической массы смешиванием оксидного порошка с органической связкой и пластификатором с последующим формированием заготовок заданной формы и обжигом до получения спеченных изделий, причем, при получении оксидо-органической массы в качестве органической связки используют 4%-ный раствор бутадиентнитрильного каучука марки СКН-26М, полученный в смеси ацетона и бензина, взятых в объемном соотношении 3:2, в качестве пластификатора используют 5%-ный раствор дибутилфталата в бензине, при этом оксидный порошок смешивают с органической связкой в соотношении 1 мл раствора на 1 г порошка, с пластификатором в соотношении 1 мл раствора на 40 г порошка.

Подобранные экспериментально концентрации раствора бутадиен-нитрильного каучука, пластификатора и растворителей, позволили получить сочетание вязкости, пластичности и прочности оксидо-органической массы, достаточные для того, чтобы эту массу после сушки можно было прокатывать до получения пластин. Из полученной прокаткой керамики в виде пластин можно изготавливать элементы электрохимических устройств различной формы и размеров, например, трубчатой, сложной, неправильной формы и др. Это упрощает технологию изготовления газоплотных керамических изделий. Несоблюдение условий осуществления способа не позволит сформировать из высушенной массы пластины, либо получить плотные изделия, так как в процессе спекания заготовок из-за окисления каучука и пластификатора до газообразных H2O, CO, CO2 и N2, выделяется большое количество газов, приводящих к разрушению керамики. При использовании предложенного способа получения газоплотной керамики не требуется дорогостоящего оборудования, использования специфических реактивов, порошков с узким распределением частиц.

Новый технический результат, достигаемый заявленным изобретением, заключается в получении и использовании оксидо-органической массы со свойствами, позволяющими получать керамические изделия различной формы и размеров для элементов электрохимических устройств.

Предлагаемый способ иллюстрируется фотографиями процесса изготовления трубчатых керамических изделий, включающего подготовку синтезированного порошка (фиг.1), добавление органической связки и пластификатора (фиг.2), перемешивание смеси и разливание на фторопластовую подложку с последующим высушиванием смеси (фиг.3), прокатку высушенной массы с получением пластин (фиг.4, 5), формирование трубчатых изделий (фиг.6). На фиг.7 представлены трубчатые заготовки в засыпке, на фиг.8 - готовые спеченные трубчатые изделия.

Для получения оксидно-органической массы на основе титаната-феррита стронция первоначально готовили 4%-ный раствор бутадиен-нитрильного каучука. Использовали каучук марки СКН-26М, растворяли его в смеси ацетона и бензина, взятых в объемном соотношении 3:2. Полученный 4%-ный раствор каучука добавляли к исходному оксидному порошку SrTi0,50,5O3-δ в соотношении 1 мл раствора на 1 г порошка, после чего вводили 5%-ный раствор дибутилфталата в бензине в соотношении 1 мл раствора на 40 г порошка. Смесь тщательно перемешивали, выливали па фторопластовую подложку до полного высушивания полученной оксидо-органической массы. Высушенную массу прокатывали на вальцах с требуемой толщиной зазора до получения пластин.

Из полученных пластин получали заготовки изделий заданной формы (трубчатой, сложной, неправильной формы и др.), которые обжигали в засыпке из глинозема до получения готовых керамических изделий. Например, получаемые пластины скручивали в трубки, создавая стык и раскатывая его роликом с целью скрепления. Трубчатые заготовки подвергали обжигу.

Результаты гидростатического взвешивания спеченных керамических изделий из материала, полученного заявленным способом, свидетельствуют о получении газоплотной керамики: ее относительная плотность составляет 96% от теоретической.

Заявленным способом можно получать газоплотную керамику на основе кобальтитов и манганитов лантана-стронция, титанато-ферритов стронция, систем на основе оксида циркония. Исключения составляют оксидные системы, подверженные сильной гидратации, например, оксиды щелочных (Li, Na, K, Cs) и щелочноземельных (Ca, Ba) элементов, поскольку в этом случае не происходит смачивания поверхности гидратированного порошка органической смесью.

