×
10.06.2014
216.012.ce6d

СПОСОБ ИЗМЕРЕНИЯ ДЕФОРМАЦИЙ ОБЪЕКТОВ ИЗ НЕМАГНИТНЫХ МАТЕРИАЛОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к измерительной технике и может быть использовано для измерения деформаций немагнитных материалов. Способ измерения деформаций из немагнитных материалов характеризуется тем, что на поверхности или внутри объекта размещают постоянные дипольные источники магнитного поля, например на основе магнитов из сплава неодим-железо-бор, при этом для вычисления параметров линейной (вдоль прямой линии) деформации используют как минимум два магнита не лежащие в одной точке, для вычисления параметров плоской деформации - минимум три магнита, не лежащие на одной прямой, для вычисления параметров объемной деформации - минимум четыре магнита, не лежащие в одной плоскости. Возле поверхности исследуемого объекта напротив каждого источника устанавливают систему датчиков, позволяющих измерить по 1, 2, 3 компоненты вектора индукции магнитного поля в нескольких точках, сосредоточенных в малой по сравнению с расстоянием до источников поля области пространства, или в качестве системы датчиков используют одно-, двух- или трехосевой датчик с системой 3D-позиционирования, сигналы с датчиков усиливают и преобразуют в цифровой вид, численные данные измерений: координаты точек измерения и значения компонент векторов индукции магнитного поля в них в лабораторной системе координат обрабатывают компьютерной программой, по полученным данным решают обратную задачу для системы слабо взаимодействующих магнитов и определяют их местоположение в лабораторной системе координат и векторы магнитных моментов в лабораторной системе координат до и после деформирования объекта, и, сравнивая эти решения, вычисляют параметры деформации. Описана установка для предлагаемого способа. Технический результат - возможность измерения линейной (вдоль прямой линии), плоской (в плоскости) и объемной (в пространстве) деформации объектов из немагнитных материалов. 2 н. и 3 з.п. ф-лы, 1 ил., 3 табл.
Реферат Свернуть Развернуть

Изобретение относится к измерительной технике и может быть использовано для измерения деформаций немагнитных материалов.

Известно устройство (взято за прототип) для измерения толщины немагнитных материалов, содержащее измерительную головку с магнитом и размещенным на нем датчиком Холла, сигнальные электроды которого через усилитель подключены к индикатору, а токовые - к выходам блока питания, ферромагнитный элемент в виде шарика, располагаемого с противоположной стороны измеряемого материала. Шарик помещен в контейнер с дном, выполненным в виде ферромагнитной пластины и имеющим открытое для наблюдения окно (патент РФ №2222776 МПК 01В 7/06, опубл. 27.0103 г.).

Недостатком прототипа является ограниченный диапазон измеряемых величин, а также невысокая точность измерения.

Задачей изобретения является устранение недостатков прототипа и возможность измерения линейной (вдоль прямой линии), плоской (в плоскости) и объемной (в пространстве) деформации объектов из немагнитных материалов.

Поставленная задача решается с помощью признаков, указанных в п.1 формулы изобретения, таких как способ измерения деформаций объектов из немагнитных материалов, характеризующийся тем, что на поверхности или внутри объекта размещают постоянные дипольные источники поля, например на основе сплава неодим-железо-бор, при этом для вычисления параметров однополярной деформации используют как минимум два магнита, не лежащие в одной точке, для параметров плоской деформации - минимум три магнита, не лежащие на одной прямой, для параметров объемной деформации - минимум четыре магнита, не лежащие в одной плоскости, затем возле поверхности исследуемого объекта напротив каждого источника устанавливают систему датчиков, позволяющих измерить по 1, 2, 3 компоненты вектора индукции магнитного поля в нескольких точках, сосредоточенных в расположенных в малой по сравнению с расстоянием до источников поля области пространства, или в качестве системы датчиков используют датчик с системой 3D-позиционирования, сигналы с датчиков усиливают и преобразуют в цифровой вид, численные данные измерений: координаты точек измерения и значения компонент векторов индукции магнитного поля в них в лабораторной системе координат обрабатывают компьютерной программой, по полученным данным решают обратную задачу для системы слабо взаимодействующих магнитов и определяют их местоположение в лабораторной системе координат и векторы магнитных моментов в лабораторной системе координат до и после деформирования объекта, и, сравнивая эти решения, вычисляют параметры деформации.

