×
10.06.2014
216.012.d151

Результат интеллектуальной деятельности: СПОСОБ ЦИКЛИЧЕСКОГО ГАЗОВОГО АЗОТИРОВАНИЯ ШТАМПОВ ИЗ СТАЛЕЙ ДЛЯ ГОРЯЧЕГО ДЕФОРМИРОВАНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к химико-термической обработке, в частности к циклическому газовому азотированию легированных сталей с применением нанотехнологий, и может быть использовано при изготовлении штампов из сталей для горячего деформирования, работающих при высоких температурах в условиях горячего деформирования, прессования и ударных нагрузок. Проводят нагрев в интервале температур T=550-590C, затем осуществляют попеременную подачу воздуха и аммиака при времени подачи воздуха, большем времени подачи аммиака, в течение цикла с образованием в течение каждого цикла паров воды, обеспечивающих получение на поверхности упомянутых штампов оксидных пленок, имеющих электрический заряд, и обеспечивающих формирование структуры, состоящей из слоя наночастиц нитридов железа и монолитного слоя металлокерамики в виде оксикарбонитридов. Затем осуществляют выдержку и последующее охлаждение вместе с печью. В частных случаях осуществления изобретения при объеме печи 0,5 л время цикла составляет 50 с. Обеспечивается снижение теплопроводности поверхности штампов из сталей для горячего деформирования и повышение их разгаростойкости и теплостойкости. 1 з.п. ф-лы, 1 табл., 2 ил., 6 пр.

Изобретение относится к области металлургии, а именно, к химико-термической обработке, в частности, к циклическому газовому азотированию легированных сталей с применением нанотехнологий, и может быть использовано при изготовлении штампов из сталей для горячего деформирования, работающих при высоких температурах в условиях горячего деформирования, прессования и ударных нагрузок.

Известен способ азотирования изделий из легированных сталей, включающий их нагрев до температуры насыщения Т=500°-600°С в инертной атмосфере с последующей выдержкой в насыщающей газообразной среде. Выдержку изделий осуществляют попеременно в атмосфере воздуха, а затем в атмосфере аммиака (см. патент РФ №2367715, МПК С23С 8/34, опубл. 20.09.2011).

Недостатками известного способа являются формирование на поверхности изделий упрочненного слоя только на базе твердых растворов легирующих элементов и большая длительность процесса, обусловленная замедленной диффузией азота в процессе насыщения через поверхностный окисный слой.

Наиболее близким к заявляемому способу по технической сущности является принятый в качестве прототипа способ обработки стальных изделий в газообразной среде, включающий их нагрев до температуры Т=450°-780°С в атмосфере аммиака, выдержку изделий осуществляют раздельно в атмосферах аммиака и воздуха с образованием кислорода воздуха в течение цикла, при этом на поверхности изделий формируется слой, состоящий из оксидных и нитридных фаз железа и соответствующих легирующих элементов (см. патент РФ №2367716, МПК С23С 8/34, опубл. 20.09.2009).

Недостатком данного способа является присутствие в процессе азотирования ингибиторной оксидной пленки, которая образуется на поверхности изделий из-за присутствия кислорода воздуха, что тормозит образование слоя наночастиц металлокерамик. Отсутствие слоя наночастиц и высокая теплопроводность слоя химических соединений не позволяет применять данный способ к штампам для горячего деформирования, работающих при высоких температурах и ударных нагрузках, так как из-за высокой теплопроводности поверхности происходит образование разгарных трещин и выкрашивание упрочненного слоя в процессе эксплуатации штампов.

Технической задачей, решаемой настоящим изобретением, является создание на поверхности штампов в результате процесса азотирования структуры, состоящей из слоя наночастиц нитридов железа и монолита металлокерамик в виде оксикарбонитридов, обеспечивающих снижение теплопроводности поверхности штампов из сталей для горячего деформирования и повышение их разгаростойкости и теплостойкости. Решение поставленной технической задачи достигается тем, что в способе циклического газового азотирования штампов из сталей для горячего деформирования, включающем нагрев до заданной температуры, выдержку и последующее охлаждение вместе с печью, согласно изобретению нагрев проводят в интервале температур Т=550-590°C, затем осуществляют попеременную подачу воздуха и аммиака при времени подачи воздуха большем времени подачи аммиака в течение цикла с образованием в течение каждого цикла паров воды, обеспечивающих получение на поверхности упомянутых штампов оксидных пленок, имеющих электрический заряд, и обеспечивающих формирование структуры, состоящей из слоя наночастиц нитридов железа и монолитного слоя металлокерамики в виде оксикарбонитридов. В частном случае, при объеме печи 0,5 л время цикла составляет 50 с.