Таким образом, заявленное изобретение позволяет изготавливать газоплотную керамику для элементов электрохимических устройств различной формы и размеров при упрощении технологии ее изготовления.

Способ изготовления газоплотной керамики для элементов электрохимических устройств, включающий получение оксидо-органической массы смешиванием оксидного порошка с органической связкой и пластификатором с последующим формированием заготовок заданной формы и обжигом до получения спечённых изделий, отличающийся тем, что при получении оксидо-органической массы в качестве органической связки используют 4%-ный раствор бутадиен-нитрильного каучука марки СКН-26М, полученный в смеси ацетона и бензина, взятых в объемном соотношении 3:2, в качестве пластификатора используют 5%-ный раствор дибутилфталата в бензине, при этом оксидный порошок смешивают с органической связкой в соотношении 1 мл раствора на 1 г порошка, с пластификатором в соотношении 1 мл раствора на 40 г порошка.
СПОСОБ ИЗГОТОВЛЕНИЯ ГАЗОПЛОТНОЙ КЕРАМИКИ ДЛЯ ЭЛЕМЕНТОВ ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
СПОСОБ ИЗГОТОВЛЕНИЯ ГАЗОПЛОТНОЙ КЕРАМИКИ ДЛЯ ЭЛЕМЕНТОВ ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
СПОСОБ ИЗГОТОВЛЕНИЯ ГАЗОПЛОТНОЙ КЕРАМИКИ ДЛЯ ЭЛЕМЕНТОВ ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
СПОСОБ ИЗГОТОВЛЕНИЯ ГАЗОПЛОТНОЙ КЕРАМИКИ ДЛЯ ЭЛЕМЕНТОВ ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
СПОСОБ ИЗГОТОВЛЕНИЯ ГАЗОПЛОТНОЙ КЕРАМИКИ ДЛЯ ЭЛЕМЕНТОВ ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
СПОСОБ ИЗГОТОВЛЕНИЯ ГАЗОПЛОТНОЙ КЕРАМИКИ ДЛЯ ЭЛЕМЕНТОВ ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
СПОСОБ ИЗГОТОВЛЕНИЯ ГАЗОПЛОТНОЙ КЕРАМИКИ ДЛЯ ЭЛЕМЕНТОВ ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
СПОСОБ ИЗГОТОВЛЕНИЯ ГАЗОПЛОТНОЙ КЕРАМИКИ ДЛЯ ЭЛЕМЕНТОВ ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 102.
19.01.2018
№218.016.00d9

Способ утилизации углеродсодержащих отходов

Способ утилизации углеродсодержащих отходов включает отбор углеродсодержащей компоненты из отходов, охлаждение углеродсодержащей компоненты, каталитический синтез метанола из углеродсодержащей компоненты. В качестве отходов используют отработавшие газы из газотурбинных установок...
Тип: Изобретение
Номер охранного документа: 0002629666
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.134a

Способ изготовления анодного материала для топливного элемента с расплавленным карбонатным электролитом

Изобретение относится к области электрохимической энергетики, а именно к высокотемпературным топливным элементам с расплавленным карбонатным электролитом. Способ включает обработку порошка металлического никеля или никельсодержащего сплава алюминийсодержащим прекурсором. В качестве...
Тип: Изобретение
Номер охранного документа: 0002634475
Дата охранного документа: 31.10.2017
13.02.2018
№218.016.296f

Способ изготовления газодиффузионного электрода

Изобретение относится к области электротехники и может быть использовано для изготовления источников тока (топливных элементов), систем жизнеобеспечения, для регенерации газов в замкнутых объемных, электролизеров для водородной энергетики, кислородных насосов, датчиков для метрологии и т.д....
Тип: Изобретение
Номер охранного документа: 0001840851
Дата охранного документа: 20.01.2013
17.02.2018
№218.016.2bda

