×
10.05.2014
216.012.c267

Результат интеллектуальной деятельности: АМПУЛЬНОЕ ОБЛУЧАТЕЛЬНОЕ УСТРОЙСТВО

Вид РИД

Изобретение

Аннотация: Изобретение относится к ядерной технике, а более конкретно - к облучательным устройствам и тепловыделяющим сборкам для реакторных испытаний топливных образцов, а также модельных твэлов в исследовательском реакторе, и может быть использовано при разработке и обосновании конструкций твэла для энергетических реакторов. Устройство содержит газовый тракт и газозаполненную капсулу, включающую оболочку, герметично соединенную с торцевыми элементами. В капсуле с радиальным зазором размещен топливный образец в виде столба таблеток в негерметичной тонкостенной оболочке из высокопластичного жаростойкого материала, а также термометрические датчики и компенсационный объем. Один из датчиков размещен в торцевой топливной таблетке, а другой - с противоположной стороны топливного образца за пределами активной зоны. Зазор между тонкостенной оболочкой и топливным образцом составляет не более разности значений их радиальных термических расширений, а зазор между оболочками капсулы и топливного образца выбран в диапазоне возможных значений радиального зазора между оболочкой и топливным сердечником штатного твэла. Данная конструкция ампульного облучательного устройства позволяет исследовать скорость свободного распухания и кинетику выхода газообразных продуктов деления из топлива с возможностью определения его температуры и температурной зависимости исследуемых процессов при характерных для быстрого реактора высоких плотностях энерговыделения. 5 з.п. ф-лы, 1 ил.

Изобретение относится к ядерной технике, а более конкретно к облучательным устройствам и тепловыделяющим сборкам для реакторных испытаний топливных образцов, а также модельных твэлов в исследовательском реакторе, и может быть использовано при разработке и обосновании конструкций твэла для энергетических реакторов.

Известно облучательное устройство для реакторных испытаний твэлов применительно к энергетическому, в том числе быстрому реактору [см., например, H.Hafner, G Schold Fuel Irradiation capsules and capsule fabrication and assembly techniques at the FRS. Kerntechnik, 8/9, 1974]. Капсула облучательного устройства состоит из топливного образца, заключенного в толстостенную молибденовую оболочку, заполненную NaK смесью и помещенную в оболочку из стали. Это устройство предназначено для испытаний базовых вариантов разрабатываемого твэла при натурных диаметральных размерах и уменьшенной высоте. Устройство использовалось для испытаний твэлов быстрого реактора при характерных для него значениях линейной мощности (500-600 Вт/см) и температуры оболочки (500-700°C). Исследовалось влияние вида топлива (UО2, UO2/PUO2, карбидные и нитридные композиции) на деформационное поведение твэла и совместимость исследуемых топлив с материалом оболочки.

Однако такие испытания позволяют лишь определить предпочтительный вариант из числа испытанных модификаций твэла, но не выявляют пути его дальнейшего усовершенствования, так как не предусматривают исследование кинетики внутренних процессов в твэле, прежде всего газовыделения, распухания и структурных изменений топлива. По этой причине использование таких устройств приводит к большому объему испытаний и длительным срокам на отработку твэла.

Для устранения этого недостатка, в дополнение к указанным испытаниям твэла, целесообразно проведение упреждающих реакторных испытаний топлива с исследованием его радиационного поведения для оптимизации исходных характеристик. Такой подход имел место, в частности, при разработке высокотемпературных твэлов для термоэмиссионных реакторов-преобразователей. С этой целью созданы и использованы при реакторных испытаниях топливных материалов ампульные облучательные устройства.

