×
10.05.2014
216.012.c128

Результат интеллектуальной деятельности: СПОСОБ ИММОБИЛИЗАЦИИ БИОМОЛЕКУЛ НА ПОВЕРХНОСТИ МАГНИТОУПРАВЛЯЕМЫХ НАНОЧАСТИЦ ЖЕЛЕЗА ПОКРЫТЫХ УГЛЕРОДНОЙ ОБОЛОЧКОЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к cпособу иммобилизации белковых молекул на поверхности магнитоуправляемых наночастиц железа, покрытых углеродной оболочкой. Способ включает взаимодействие порошка с растворенным в воде 4-карбоксибензолдиазоний тозилатом для формирования ковалентной связи органических функциональных групп с поверхностью порошка наночастиц железа, покрытых углеродной оболочкой. Дополнительно проводят карбодиимидную активацию с использованием систем: дициклогексилкарбодиимида с N-гидроксисукцинимидом в диметилсульфоксиде (DCC/NHS в ДМСО) или 1-(3-диметиламинопропил)-3-этилкарбодиимид гидрохлориде с N-гидроксисукцинимидом в воде (EDC/NHS в HO) или фосфатном буферном растворе. Осуществляют ковалентную «сшивку» белковых молекул с активированной COOH-группой в водной или буферной среде. Изобретение позволяет осуществить иммобилизацию биомолекул на поверхности магнитоуправляемых наночастиц железа, покрытых углеродной оболочкой. 3 ил., 8 пр.
Основные результаты: Способ иммобилизации белковых молекул на поверхности магнитоуправляемых наночастиц железа, покрытых углеродной оболочкой, включающий взаимодействие порошка с растворенным в воде 4-карбоксибензолдиазоний тозилатом для формирования ковалентной связи органических функциональных групп с поверхностью порошка наночастиц железа, покрытых углеродной оболочкой, дополнительно проводят карбодиимидную активацию с использованием систем: дициклогексилкарбодиимида с N-гидроксисукцинимидом в диметилсульфоксиде (DCC/NHS в ДМСО) или 1-(3-диметиламинопропил)-3-этилкарбодиимид гидрохлорид с N-гидроксисукцинимидом в воде (EDC/NHS в HO) или фосфатном буферном растворе, осуществляют ковалентную «сшивку» белковых молекул с активированной COOH-группой в водной или буферной среде.

Изобретение относится к химическим методам ковалентной иммобилизации белковых молекул на поверхность наноразмерных объектов с целью создания конструкции «Биомолекула-наночастица».

Интерес к магнитным наночастицам для медицины прежде всего связан с возможностью управления, отделения, концентрирования, а также детектирования конструкций на их основе при наложении внешнего магнитного поля [Jun, Y.W., \\ Аcc Chem Res. - 2008. - 41. - 2. - p.179-89].

Ключевым этапом для создания нанобиогибридных конструкций является модификация поверхности металлсодержащих наночастиц с последующей иммобилизацией белковых молекул, которая может быть реализована методами физической и/или химической сорбции на поверхности либо за счет ковалентного связывания с активными группами на поверхности. Альтернативным вариантом можно назвать закрепление через молекулу-адаптер (например система стрептавидин/биотин). Наиболее перспективным подходом на данном этапе развития науки считается формирование ковалентной связи, позволяющей обеспечить наиболее прочное и сайт-специфичное закрепление биомолекулы.

Так, например, в работе Can K. [K. Can, M. Ozmen, M. Ersoz. Colloids and Surfaces В: Biointerfaces - 71 - 2009 - 154-159] для иммобилизации молекулы альбумина на поверхность наночастиц порошка Fe3O4 было предложено проделать ряд последовательных реакций.

Метод иммобилизации заключался в синтезе непосредственно наноразмерного порошка Fe3O4 в щелочной среде, авторами было доказано наличие на поверхности полученных частиц активных OH-групп. Вторая реакция заключалась в обработке полученных частиц (3-аминопропил)-этоксисиланом, авторами с использованием ИК-спектроскопиии доказана ковалентная прививка модификатора. Для активации NH2-группы на поверхности модифицированных частиц авторами был использован глутаровый альдегид, далее в течение 5 часов при 37°C происходила собственно иммобилизация альбумина. Ковалентное связывание иммобилизованной макромолекулы с углеродом авторами доказывалась ИК-спектроскопией, термогравиметрией.