Решение поставленной технической задачи достигается благодаря тому, что в процессе газового азотирования циклически меняют состав насыщающей среды, который позволяет в процессе азотирования при пониженных температурах нагрева Т=550°÷590°C получить слой наночастиц и монолитного слоя металлокерамик на поверхности штампов, что, в свою очередь, снижает теплопроводность поверхности и повышает их разгаростойкость и теплостойкость. Это достигается за счет попеременной подачи в заданных временных соотношениях в цикле насыщающей атмосферы, а именно воздуха и аммиака, что способствует образованию в течение каждого цикла паров воды, участвующих в создании на поверхности штампов оксидных пленок, имеющих электрический заряд. В результате формируется структура азотированного слоя, состоящая из слоя наночастиц нитридов железа и монолитного слоя металлокерамик в виде оксикарбонитридов, а также наночастиц нитридов легирующих элементов и азота в твердом растворе под ними.

Изобретение поясняется чертежами, где на фиг.1 приведена циклограмма, поясняющая порядок подачи газовых компонентов насыщающей атмосферы при азотировании, а на фиг.2 изображена микроструктура азотированного слоя штамповой стали, прошедшая циклическую обработку по данному способу.

Способ циклического газового азотирования штампов из сталей для горячего деформирования заключается в процессе циклического газового азотирования с использованием воздуха и аммиака, включающего нагрев до заданной температуры, выдержку и последующее охлаждение вместе с печью. Согласно изобретению процесс циклического газового азотирования ведут при нагреве в интервале температур Т-550°-590°С при попеременной подаче воздуха и аммиака в заданных временных соотношениях в цикле с образованием в течение каждого цикла паров воды, участвующих в создании на поверхности штампов электрически заряженных каталитических оксидных пленок, способствующих в результате формированию структуры, состоящей из слоя нанопорошка и монолита металлокерамик.

Способ газового азотирования штампов из сталей для горячего деформирования реализуется следующим образом.

В процессе азотирования при попеременной подаче воздуха и аммиака в заданных временных соотношениях в цикле компоненты стали взаимодействуют с кислородом паров воды, образующиеся в течение каждого цикла при взаимодействии аммиака с воздухом, длительность которого составляет 50 с на 0,5 л печи. Образованию паров воды способствует попеременная подача воздуха и аммиака в каждом цикле в заданном соотношении по времени, а именно, τ1 - подача воздуха и τ2 - подача аммиака (см. фиг.1), причем τ12. Подачу воздуха и аммиака регулирует и поддерживает в автоматическом режиме вычислительный комплекс установки. Данное соотношение воздуха и аммиака в цикле, при котором происходит образование паров воды, было определено опытным путем. Таким образом, при взаимодействии компонентов стали с кислородом паров воды образуется окисел, при этом атом кислорода отдает свои электроны металлу, в этой связи, внешняя поверхность адсорбированной оксидной пленки заряжена положительно, а внутренняя - отрицательно. Так образуется электрически заряженный каталитический оксидный слой FexOy.

В процессе азотирования при диссоциации аммиак распадается на отрицательно заряженные ионы азота и водород. Когда заряд внешней пленки положительный, ионы азота ускоренно проникают сквозь оксидную пленку FexOy. В данном случае пленка является каталитической, что способствует образованию протяженного слоя химических соединений, которые по составу могут быть классифицированы как металлокерамика - композит из комплексных соединений переходных металлов (железа и легирующих элементов -Cr, W, Мо, V) с азотом, углеродом, кислородом, т.е. оксикарбонитридов, имеющих структуру фаз внедрения.

Таким образом, формируется структура азотированного слоя, состоящая из слоя нанопорошка нитридов железа и монолита металлокерамик - оксикарбонитридов и наночастиц нитридов легирующих элементов и азота в твердом растворе под ними (см. фиг.2). Общая толщина азотированного слоя составляет 400…450 мкм.

Металлокерамический слой обладает минимальной теплопроводностью, что, как было выше отмечено, является необходимым условием для повышения сопротивления термической усталости и гашения механических воздействий при горячем деформировании. Исключается контакт горячего металла с металлом матрицы штампа, стальная матрица штампа не успевает нагреваться до высоких температур, за счет этого на поверхности штампов не образуются разгарные трещины, таким образом, увеличивается теплостойкость поверхности. Протяженный подслой зоны внутреннего азотирования, в свою очередь, отвечает за эксплуатационную стойкость поверхности штампов.