По конструктивным признакам и решаемой задаче наиболее близким из них к предлагаемому является ампульное устройство для одновременного измерения свободного распухания топлива и выхода газообразных продуктов деления (ГПД) [см. В.В.Синявский. Методы и средства экспериментальных исследований и реакторных испытаний термоэмиссионных электрогенерирующих сборок. М.: Энергоатомиздат, 2000, с.109-111]. В этом устройстве цилиндрические топливные образцы в тонкостенных оболочках из монокристаллического молибдена последовательно размещены в капсуле, заполненной инертным газом. Полости образцов и капсулы выполнены сообщающимися для разгрузки оболочки от одностороннего давления, соединены с источником инертного газа и снабжены компенсационным объемом. Теплопередающий зазор между оболочками образца и капсулы выбран достаточно большим (~1 мм) для компенсации распухания без существенного изменения температуры топливного образца. В автономной капсуле сопровождения в составе той же ампулы размещен неочехлованный топливный образец для измерения выхода ГПД, который соединен газовыми коммуникациями с у-спектрометрическим стендом. Обе эти капсулы снабжены приводами осевого перемещения для согласования условий их облучения. Ампульное устройство может включать несколько параллельных ветвей из указанных 2-х типов капсул. В этом случае капсулы каждого типа выполнены с общим компенсационным объемом и приводом осевого перемещения.

Однако это ампульное устройство не позволяет проводить исследования распухания топливных образцов при рабочих условиях быстрого реактора, в котором плотность энерговыделения в 8-10 раз выше, чем в термоэмиссионном реакторе. По этой причине зазор между оболочками образца и капсулы, который имеет определяющее значение при исследовании распухания, не может быть выбран достаточно большим, как в случае прототипа, так как при этом температура топливного образца становится выше рабочих температур даже при наличии высокотеплопроводного гелия в этом зазоре.

Недостатком прототипа является также отсутствие прямого измерения температуры топлива, а термометрические датчики, размещенные на оболочке капсулы в активной зоне реактора, имеют ресурс (1000-1500 ч), что существенно меньше планируемой продолжительности испытаний твэла энергетического реактора. Использование 2-х типов капсул, размещенных по высоте активной зоны реактора, может приводить к заметной погрешности определения температур при длительных испытаниях, когда датчики температуры исчерпают свой ресурс.

Задачей настоящего изобретения является создание ампульного облучательного устройства для исследования скорости свободного распухания и кинетики выхода ГПД из топлива с возможностью определения его температуры и температурной зависимости исследуемых процессов при характерных для быстрого реактора высоких плотностях энерговыделения.

Поставленная задача решается предлагаемой конструкцией ампульного устройства, содержащего газовый тракт и газозаполненную капсулу, включающую оболочку, герметично соединенную с торцевыми элементами, размещенные в ней с радиальным зазором топливный образец в виде столба таблеток в негерметичной тонкостенной оболочке из высокопластичного жаростойкого материала, компенсационный объем и термометрические датчики, в котором согласно изобретению один из термометрических датчиков размещен в торцевой топливной таблетке, а другой - с противоположной стороны топливного образца за пределами активной зоны, зазор между тонкостенной оболочкой и топливным образцом выбран не более разности значений их радиальных термических расширений, а зазор между оболочками капсулы и топливного образца выбран в диапазоне возможных значений радиального зазора между оболочкой и топливным сердечником штатного твэла.

При этом оболочка топливного столба может быть выполнена из монокристаллического W или Мо, а топливный образец - из UN, или (U-Pu)N, или (U-Pu)O2.

В качестве газового заполнителя может быть применен гелий или смесь инертных газов гелия и неона.

Зазор между оболочками капсулы и топливного образца может составлять 100-300 мкм.

Кроме того, газовый тракт может быть выполнен с возможностью периодической прокачки ампульного устройства и смены соотношения составляющих газовой смеси.

Газовый тракт соединен с источником инертного газа, полостью капсулы и у-спектрометрическим стендом, причем состав газового заполнителя капсулы, например He+Ne, и периодичность его смены выбраны из условия поддержания при испытаниях заданных температур на топливных образцах.

Предлагаемое ампульное устройство позволяет реализовать различные уровни температуры топливных образцов при групповых испытаниях ампул с различными зазорами между оболочками капсулы и образца.

Сущность предложенного технического решения иллюстрируется при помощи чертежа, на котором схематично изображен продольный разрез капсулы, где

1 - топливный образец в виде столба таблеток; 2 - зазор между топливным образцом и его оболочкой; 3 - оболочка топливного образца; 4 - зазор между оболочками образца и капсулы; 5 - оболочка капсулы; 6 - концевые элементы капсулы; 7 - газовый тракт; 8 - термометрический датчик, размещенный в торцевой топливной таблетке; 9 - термометрический датчик, размещенный вне активной зоны; 10 - компенсационный объем.