Согласно п.2. формулы в качестве источников берут магниты, примерно равные по модулю.

Согласно п.3 формулы для закрепления на поверхности исследуемого объекта предпочтительно используют постоянные магниты цилиндрической или кубической формы, а при внедрении в тело объекта предпочтительно используют постоянные магниты шарообразной формы.

Согласно п.4 формулы датчики магнитного поля должны измерять по 1, 2, 3 компоненты вектора индукции магнитного поля в каждой точке области измерения, обладать большим динамическим диапазоном, высокой чувствительностью, высоким разрешением, малыми по сравнению с размером области измерения размерами чувствительной области и высокой линейностью.

Поставленная задача решается с помощью признаков, указанных в п.5 формулы изобретения, а именно установка для измерения деформаций объектов из немагнитных материалов согласно вышеописанному способу содержит постоянные дипольные источники магнитного поля, выполненные, например, в виде магнитов из сплава неодим-железо-бор цилиндрической, кубической и шарообразной формы, размещенные на поверхности или внедренные внутрь исследуемого объекта, примерно напротив которых установлены датчики, сигналы с которых поступают на вход усилителя, выход которого связан с входом аналого-цифрового преобразователя, выход которого связан с входом вычислительного модуля, например персонального компьютера, с помощью компьютерной программы усиленный сигнал в АЦП преобразуется в цифровой вид, по полученным данным измерения магнитного поля в областях измерения решается обратная задача для системы слабо взаимодействующих диполей, определяются координаты местоположения диполей и значения их векторов магнитных моментов в системе координат, имея информацию о местоположении диполей до и после деформации объекта, вычисляют параметры деформации исследуемого объекта.

Согласно п.6 формулы для измерения линейной деформации устанавливают на объект минимум два магнита, не лежащие в одной точке, для измерения плоской деформации устанавливают на или в объект минимум три магнита, лежащие в одной плоскости и не лежащие на одной прямой, для измерения объемной деформации устанавливают на или в объект минимум четыре магнита, не лежащие в одной плоскости.

Вышеперечисленная совокупность существенных признаков позволяет получить следующий технический результат - возможность измерения линейной (вдоль прямой линии), плоской (в плоскости) и объемной (в пространстве) деформации объектов из немагнитных материалов.

Изобретение иллюстрируется следующей схемой установки (см. чертеж) и примерами реализации способа.

Установка для измерения деформаций объектов из немагнитных материалов содержит постоянные дипольные источники магнитного поля 1, выполненные, например, в виде магнитов из сплава ниодим-железо-бор цилиндрической, кубической и шарообразной формы, размещенные или внедренные в исследуемый объект 2, примерно напротив которых установлены датчики 3 (S1, S2, S3, S4), сигналы с которых поступают на вход усилителя 4, выход которого связан с входом аналого-цифрового преобразователя 5, выход которого связан с входом вычислительного модуля 6 (ОЗД), например, персонального компьютера, с помощью компьютерной программы 7 (авт.свид. РФ №2011616795 «Программа для решений обратных задач для одного и нескольких слабо взаимодействующих точечных магнитных диполей», авторы Машкин С.В., Марценюк М.А.) усиленный сигнал в АЦП преобразуется в цифровой вид, по полученным данным измерения магнитного поля в областях измерения решается обратная задача для системы слабо взаимодействующих диполей и определяются координаты местоположения диполей и значения их векторов магнитных моментов в системе координат, имея информацию о местоположении диполей до и после деформации объекта, вычисляют параметры деформации исследуемого объекта.

Для измерения линейной деформации устанавливают на объект два магнита, не лежащие в одной точке, для измерения плоской деформации устанавливают на или в объект три магнита, лежащие в одной плоскости и не лежащие на одной прямой, а для измерения объемной деформации устанавливают на или в объект четыре магнита, не лежащие в одной плоскости.