Предлагаемый способ по сравнению с прототипом опробован на штампе из среднелегированной стали для горячего деформирования 4Х4М2 ВФС, поверхность которого была предварительно очищена на гидропескоструйной установке и обезжирена. Осуществимость и преимущества предлагаемого способа представлены ниже на примерах.

Примеры:

1. Обработка штампа из стали 4Х4М2 ВФС по способу,

изложенному в прототипе. Штамп нагревали в печи до температуры Т=590°С в разделенных средах аммиака и воздуха с образованием кислорода воздуха, выдерживали в данной среде, затем охлаждали в печи. Значения твердости и общей толщины слоя керамик приведены в таблице.

2÷6. Обработка штампа из стали 4Х4М2 ВФС по предлагаемому способу. Штамп нагревали в печи до соответствующей температуры Т=520°С, 550°С, 570°С, 590°С, 620°С при последующей попеременной подаче газовых компонентов в заданных временных соотношениях, а именно воздуха - τ1 и аммиака - τ2 (время цикла 50 с на 0,5 л печи) с образованием паров воды, выдерживали в данной среде, причем время выдержки для каждого состава атмосферы контролировалось установкой с помощью специальной программы, затем охлаждали в печи. Значения твердости, толщины слоя нанопорошка и общей толщины слоя керамик приведены в таблице.

Таблица
№ примера Режим азотирования Толщина слоя нанопорошка керамик, мкм Общая толщина слоя керамик, мкм Твердость HV, кгс/мм2
Т, °С τ, час
1. Прототип 590 3 20…30 1100…1300
2. Предлагаемый способ 520 3 15 25 700…1200
3. Предлагаемый способ 550 3 25…30 50…55 500…1000
4. Предлагаемый способ 570 3 35…40 75…80 500…1000
5. Предлагаемый способ 590 3 50…55 90…95 500…1000
6. Предлагаемый способ 620 3 30…35 60…70 300…800

Из таблицы видно, что вновь заявляемый способ по сравнению с прототипом позволяет в результате азотирования при циклической попеременной подаче в заданных временных соотношениях воздуха и аммиака получать на поверхности штампов из сталей для горячего деформирования слой нанопорошка и монолита металлокерамик. Размер частиц нанопорошка составляет 20…70 нм. Слой подобного состава обладает пониженной теплопроводностью, что способствует повышению разгаростойкости и теплостойкости поверхности штампов. Это является перспективным для увеличения стойкости штампового инструмента для горячего деформирования.

При температуре менее 550°С получается недостаточная общая толщина слоя металлокерамик с более высокой твердостью, что повышает хрупкость поверхности, при температуре более 590°С толщина слоя металлокерамик и твердость заметно уменьшаются. Это связано, прежде всего, с диссоциацией, коагуляцией, нарушением когерентности и постепенным распадом химических соединений азота с железом и легирующими элементами, что не приемлемо для данного способа, поэтому оптимальный интервал температур процесса азотирования был выбран Т=550°-590°С.

Таким образом, азотирование штампов из сталей для горячего деформирования по предлагаемому способу позволяет получить на поверхности штампов в результате процесса азотирования структуру, состоящую из слоя нанопорошка и монолита металлокерамик, обеспечивающую снижение теплопроводности поверхности штампов и повышение их разгаростойкости и теплостойкости.


СПОСОБ ЦИКЛИЧЕСКОГО ГАЗОВОГО АЗОТИРОВАНИЯ ШТАМПОВ ИЗ СТАЛЕЙ ДЛЯ ГОРЯЧЕГО ДЕФОРМИРОВАНИЯ
СПОСОБ ЦИКЛИЧЕСКОГО ГАЗОВОГО АЗОТИРОВАНИЯ ШТАМПОВ ИЗ СТАЛЕЙ ДЛЯ ГОРЯЧЕГО ДЕФОРМИРОВАНИЯ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 38.
20.02.2015
№216.013.27e9

Форсунка для подачи двух видов топлива в дизельный двигатель

Изобретение относится к системам впрыска топлива дизельных двигателей. Предложена форсунка, содержащая корпус (1), полый распылитель (4) с коническим седлом (5) и каналы (2) и (3) подвода основного и запального топлива. В полости распылителя (4) размещена подпружиненная игла (11), в нижней...
Тип: Изобретение
Номер охранного документа: 0002541674
Дата охранного документа: 20.02.2015
10.03.2015
№216.013.30e3