Mikhaylova M. и другие [Mikhaylova M, Do Kyung Kim, Berry С С., Zagorodni A, Toprak M.G. Curtis A.S., Muhammed M. Chem. Mater. - 2004 - 16. - 2344-2354] предложили несколько иной способ иммобилизации биомолекулы (в качестве биомолекулы авторы использовали Бычий сывороточный альбумин BSA). После предварительного синтеза наночастиц Fe3O4 и активации OH-групп на поверхности с использованием (3-аминопропил)-этоксисилана авторы иммобилизировали N-гидроксисукцинимидный эфир BSA (полученный в условиях карбодиимидной активации).

Yong Ya. и др. [Yong Ya., Bai Yo., Li Ya., Lin L., Cui Ya., Xia Ch. // Journal of magnetism and Magnetic Materials. - 320. - 2008. - 2350-2355] предлагают в качестве линкера использовать полимерную «шубу», образованную полимеризацией глицидил метакрилата (GMT) и метакрилоксиэтил триметил аммоний хлорида (МАТАС) на поверхности наночастиц Fe3O4. Иммобилизация липаз в таком способе проходит по свободным концам полимерной оболочки через образования амидных связей.

Авторы Chenjie Xu и др., [Ch. Xu, K. Xu, H. Gu, R. Zheng, H. Liu, X. Zhang, Zh. Guo, B. Xu. // J. AM. CHEM. SOC. 2004. - 126. - 9938-9939] предложили принципиально иной способ иммобилизации биомолекул на поверхность наноразмерных частиц. Метод заключается в добавлении наночастиц Fe2O3 к синтезированной структуре модификатора, функционализация поверхности проходит через образования ковалентной связи между модификатором и OH-группой, которая находится на поверхности наночастиц. Далее авторы проводят комплексообразования с металлом, который в свою очередь будем комплементарен с иммобилизируемой биомолекулой.

В 2008 г. [Grass R.N. and other. WO 2008/055371 A2, 2008] был запатентован метод функционализации поверхности (в данном случае - это поверхность из углерода, которая окружает металлическое ядро в виде оболочки в нанопорошках кобальта) фенильными радикалами, содержащими в качестве заместителей хлор-, амино-, карбокси-, карбоксиметил-, сульфо-, триметиламмонийную и хелатную (остаток диэтилентриаминопентауксусной кислоты) группы, посредством реакции с тетрафторборатами или хлоридами арендиазония, содержащими именно те органические фрагменты, которые в ходе реакции образуют химические связи с поверхностью нанопорошка.

При этом реакция для тетрафторборатных солей арендиазония реализуется в водной среде под действием интенсивной ультразвуковой обработки в присутствии поверхностно-активного вещества (ПАВ - додецилсульфат натрия). В случае использования хлоридов диазония реакция протекает in situ.

Наиболее близким к заявленному методу является способ функционализации наноразмерных порошков металлов или оксидов металлов в углеродной оболочке или без нее, или наноуглерода, или наноалмаза, который включает взаимодействие порошка с растворенной в воде солью арендиазония тозилата для формирования ковалентных связей органических функциональных групп с поверхностью порошка [Филимонов В.Д., Федущак Т.А., Ермаков А.Е., Уймин М.А., Итин В.И., Постников П.С., Трусова М.Е., Кувшинов В.А., Мысик А.А., Восмериков А.В. Способ функционализации наноразмерных порошков // Патент РФ. 2405655. - 2010 г.]. Авторами прототипа было предложено использовать водные растворы арендиазоний тозилатов (XArN2+TsO-, где Ar=C6H4, C6H4(CH2)C6H4; X=I, NO2, NH2, COOH, N(CH2COOH)2, OCH3, CH3, фрагменты ЭДТА, ДТПА и других хелатирующих агентов).

Недостатком указанного способа является то, что способ не позволяет проводить иммобилизацию белковых молекул с целью создания магнитоуправляемой конструкции «Наночастица-Биомолекула».

Задачей данного изобретения является разработка способа иммобилизации белковых молекул на поверхности магнитоуправляемых наночастиц железа, покрытых углеродной оболочкой (Fe@C).