Общие условия процесса измерений

В основе способа измерения деформации лежит метод решения обратной задачи для системы слабо взаимодействующих точечных магнитных диполей, которая, в свою очередь, использует метод решения обратной задачи для одного точечного магнитного диполя.

Имеется исследуемый объект obj из немагнитного материала (см. чертеж), на поверхности или внутри которого располагаются магнитные диполи (в качестве которых можно использовать постоянные магниты, например, на основе материала NdFeB) с магнитными моментами mi. Для вычисления параметров линейной деформации необходимо минимум 2 диполя, не лежащих в одной точке. Для вычисления параметров плоской деформации необходимо минимум 3 диполя, лежащих в одной плоскости и не лежащих на одной прямой. Для вычисления параметров объемной деформации необходимы минимум 4 диполя, не лежащих в одной плоскости (на чертеже диполи m1, m2, m3 лежат в одной плоскости, а диполь m4 лежит вне этой плоскости).

Возле поверхности исследуемого объекта примерно в одной плоскости располагаются наборы датчиков магнитного поля Si - по одному примерно напротив каждого диполя. Каждый набор датчиков представляет собой систему датчиков, позволяющих измерять по три (по две, по одной) компоненты вектора индукции магнитного поля, и расположенных в некоторой малой области пространства. Требуемые количество и взаимное расположение датчиков могут варьироваться - главное требование - возможность решения обратной задачи для точечного магнитного диполя (см. далее). Сигналы с датчиков поступают на вход усилителя amp, затем усиленный сигнал поступает на вход аналого-цифрового преобразователя АЦП и преобразуется им в цифровой вид.

Численные данные измерения поля (координаты точек измерения rsa={xsa,ysa,zsa} и значения компонент вектора индукции магнитного поля Bsa=B(rsa)={Bsax,Bsay,Bsaz} - в системе координат OXYZ) поступают в вычислительный модуль ПК (построенный, например, на базе персонального компьютера). По полученным данным измерения поля в областях измерения решается обратная задача для системы слабо взаимодействующих диполей (соответствующая программа обозначена ОЗД-N), и определяются координаты местоположения диполей и значения их векторов магнитных моментов (по сути - ориентация диполей в пространстве) в системе координат OXYZ. Метод решения ОЗД-N и соответствующая программа основаны на методе решения обратной задачи для одного точечного магнитного диполя (ОЗД-N).

Посредством описанной системы положения Хi диполей mi в системе координат OXYZ измеряются до деформации объекта obj. После прикладывания к объекту obj внешнего воздействия F возникает деформация - диполи смещаются. Их координаты после деформации снова измеряются описанным способом.

Имея информацию о местоположении (и ориентации) диполей до и после деформирования объекта, вычисляют параметры деформации G. Их, например, удобно представлять в виде матрицы аффинного преобразования (см. далее), которая описывает деформацию среды в локальной области - месте расположения диполей mi. Программа, решающая задачу определения параметров деформации, обозначена ДФРМ.

Используя большее количество магнитных диполей можно измерить параметры деформации во всех интересующих участках исследуемого объекта. Для этого удобно распределить необходимое количество диполей в узлах почти прямоугольной сетки у(или на) поверхности объекта и для определения параметров деформации использовать тройки (для плоской задачи) или четверки (для объемной задачи) близлежащих диполей.

В качестве источников берут магниты, примерно равные по модулю. Для закрепления на поверхности исследуемого объекта предпочтительно используют постоянные магниты цилиндрической или кубической формы, а при внедрении в тело объекта предпочтительно используют постоянные магниты шарообразной формы. Датчики магнитного поля должны измерять по 1, 2, 3 компоненты вектора индукции магнитного поля в каждой точке области измерения, обладать большим динамическим диапазоном, высокой чувствительностью, высоким разрешением, малыми по сравнению с размером области измерения размерами чувствительной области и высокой линейностью.

Для реализации предложенного способа измерения деформации была использована установка, обладающая следующими основными характеристиками (табл.1 и 2).