Работа предложенного ампульного облучательного устройства осуществляется следующим образом. При выходе устройства на рабочий режим таблетки топливного образца (1), например, из UN при термическом расширении приходят в термомеханический контакт с тонкостенной монокристаллической оболочкой (3), например, из W ввиду выбранной малой величины зазора (2). Оболочка (3) выбрана из жаростойкого материала для возможности исследования распухания и газовыделения в диапазоне температур 1200-1600°C, которые реализуются в штатном твэле до выборки радиального зазора между сердечником и оболочкой, поскольку именно в этот период, как показывают расчеты, в твэле развивается основное давление ГПД. Монокристаллическая структура оболочки в дополнение к ее малой толщине обеспечивает повышенную (примерно на порядок) скорость ползучести по сравнению с поликристаллическим аналогом и высокую (до 100%) пластичность. Эти свойства обеспечивают возможность определения свободного распухания и исключают ее разрушение при испытаниях. Стальная оболочка капсулы (5) герметично соединена с концевыми элементами (6) и образует с тонкостенной оболочкой радиальный зазор (4), достаточный для компенсации распухания топлива за период существования высоких температур в твэле, так как величина этого зазора выбрана в диапазоне возможных значений величин радиального зазора между сердечником и оболочкой (100-300 мкм) штатного твэла. Зазоры (2) и (4) выполнены сообщающимися для исключения одностороннего газового давления на тонкостенную оболочку (3), что позволяет по деформации оболочки определить свободное распухание топлива без сопутствующего воздействия на оболочку газового давления.

В начальный период испытаний с помощью газового тракта (7) полость капсулы заполняется Не или смесью He+Ne для получения заданных температур топливного образца. Этот газ используется также и как транспортный при продувке капсулы для периодической (~1 раз в сутки) транспортировки ГПД на измерительный стенд. При уменьшении зазора между оболочками за счет распухания топливного образца концентрация Ne в газовой смеси увеличивается с целью поддержания неизменной температуры образцов. Критерием достаточного количества Ne является сохранение неизменной исходной температуры топливного образца по показаниям термометрического датчика (8) в начальный период испытаний, а в дальнейшем при выходе его из строя температуру определяют по показаниям датчика (9) с использованием экспериментально полученной градуировочной кривой, связывающей показания датчиков (8) и (9). Компенсационный объем (10) в составе капсулы способствует увеличению продолжительности работы капсулы без продувки за счет разбавления выделяющихся ГПД высокотеплопроводным газом-заполнителем и, соответственно, более длительного сохранения уровня рабочей температуры топливного образца.

Капсулы в количестве не менее 3-х могут размещаться азимутально в радиаторе используемой в практике испытаний конструкции. Указанное количество капсул и их расположение в радиаторе позволяют в одном испытании получать зависимости радиационного поведения топлива от его исследуемой характеристики (например, пористости, преимущественного размера пор) или уровня рабочей температуры.

Пример осуществления

Разработана конструкция капсулы для испытания топливных образцов UN в составе исследовательского реактора ИВВ-2М применительно к разрабатываемому реактору БН-1200. На последующих этапах испытаний в составе разработанной конструкции возможно испытание штатного (U-Pu)N топлива по мере готовности технологии его производства.

Разработанная капсула включает топливный образец диаметром 8 мм и длиной 45 мм, тонкостенную оболочку толщиной 0,3 мм из монокристаллического W, в которой образец размещен с зазором ~30 мкм (путем подбора сборочных единиц по фактическим размерам или путем их доводки), оболочку капсулы из нержавеющей стали толщиной 1 мм, которая сваркой герметично соединена с торцевыми крышками капсулы и имеет зазор ~150 мкм относительно тонкостенной оболочки. Между торцами топливного образца и крышками размещены тарельчатые пружины и разделенный на две части компенсационный объем, равный объему топливного сердечника. Капсула снабжена двумя вольфрам-рениевыми термопарами, одна из которых размещена в топливном образце на глубине одной таблетки, а другая - с противоположной стороны за пружиной и закреплена в держателе. Диаметр капсулы составляет 11 мм, а ее длина между торцевыми крышками 104 мм.