Источник автономного электропитания

Изобретение относится к электротехнике, к возобновляемым источникам электрической энергии. Технический результат состоит в упрощении конструкции и повышении надежности. Устройство содержит эластичный передаточный элемент (1), связанный с преобразователем энергии, подключенным к электрической...
Тип: Изобретение
Номер охранного документа: 0002543983
Дата охранного документа: 10.03.2015
20.04.2015
№216.013.44fe

Способ контроля правильности эксплуатации транспортных средств, сельскохозяйственных и дорожных машин

Изобретение относится к информационной технике на транспорте. Технический результат заключается в повышении надежности работы транспортных средств за счет продления их ресурса. В способе измеряют параметры сигналов с контрольных точек в системе электрооборудования и штатных датчиков...
Тип: Изобретение
Номер охранного документа: 0002549160
Дата охранного документа: 20.04.2015
10.05.2015
№216.013.4ae9

Способ ультразвукового поверхностного упрочнения деталей из конструкционных сталей в жидкой среде

Изобретение относится к области металлургии. Для повышения поверхностной твердости деталей без нарушения качества поверхности деталь подвергают ультразвуковому воздействию в емкости с жидкой средой с помещенным в ней источником акустического излучения с частотой акустических колебаний f 20-30...
Тип: Изобретение
Номер охранного документа: 0002550684
Дата охранного документа: 10.05.2015
20.06.2015
№216.013.55ef

Цепной вариатор с автоматически изменяемым шагом

Изобретение относится к машиностроению, в частности к области бесступенчатых передач, и может быть использовано в механических приводах с плавным регулированием скорости. Цепной вариатор с автоматически изменяемым шагом вместе с механизмом реверса находится в общем корпусе (7) с крышкой (2) и...
Тип: Изобретение
Номер охранного документа: 0002553529
Дата охранного документа: 20.06.2015
27.07.2015
№216.013.6763

Способ упрочнения поверхностного слоя стальных деталей

Изобретение относится к области технологии машиностроения, а именно к упрочнению поверхностного слоя стальных деталей. Осуществляют низкотемпературное азотирование детали, а затем проводят ее поверхностное пластическое деформирование. Поверхностное пластическое деформирование детали...
Тип: Изобретение
Номер охранного документа: 0002558020
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6824

Способ очистки загрязненного поверхностного стока с дорожного полотна автомобильных дорог

Изобретение относится к области охраны окружающей среды. Для очистки загрязненного поверхностного стока с дорожного полотна автомобильных дорог строят и используют фильтрующую систему на поверхности грунтовых откосов. В качестве фильтрующей системы используют верхний слой грунта откоса,...
Тип: Изобретение
Номер охранного документа: 0002558213
Дата охранного документа: 27.07.2015
27.08.2015
№216.013.73ad

Городская машина

Городская машина содержит корпус (1), приводы передних и задних колес (5), видеокамеры наружного наблюдения, радары для определения расстояний до объектов окружающей обстановки. Приемопередающие элементы радаров (6) размещены на каждом из колес совместно с датчиками их углового положения....
Тип: Изобретение
Номер охранного документа: 0002561188
Дата охранного документа: 27.08.2015
10.11.2015
№216.013.8b95

Форсунка многотопливного дизеля

Изобретение относится к топливной аппаратуре. Форсунка содержит корпус и головку с каналами, полый распылитель с запирающим конусом, распыливающими отверстиями, каналами подвода, подпружиненную запирающую иглу, в распылителе выполнена распределительная полость, связанная с каналами подвода...
Тип: Изобретение
Номер охранного документа: 0002567340
Дата охранного документа: 10.11.2015
20.03.2016
№216.014.c9f5

Пластинчатый распылитель жидкости

Изобретение относится к ультразвуковой технике, в частности к распылителям жидкостей, и может быть использовано для распыления воды, суспензий, лекарственных препаратов и агрессивных жидкостей. Распылитель содержит корпус, пьезопреобразователь в качестве источника колебаний и распыляющий узел в...
Тип: Изобретение
Номер охранного документа: 0002577582
Дата охранного документа: 20.03.2016
Показаны записи 11-20 из 41.
20.02.2015
№216.013.27e9