Таблица 1
Общие характеристики экспериментальной установки
Максимальная частота дискретизации (при измерении на одном канале), Гц 40000
Количество входных каналов АЦП (однополярных) 8
Разрядность АЦП, бит 12
Количество независимых каналов входного усилителя 4
Коэффициенты предусиления (изменяются переключением перемычек на плате входного усилителя, независимо для каждого канала) - К0 1, 10, 100
Коэффициенты усиления входных усилителей (выбор производится программно, независимо для каждого канала) - К 0.5, 2, 8, 32, 128, 512
Максимальное измеряемое напряжение (К0=1, К=0.5), В ±2.5
Разрешающая способность, В 2.5/4096/ (К0*К)
Компенсируемое напряжение смещения на входе, мВ ±50/К0
Количество ЦАП 2
Разрядность ЦАП, бит 12
Диапазон изменения напряжения на выходах выходных усилителей ЦАП, В ±2.5
Количество обслуживаемых шаговых двигателей 3
Минимальный шаг системы позиционирования, мм 0.095
Максимальное количество шагов 125×125
Размер зоны измерения 11.9 мм × 11.9 мм
Тактовая частота микроконтроллера (1 инструкция - 1 такт), МГц 16
Размер памяти программ, Кбайт 128
Размер ОЗУ, Кбайт 4+32
Скорость обмена с ПК по каналу RS-232, бод/с 115200

Таблица 2
Характеристики экспериментальной установки при использовании датчиков 2SA-10
Линейный диапазон измеряемого поля, мТл ±40
Максимальный диапазон измеряемого поля, мТл ±45
Разрешающая способность (К0=1, К=512, число измерений = 10000), мкТл ±2
Нелинейность (в линейном диапазоне измеряемого поля), % 0.2
Максимальная частота изменения измеряемого поля, кГц 0.1

Для измерения вектора индукции магнитного поля использовался интегральный датчик Холла 2SA-10 фирмы SENTRON. Чтобы измерять 3 компоненты поля индукции использовалось 2 датчика, расположенных в перпендикулярных плоскостях. Измерение компонент вектора индукции поля двумя датчикам в одной точке достигалось соответствующим сдвигом второго датчика так, чтобы его чувствительная область располагалась в той же точке пространства, что и первая область.

Для того чтобы измерять поле в дискретном наборе точек посредством описанной выше системы из двух датчиков использовалась 3D-система позиционирования, построенная на трехшаговых двигателях. Для того чтобы исключить их влияние (они сделаны из магнитных материалов) на результаты измерения, датчики магнитного поля были удалены от них посредством достаточно длинного держателя (около 120-150 мм) из немагнитного материала (табл.3).

Таблица 3
Характеристики датчика 2SA-10
Количество измеряемых компонент поля 2
Размер чувствительной области (диаметр диска-концентратора магнитного поля), мм 0.2
Магнитная чувствительность, В/Тл 50
Линейный диапазон измеряемого поля, мТл ±40
Максимальный диапазон измеряемого поля, мТл ±45
Частота изменения измеряемого поля, кГц 0…15
Нелинейность (типичное значение в линейном диапазоне измеряемого поля), % 0.1
Напряжение смещения, мВ ±10
Максимальная спектральная плотность магнитного шума (в центре диска-концентратора), нТл/ 750
Рекомендуемое напряжение питания, В 5.0
Тип корпуса SOIC-8

Посредством описанной системы были достигнуты следующие основные результаты. При использовании в качестве источника постоянного магнита с модулем магнитного момента 0.05 А/м2, конфигурации области измерения куб 3x3x3 точки измерения с шагом 0.95 мм по каждой из осей погрешность определения местоположения магнита составила от 1 до 3 мм (растет при удалении от магнита) на расстояниях до 40 мм.

При решении ОЗД-N для случая двух слабо взаимодействующих диполей с магнитными моментами 0.012 А/м2 (цилиндры: диаметр 3 мм, высота 1.5 мм, материал NdFeB), конфигурации области измерения куб 3×3×3 точки измерения с шагом 1.9 мм по каждой из осей расстояние между источниками около 30 мм, расстояние от плоскости источников до плоскости измерения 13 мм, погрешность определения местоположения диполей составила около 1 мм.