Начало испытаний разработанного ампульного устройства планируется на конец 2012 года.


АМПУЛЬНОЕ ОБЛУЧАТЕЛЬНОЕ УСТРОЙСТВО
Источник поступления информации: Роспатент

Показаны записи 621-630 из 753.
29.02.2020
№220.018.073e

Способ изготовления взрывчатого наноструктурированного материала

Способ изготовления наноструктурированного взрывчатого материала включает помещение навески порошкообразного взрывчатого вещества (ВВ) из группы индивидуальных азотсодержащих органических ВВ, имеющих упругость паров не ниже 10 Па, в тигель с крышкой, имеющей коническую внутреннюю полость, в...
Тип: Изобретение
Номер охранного документа: 0002715195
Дата охранного документа: 25.02.2020
29.02.2020
№220.018.077f

Контейнер со средствами защиты и контроля

Изобретение относится к области обеспечения контроля и безопасности хранения и транспортирования радиационно-, пожаро-, взрывоопасных изделий. Контейнер со средствами защиты и контроля состоит из наружного силового корпуса, противопулевого защитного экрана, теплозащитного слоя, демпфирующего...
Тип: Изобретение
Номер охранного документа: 0002715379
Дата охранного документа: 27.02.2020
29.02.2020
№220.018.0783

Приемопередатчик бортового ретранслятора

Изобретение относится к области радиотехники и может быть использовано для передачи и приема сигналов в системах спутниковой связи. Технический результат - обеспечение регулировки и автономного контроля работоспособности приемопередающей системы. Приемопередатчик включает приемник, передатчик,...
Тип: Изобретение
Номер охранного документа: 0002715376
Дата охранного документа: 27.02.2020
29.02.2020
№220.018.078b

Разъемный соединитель

Изобретение относится к области электротехники и может быть использовано для быстрого и надежного соединения кабельных сильноточных высоковольтных линий с электрофизическими установками, а более конкретно - с электромагнитами. Техническим результатом является возможность соединителя пропускать...
Тип: Изобретение
Номер охранного документа: 0002715377
Дата охранного документа: 27.02.2020
07.03.2020
№220.018.0a11

Способ оценки ядерно-опасного состояния размножающей системы

Изобретение относится к области физики ядерных реакторов. Способ оценки ядерно-опасного состояния размножающей системы (PC) с активной зоной из делящегося материала путем определения коэффициента умножения нейтронов в РС заключается в том, что организуют канал контроля (КК) потока нейтронов,...
Тип: Изобретение
Номер охранного документа: 0002716018
Дата охранного документа: 05.03.2020
09.03.2020
№220.018.0ad2

Способ формирования фазоманипулированного сигнала системы телеметрии и устройство для его осуществления

Изобретение относится к области радиотехники и может найти применение в системах телеметрии. Технический результат: снижение внеполосных спектральных составляющих в излучаемом фазоманипулированном сигнале (ФМ-сигнале), простота практической реализации. В способе формирования ФМ-сигнала...
Тип: Изобретение
Номер охранного документа: 0002716147
Дата охранного документа: 06.03.2020
14.03.2020
№220.018.0c04

Способ безопасной расстыковки линии боксов, загрязненных радионуклидами

Изобретение относится к технологии обращения с источниками ионизирующего излучения, а конкретно к обеспечению радиационной безопасности. Для безопасной расстыковки линии перчаточных боксов, загрязненных радионуклидами, отстыкуемые боксы приподнимают посредством домкратов и устанавливают на...
Тип: Изобретение
Номер охранного документа: 0002716564
Дата охранного документа: 12.03.2020
21.03.2020
№220.018.0e6e

Газоразрядный генератор высокочастотных импульсов

Изобретение относится к высокочастотной технике и может быть использовано при создании генераторов высокочастотного (ВЧ) излучения. Технический результат заключается в увеличении ресурса работы газоразрядного генератора высокочастотных импульсов в интенсивных импульсно-периодических режимах за...
Тип: Изобретение
Номер охранного документа: 0002717091
Дата охранного документа: 18.03.2020
21.03.2020
№220.018.0eb8