Форсунка для подачи двух видов топлива в дизельный двигатель

Изобретение относится к системам впрыска топлива дизельных двигателей. Предложена форсунка, содержащая корпус (1), полый распылитель (4) с коническим седлом (5) и каналы (2) и (3) подвода основного и запального топлива. В полости распылителя (4) размещена подпружиненная игла (11), в нижней...
Тип: Изобретение
Номер охранного документа: 0002541674
Дата охранного документа: 20.02.2015
10.03.2015
№216.013.30e3

Источник автономного электропитания

Изобретение относится к электротехнике, к возобновляемым источникам электрической энергии. Технический результат состоит в упрощении конструкции и повышении надежности. Устройство содержит эластичный передаточный элемент (1), связанный с преобразователем энергии, подключенным к электрической...
Тип: Изобретение
Номер охранного документа: 0002543983
Дата охранного документа: 10.03.2015
20.04.2015
№216.013.44fe

Способ контроля правильности эксплуатации транспортных средств, сельскохозяйственных и дорожных машин

Изобретение относится к информационной технике на транспорте. Технический результат заключается в повышении надежности работы транспортных средств за счет продления их ресурса. В способе измеряют параметры сигналов с контрольных точек в системе электрооборудования и штатных датчиков...
Тип: Изобретение
Номер охранного документа: 0002549160
Дата охранного документа: 20.04.2015
10.05.2015
№216.013.4ae9

Способ ультразвукового поверхностного упрочнения деталей из конструкционных сталей в жидкой среде

Изобретение относится к области металлургии. Для повышения поверхностной твердости деталей без нарушения качества поверхности деталь подвергают ультразвуковому воздействию в емкости с жидкой средой с помещенным в ней источником акустического излучения с частотой акустических колебаний f 20-30...
Тип: Изобретение
Номер охранного документа: 0002550684
Дата охранного документа: 10.05.2015
20.06.2015
№216.013.55ef

Цепной вариатор с автоматически изменяемым шагом

Изобретение относится к машиностроению, в частности к области бесступенчатых передач, и может быть использовано в механических приводах с плавным регулированием скорости. Цепной вариатор с автоматически изменяемым шагом вместе с механизмом реверса находится в общем корпусе (7) с крышкой (2) и...
Тип: Изобретение
Номер охранного документа: 0002553529
Дата охранного документа: 20.06.2015
27.07.2015
№216.013.6763

Способ упрочнения поверхностного слоя стальных деталей

Изобретение относится к области технологии машиностроения, а именно к упрочнению поверхностного слоя стальных деталей. Осуществляют низкотемпературное азотирование детали, а затем проводят ее поверхностное пластическое деформирование. Поверхностное пластическое деформирование детали...
Тип: Изобретение
Номер охранного документа: 0002558020
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6824

Способ очистки загрязненного поверхностного стока с дорожного полотна автомобильных дорог

Изобретение относится к области охраны окружающей среды. Для очистки загрязненного поверхностного стока с дорожного полотна автомобильных дорог строят и используют фильтрующую систему на поверхности грунтовых откосов. В качестве фильтрующей системы используют верхний слой грунта откоса,...
Тип: Изобретение
Номер охранного документа: 0002558213
Дата охранного документа: 27.07.2015
27.08.2015
№216.013.73ad

Городская машина

Городская машина содержит корпус (1), приводы передних и задних колес (5), видеокамеры наружного наблюдения, радары для определения расстояний до объектов окружающей обстановки. Приемопередающие элементы радаров (6) размещены на каждом из колес совместно с датчиками их углового положения....
Тип: Изобретение
Номер охранного документа: 0002561188
Дата охранного документа: 27.08.2015
10.11.2015
№216.013.8b95

Форсунка многотопливного дизеля

Изобретение относится к топливной аппаратуре. Форсунка содержит корпус и головку с каналами, полый распылитель с запирающим конусом, распыливающими отверстиями, каналами подвода, подпружиненную запирающую иглу, в распылителе выполнена распределительная полость, связанная с каналами подвода...
Тип: Изобретение
Номер охранного документа: 0002567340
Дата охранного документа: 10.11.2015
20.03.2016
№216.014.c9f5

Пластинчатый распылитель жидкости

Изобретение относится к ультразвуковой технике, в частности к распылителям жидкостей, и может быть использовано для распыления воды, суспензий, лекарственных препаратов и агрессивных жидкостей. Распылитель содержит корпус, пьезопреобразователь в качестве источника колебаний и распыляющий узел в...
Тип: Изобретение
Номер охранного документа: 0002577582
Дата охранного документа: 20.03.2016
+ добавить свой РИД