Преимущества способа:

- способ позволяет определить не только величину пространственного сдвига контролируемых точек объекта, но и пространственный поворот среды в этих точках;

- способ дистанционный: система датчиков располагается не на исследуемом объекте, а возле него;

- способ интроскопический: исследуемый объект может быть скрыт от системы датчиков слоем из немагнитного материала;

- способ достаточно быстродействующий: быстродействие измерений ограничено, в основном, быстродействием используемых датчиков магнитного поля (на сегодняшний день - порядка нескольких тысяч измерений в секунду).


СПОСОБ ИЗМЕРЕНИЯ ДЕФОРМАЦИЙ ОБЪЕКТОВ ИЗ НЕМАГНИТНЫХ МАТЕРИАЛОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 52.
27.04.2013
№216.012.3b94

Способ определения координат манипулятором типа "пространственная мышь" и устройство для его осуществления

Изобретение относится к способу определения координат манипулятором типа «пространственная мышь» и устройствам ввода информации в компьютер. Техническим результатом является упрощение аппаратурного оформления процесса определения координат, компактность устройства, реализующего способ, простота...
Тип: Изобретение
Номер охранного документа: 0002480813
Дата охранного документа: 27.04.2013
20.05.2013
№216.012.421b

Способ определения иммуномодуляторных свойств косметических средств

Настоящее изобретение относится к медицине и описывает способ определения иммуномодуляторных свойств косметических средств, при котором проводят определение изменений титра антител слюны к дизентерийной группе микробов в реакции пассивной гемагглютинации (РПГА) в слюне, при этом до обработки...
Тип: Изобретение
Номер охранного документа: 0002482493
Дата охранного документа: 20.05.2013
20.06.2013
№216.012.4c4a

4-(4-бромфенил)-4-оксо-2-{[3-(этоксикарбонил)-4,5-диметилтиен-2-ил]амино}-2-бутеновая кислота, обладающая противовоспалительной и анальгетической активностью

Изобретение относится к области органической химии, а именно к новым биологически активным веществам класса 4-арил-2,4-диоксобутановых кислот. Предложена 4-(4-бромфенил)-4-оксо-2-{[3-(этоксикарбонил)-4,5-диметилтиен-2-ил]амино}-2-бутеновая кислота, обладающая противовоспалительной и...
Тип: Изобретение
Номер охранного документа: 0002485112
Дата охранного документа: 20.06.2013
20.07.2013
№216.012.57f5

Акселерометр гидростатический

Изобретение относится к приборостроению, а именно к акселерометрам. Акселерометр содержит измерительную ячейку в форме прямоугольного параллелепипеда, пористую сферу, внутри которой размещен герметизированный сильфон с дополнительными грузами. В нижней части ячейки прикреплены дополнительный...
Тип: Изобретение
Номер охранного документа: 0002488125
Дата охранного документа: 20.07.2013
10.10.2013
№216.012.7415

Устройство для измерения пространственных угловых отклонений

Изобретение относится к измерительной технике и может быть использовано для измерения углов взаимной ориентации установочных площадок под приборы научной аппаратуры летательных аппаратов, в машиностроении, станкостроении, а также в горном деле, инженерной геологии, разведочной геофизике в...
Тип: Изобретение
Номер охранного документа: 0002495374
Дата охранного документа: 10.10.2013
10.12.2013
№216.012.88b8

Триалкоксисиланы, способ получения катодной обкладки на основе полиэтилендиокситиофена с силановым подслоем и оксидный конденсатор с такой катодной обкладкой

Изобретение относится к производству изделий электронной техники, конкретно - к производству оксидных конденсаторов с твердым электролитом на основе полимера. Предложены триалкоксисиланы общей формулы I, где R - Si(OAlk) или R=-CH=N-CHCHCHSi(OAlk), R=R=-OCHCHO-, в качестве кремнийсодержащих...
Тип: Изобретение
Номер охранного документа: 0002500682
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.893c

Способ получения иммобилизованного биокатализатора для синтеза водных растворов амидов

Изобретение относится к области биохимии. Предложен способ получения иммобилизованного биокатализатора для синтеза водных растворов амидов, в том числе акриламида и никотинамида из нитрилов карбоновых кислот. Получают микрогранулы хитозана диаметром 1-2 мм в результате продавливания его 2-4%...
Тип: Изобретение
Номер охранного документа: 0002500814
Дата охранного документа: 10.12.2013
10.01.2014
№216.012.9459