Способ получения пленочного твердого электролита

Изобретение относится к получению тонкопленочного твердого электролита в виде газоплотной пленки оксида. На подложку из материала электрода наносят суспензию, приготовленную из раствора 1-8 мас.% оксидообразующих солей в этаноле и порошка–прекурсора, который получают путем термообработки...
Тип: Изобретение
Номер охранного документа: 0002643152
Дата охранного документа: 31.01.2018
10.05.2018
№218.016.39a3

Способ регенерации хлоридного электролита при электрохимической переработке отработавшего ядерного топлива

Изобретение может быть использовано при электрохимической переработке отработавшего ядерного топлива (ОЯТ) реакторов на быстрых нейтронах. Способ характеризуется тем, что в расплавленный электролит на основе эвтектической смеси хлоридов лития и калия после выделения из него актинидов,...
Тип: Изобретение
Номер охранного документа: 0002647125
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.4853

Способ синтеза наноразмерного порошкообразного материала на основе скандата лантана

Изобретение может быть использовано при изготовлении электрохимических устройств, таких как твердооксидные топливные элементы, электролизеры. Для синтеза наноразмерного порошкообразного материала на основе скандата лантана смесь решеткообразующих компонентов и допанта нагревают в присутствии...
Тип: Изобретение
Номер охранного документа: 0002651009
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4c00

Способ электролитического получения алюминия

Изобретение относится к способу получения алюминия электролизом криолит-глиноземного расплава. Способ включает загрузку оксидно-солевой смеси, содержащей криолит, оксид алюминия, фториды алюминия, кальция и магния, а также металлический алюминий, в период запуска электролизера и ведение...
Тип: Изобретение
Номер охранного документа: 0002651929
Дата охранного документа: 24.04.2018
10.05.2018
№218.016.4e52

Состав высокотемпературного герметика для электрохимических устройств с твердым электролитом на основе галлата лантана

Изобретение относится к составам высокотемпературных герметиков. Описан состав высокотемпературного герметика для электрохимических устройств с твердым электролитом на основе галлата лантана, содержащий оксид кремния в качестве стеклообразователя и корректирующие добавки, в котором в качестве...
Тип: Изобретение
Номер охранного документа: 0002650977
Дата охранного документа: 18.04.2018
29.05.2018
№218.016.5521

Амперометрический способ измерения концентрации кислорода в газовых смесях

Изобретение относится к области газового анализа и может быть использовано для регистрации и измерения содержания кислорода в газовых смесях, в частности в азоте, с помощью электрохимической ячейки на основе протонпроводящего твердого электролита. Амперометрический способ измерения концентрации...
Тип: Изобретение
Номер охранного документа: 0002654389
Дата охранного документа: 17.05.2018
25.06.2018
№218.016.65c0

Способ получения диффузионного алюминидного покрытия на низкоуглеродистой стали

Изобретение относится к области гальванотехники и может быть использовано для получения изделий, предназначенных для эксплуатации при высоких температурах. Способ включает погружение изделия в алундовый контейнер, содержащий электролит в виде фторидного расплава на основе AlF с добавками NaF...
Тип: Изобретение
Номер охранного документа: 0002658550
Дата охранного документа: 21.06.2018
Показаны записи 61-70 из 71.
19.01.2018
№218.016.00d9

Способ утилизации углеродсодержащих отходов

Способ утилизации углеродсодержащих отходов включает отбор углеродсодержащей компоненты из отходов, охлаждение углеродсодержащей компоненты, каталитический синтез метанола из углеродсодержащей компоненты. В качестве отходов используют отработавшие газы из газотурбинных установок...
Тип: Изобретение
Номер охранного документа: 0002629666
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.134a

Способ изготовления анодного материала для топливного элемента с расплавленным карбонатным электролитом