Способ определения дальности до поверхности земли

Изобретение относится к области радиолокационной техники и может быть использовано при построении различных радиолокационных систем, предназначенных для определения дальности от движущегося объекта до поверхности земли, использующих принцип отражения радиоволн. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002717233
Дата охранного документа: 19.03.2020
24.03.2020
№220.018.0f26

Рулевой блок беспилотного управляемого летательного аппарата

Изобретение относится к области управления летательных аппаратов и может быть использовано в управляемых ракетах, планирующих управляемых беспилотных объектах. Технический результат – обеспечение синхронности раскрытия рулей, снижение габаритно-массовых характеристик и повышение надежности....
Тип: Изобретение
Номер охранного документа: 0002717327
Дата охранного документа: 20.03.2020
Показаны записи 311-317 из 317.
20.03.2019
№219.016.e306

Способ реакторных испытаний высокотемпературных вентилируемых тепловыделяющих элементов

Изобретение относится к способу реакторных испытаний высокотемпературных вентилируемых твэлов в составе ампульного облучательного устройства и может быть использовано при разработке конструкции и обосновании ресурса высокотемпературных, например, термоэмиссионных твэлов космической ЯЭУ. В...
Тип: Изобретение
Номер охранного документа: 0002682238
Дата охранного документа: 18.03.2019
18.05.2019
№219.017.59cc

Способ получения монокристаллов сплава вольфрам-тантал

Изобретение относится к металлургии тугоплавких металлов и сплавов и может быть использовано при выращивании однородных монокристаллов сплава вольфрам - тантал методом бестигельной зонной плавки с электронно-лучевым нагревом (ЭБЗП). Исходные компоненты - порошки вольфрама и тантала смешивают и...
Тип: Изобретение
Номер охранного документа: 0002453624
Дата охранного документа: 20.06.2012
13.06.2019
№219.017.8273

Способ получения смешанного фтористого сорбента для очистки гексафторида вольфрама, урана, молибдена и рения от фтористого водорода

Изобретение относится к технологии переработки отходов, образующихся при использовании высших фторидов металлов: WF, UF, МоF, ReF и содержащих фтористый водород, в частности к получению сорбента для очистки упомянутых гексафторидов. Способ получения сорбента осуществляют путем смешения...
Тип: Изобретение
Номер охранного документа: 0002408421
Дата охранного документа: 10.01.2011
09.10.2019
№219.017.d36f

Конструкционный материал на основе молибдена и/или вольфрама или их сплавов с защитным жаростойким покрытием и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к материалам, предназначенным для работы в окислительной среде при высоких температурах, которые могут использоваться в качестве конструкционного материала для ответственных деталей, работающих при высокой температуре в приборостроении,...
Тип: Изобретение
Номер охранного документа: 0002702254
Дата охранного документа: 07.10.2019
12.02.2020
№220.018.018d

Способ эксплуатации двухрежимного термоэмиссионного реактора-преобразователя для ядерной энергетической установки

Изобретение относится к способу эксплуатации термоэмиссионного реактора-преобразователя (ТРП) с эмиттерными оболочками ЭГК из упрочненного монокристаллического сплава на основе молибдена, включающий эксплуатацию ТРП на форсированном режиме при постоянной тепловой мощности с последующим выводом...
Тип: Изобретение
Номер охранного документа: 0002713878
Дата охранного документа: 10.02.2020
21.04.2023
№223.018.504f

Комплекс защиты от несанкционированного съема информации на мобильных устройствах

Изобретение относится к электронной технике, в частности к средствам защиты от неправомерного доступа персональных устройств. Система включает в себя персональное устройство, состоящее из основной части (ядро персонального устройства, не менее чем одно периферийное устройство, источник...
Тип: Изобретение
Номер охранного документа: 0002794169
Дата охранного документа: 12.04.2023
17.06.2023
№223.018.7dbf

Ампульное облучательное устройство для реакторных исследований

Изобретение относится к ампульному облучательному устройству, которое может использоваться для реакторных исследований свойств тепловыделяющих элементов, а именно - микросферического капсулированного ядерного топлива (микротвэлов) для высокотемпературных газоохлаждаемых реакторов. Устройство...
Тип: Изобретение
Номер охранного документа: 0002781552
Дата охранного документа: 13.10.2022
+ добавить свой РИД