(z)-2-[(3-карбамоил-4,5,6,7-тетрагидробензо[b]тиен-2-ил)амино]-4-(4-r-фенил)-4-оксобут-2-еновые кислоты, обладающие анальгетической активностью

Изобретение относится к области органической химии, а именно к биологически активным веществам, представляющим собой (Z)-2-[(3-карбамоил-4,5,6,7-тетрагидробензо[b]тиен-2-ил)амино]-4-(4-R-фенил)-4-оксобут-2-еновые кислоты общей формулы (1-3). Кислоты (1-3) получают взаимодействием...
Тип: Изобретение
Номер охранного документа: 0002503671
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.945d

7-бензоил-8-гидрокси-6-фенил-9-(3-фенил-2-хиноксалинил)-10н-пиридо[1,2-a]хиноксалин-10-он, проявляющий анальгетическую активность

Изобретение относится к области органической химии, а именно к 7-бензоил-8-гидрокси-6-фенил-9-(3-фенил-2-хиноксалинил)-10-пиридо[1,2-]хиноксалин-10-ону формулы (1) Технический результат: получено новое соединение, которое может найти применение в медицине в качестве лекарственного препарата,...
Тип: Изобретение
Номер охранного документа: 0002503675
Дата охранного документа: 10.01.2014
10.02.2014
№216.012.9d38

Способ молекулярно-генетической идентификации популяций древесных видов растений

Изобретение относится к области биохимии, в частности к способу молекулярно-генетической идентификации древесных видов растений, который включает выбор эффективных стабильных молекулярных маркеров, сбор материала, проведение молекулярно-генетического анализа с использованием ПЦР, анализ...
Тип: Изобретение
Номер охранного документа: 0002505956
Дата охранного документа: 10.02.2014
Показаны записи 1-10 из 74.
10.04.2013
№216.012.3327

Диметил 4-ацил-1-гидрокси-3-метил-7-оксо-6-фенил-2,6-диазабицикло[3.2.1]окт-3-ен-5,8-дикарбоксилаты и способ их получения

Изобретение относится к диметил 4-ацил-1-гидрокси-3-метил-7-оксо-6-фенил-2,6-диазабицикло[3.2.1]окт-3-ен-5,8-дикарбоксилатам формулы где где Ar=Ph, СНМе-4, СНОМе-4, СНСl-4, CHBr-4; R=Me, Ph, а также способу их получения путем выдерживания бензольного раствора...
Тип: Изобретение
Номер охранного документа: 0002478638
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.3329

N-арил-2,3-диароил-8,10-диметилпиридо[2',3':3,4]пиразоло[1,5-α]пиримидин-4-карбоксамиды и способ их получения

Изобретение относится к новым N-арил-2,3-диароил-8,10-диметилпиридо[2′,3′:3,4]пиразоло[1,5-а]пиримидин-4-карбоксамидам формулы I, обладающим анальгетической активностью, и к способу их получения. В формуле I Ar=Ph, CHMe-4, CHOMe-4; Ar=Ph, CHMe-4, СН(Ме)-2,5. Способ получения указанных...
Тип: Изобретение
Номер охранного документа: 0002478640
Дата охранного документа: 10.04.2013
20.04.2013
№216.012.36b8

Способ получения дитритийдифторбензола источника фторированных нуклеогенных фенил-катионов

Изобретение относится к радиохимии, а именно к способу получения дитритийдифторбензола источника ядерно-химического генерирования неизвестных фторзамещенных фенил-катионов. В результате реакции гидрирования газообразным тритием 1,4-дибром-2,5-дифторбензола на катализаторе Pd/BaSO при комнатной...
Тип: Изобретение
Номер охранного документа: 0002479561
Дата охранного документа: 20.04.2013
27.04.2013
№216.012.3b94

Способ определения координат манипулятором типа "пространственная мышь" и устройство для его осуществления