Изобретение относится к области электрохимической энергетики, а именно к высокотемпературным топливным элементам с расплавленным карбонатным электролитом. Способ включает обработку порошка металлического никеля или никельсодержащего сплава алюминийсодержащим прекурсором. В качестве...
Тип: Изобретение
Номер охранного документа: 0002634475
Дата охранного документа: 31.10.2017
17.02.2018
№218.016.2bda

Способ получения пленочного твердого электролита

Изобретение относится к получению тонкопленочного твердого электролита в виде газоплотной пленки оксида. На подложку из материала электрода наносят суспензию, приготовленную из раствора 1-8 мас.% оксидообразующих солей в этаноле и порошка–прекурсора, который получают путем термообработки...
Тип: Изобретение
Номер охранного документа: 0002643152
Дата охранного документа: 31.01.2018
29.05.2018
№218.016.5521

Амперометрический способ измерения концентрации кислорода в газовых смесях

Изобретение относится к области газового анализа и может быть использовано для регистрации и измерения содержания кислорода в газовых смесях, в частности в азоте, с помощью электрохимической ячейки на основе протонпроводящего твердого электролита. Амперометрический способ измерения концентрации...
Тип: Изобретение
Номер охранного документа: 0002654389
Дата охранного документа: 17.05.2018
16.03.2019
№219.016.e1d6

Твердооксидный протонпроводящий материал

Изобретение относится к высокоплотным твердооксидным протонпроводящим материалам на основе иттрата лантана, которые могут быть использованы в качестве электролитов для среднетемпературных электрохимических устройств, включая твердооксидные топливные элементы, сенсоры и электролизеры. Материал...
Тип: Изобретение
Номер охранного документа: 0002681947
Дата охранного документа: 14.03.2019
21.11.2019
№219.017.e46c

Способ изготовления единичной многослойной ячейки твердооксидного топливного элемента

Изобретение относится к изготовлению единичных многослойных ячеек с тонкослойным электролитом, которые могут быть использованы в качестве твердооксидных топливных элементов (ТОТЭ) или твердооксидных электролизеров (ТОЭ). Способ включает формирование ячейки из слоев функциональных материалов:...
Тип: Изобретение
Номер охранного документа: 0002706417
Дата охранного документа: 19.11.2019
21.12.2019
№219.017.f02a

Твердооксидный электродный материал

Изобретение относится к высокопористым электродным материалам на основе никелата неодима, которые могут быть использованы в качестве воздушных электродов для электрохимических устройств на основе протонпроводящих электролитов, включая твердооксидные топливные элементы, сенсоры и электролизеры....
Тип: Изобретение
Номер охранного документа: 0002709463
Дата охранного документа: 18.12.2019
12.04.2023
№223.018.45ec

Способ моделирования рака яичника в эксперименте у крыс

Изобретение относится к области медицины, а именно к экспериментальной онкологии, фармакологии, и может быть использовано для моделирования рака яичника в эксперименте у крыс. Способ моделирования рака яичника в эксперименте у крыс путем ортотопической трансплантации культуры опухолевых клеток...
Тип: Изобретение
Номер охранного документа: 0002743219
Дата охранного документа: 16.02.2021
22.04.2023
№223.018.50f6

Твердооксидный электролитный материал с протонной проводимостью на основе индата бария-неодима

Изобретение относится к производству материалов для электрохимических устройств, а именно к твердооксидным электролитным материалам с протонной проводимостью на основе индата бария-неодима (BaNdInO), которые могут быть использованы в качестве материала электролита в протонпроводящих...
Тип: Изобретение
Номер охранного документа: 0002794192
Дата охранного документа: 12.04.2023
20.05.2023
№223.018.6707

Электродный материал для электрохимических устройств

Изобретение относится к твердооксидным электродным материалам на основе никелита неодима, которые могут быть использованы в среднетемпературных электрохимических устройствах, таких как твердооксидные топливные элементы, электролизеры, сенсоры и др. Твердооксидный электродный материал содержит...
Тип: Изобретение
Номер охранного документа: 0002757926
Дата охранного документа: 25.10.2021
+ добавить свой РИД