Изобретение относится к способу определения координат манипулятором типа «пространственная мышь» и устройствам ввода информации в компьютер. Техническим результатом является упрощение аппаратурного оформления процесса определения координат, компактность устройства, реализующего способ, простота...
Тип: Изобретение
Номер охранного документа: 0002480813
Дата охранного документа: 27.04.2013
20.05.2013
№216.012.421b

Способ определения иммуномодуляторных свойств косметических средств

Настоящее изобретение относится к медицине и описывает способ определения иммуномодуляторных свойств косметических средств, при котором проводят определение изменений титра антител слюны к дизентерийной группе микробов в реакции пассивной гемагглютинации (РПГА) в слюне, при этом до обработки...
Тип: Изобретение
Номер охранного документа: 0002482493
Дата охранного документа: 20.05.2013
20.06.2013
№216.012.4c3e

1-арил-4-бензоил-3-гидрокси-5-метоксикарбонил-2,5-дигидро-1н-пиррол-2-оны, проявляющие анальгетическую активность, и способ их получения

Изобретение относится к новым 1-арил-4-бензоил-3-гидрокси-5-метоксикарбонил-2,5-дигидро-1Н-пиррол-2-онам формулы: где Ar означает Ph (IIIa) или Ar означает СНС-n (IIIб). Соединения проявляют анальгетическую активность. Описан способ их получения. 2 н.п. ф-лы, 1 табл., 3 пр.
Тип: Изобретение
Номер охранного документа: 0002485100
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c43

3-(3,4-диметоксифенил)-4,5,6,7-тетрагидроиндазола гидрохлорид, анальгетическое и противомикробное средство

Изобретение относится к области органической химии, а именно к новому биологически активному соединению класса индазола: 3-(3,4-диметоксифенил)-4,5,6,7-тетрагидроиндазола гидрохлориду (I), имеющему приведенную ниже формулу. Заявляемое соединение проявляет анальгетическую активность в дозе,...
Тип: Изобретение
Номер охранного документа: 0002485105
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c4a

4-(4-бромфенил)-4-оксо-2-{[3-(этоксикарбонил)-4,5-диметилтиен-2-ил]амино}-2-бутеновая кислота, обладающая противовоспалительной и анальгетической активностью

Изобретение относится к области органической химии, а именно к новым биологически активным веществам класса 4-арил-2,4-диоксобутановых кислот. Предложена 4-(4-бромфенил)-4-оксо-2-{[3-(этоксикарбонил)-4,5-диметилтиен-2-ил]амино}-2-бутеновая кислота, обладающая противовоспалительной и...
Тип: Изобретение
Номер охранного документа: 0002485112
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c52

Этил 5-алкил-7,7-диметил-2',9,11-триоксо-5'-фенил-1',2',5,6,7,8,9,11-октагидроспиро{индено[1,2-b]хинолин-10,3'-пиррол}-4'-карбоксилаты и способ их получения

Изобретение относится к области органической химии, а именно к новым индивидуальным соединениям класса спиро{индено[1,2-b]хинолин-10,3'-пирролов}, а именно к этил 5-алкил-7,7-диметил-2',9,11-триоксо-5'-фенил-1',2',5,6,7,8,9,11-октагидроспиро{индено[1,2-b]хинолин-10,3'-пиррол}-4'-карбоксилаты...
Тип: Изобретение
Номер охранного документа: 0002485120
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c55

3-ароил-4-гидрокси-1-(2-гидроксифенил)-5',5'-диметилдиспиро[2,5-дигидро-1н-азол-2,2'-(2',5',6',7'-тетрагидро-3'н-азоло [1,2-a]азол)7',1''-(1'',4''-дигидронафталин)]-3',4'',5-трионы и способ их получения

Изобретение относится к 3-Ароил-4-гидрокси-1-(2-гидроксифенил)-5',5'-диметилдиспиро[2,5-дигидро-1H-азол-2,2'-(2',5',6',7'-тетрагидро-3'H-азоло[1,2-a]азол)-7',1'-(1'',4''-дигидронафталин)]-3',4'',5-трионам общей формулы (IIIа,б) и к способу их получения, которые могут быть использованы в...
Тип: Изобретение
Номер охранного документа: 0002485123
Дата охранного документа: 20.06.2013
+ добавить свой РИД