Способ иммобилизации белковых молекул на поверхности магнитоуправляемых наночастиц железа, покрытых углеродной оболочкой (Fe@C), включающий взаимодействие порошка с растворенным в воде 4-карбоксибензолдиазоний тозилатом для формирования ковалентной связи органических функциональных групп с поверхностью порошка, отличающийся тем, что дополнительно проводят карбодиимидную активацию с использованием систем: дициклогексилкарбодиимида с N-гидроксисукцинимидом в диметилсульфоксиде или дистиллированной воде (DCC/NHS в ДМСО/H2O) или 1-(3-диметиламинопропил)-3-этилкарбодиимид гидрохлорид с N-гидроксисукцинимидом в воде (EDC/NHS в H2O) или в фосфатном буфере, осуществляют ковалентную «сшивку» белковой молекулы с активированной COOH-группой в водной или буферной среде.

Технический результат достигается применением карбодиимидной активации с использованием DCC/NHS в ДМСО или EDC/NHS в H2O или фосфатном буфере. Эта система позволяет упростить процесс выделения и отмывки наночастиц от сорбированных молекул органических веществ, так как не происходит образования стабильной суспензии вода-наночастицы. На фиг.1 изображена активация COOH-группы с использованием системы DCC/NHS в ДМСО либо EDC/NHS в воде

Заключительный этап осуществляется в водной среде или фосфатном буфере, где происходит ковалентная «сшивка» белковых молекул с активированной COOH-группой. После процедуры иммобилизации осуществляется тщательная многократная промывка полученной конструкции «Наночастица-Биомолекула» этиловым спиртом, ацетоном. На фиг.2 схематично изображена иммобилизация белковых молекул на поверхности магнитоуправляемых наночастиц железа, покрытых углеродной оболочкой через «сшивку» с активированными COOH-группами.

Способ иммобилизации белковых молекул на поверхности магнитоуправляемых наночастиц железа, покрытых углеродной оболочкой, заключается в следующем: 4-карбоксибензолдиазоний тозилат растворяют в воде, добавляют магнитоуправляемые наночастицы железа, покрытые углеродной оболочкой (диаметр ядра 2-100 нм, толщина оболочки 0,3-3 нм), перемешивают и оставляют на 20-30 минут. Реакция протекает самопроизвольно без ультразвукового вмешательства и добавок поверхностно-активных веществ. Химическую реакцию можно контролировать визуально по выделению пузырьков азота или использовать различные методы анализа концентрации диазониевых солей в растворе. Продукты отделяют магнитным сепарированием, отмывают от избытка соли диазония водой, органическими растворителями и высушивают на воздухе. Наличие соответствующих органических групп в нанопорошках доказывают по изменениям в спектрах ИК (спектрометр NICOLET-5700) относительно исходного нанопорошка. На Фиг.3 изображены ИК-спектры Fe@C (черные точки), Fe@C функционализированные 4-карбоксибензодиазоний тозилатом (линия a), Fe@C с привитой белковой молекулой (пероксидаза хрена HRP) (линия b) и чистой биомолекулой HRP (линия c).

Полученный функционализированный наноразмерный порошок наночастиц железа, покрытый углеродной оболочкой массой 3 мг, промывают буферным раствором (дистиллированной водой) порционно трижды объемами 1,5 мл, к промытому образцу поверхностно-модифицированных наночастиц после промывки прибавляют 1 мл буферного раствора (водного раствора) и 0.33 ммоль EDC, 0.33 ммоль NHS. После суспензию подвергают озвучиванию на ультразвуковом диспергаторе в течение 1 секунды. Время активации 15 минут. Активированный образец трижды промывают фосфатным буферным раствором или дистиллированной водой. К полученному образцу прибавляют 0.002 ммоль белка содержащего раствора. Время иммобилизации белковых молекул 30 минут. Далее проводят промывку образца трижды водой и еще трижды фосфатным буфером.

Определение концентрации биомолекул BSA и HrP проводилось в ходе анализа остаточной концентрации после отмывки нанокомпозита спектрофотометрическим методом (длина волны, E403=95000 моль-1см-1). Содержание белковых молекул BSA и HrP в полученной конструкции «Биомолекла-наночастица», составило 0,24*10-6 моль/г.

Пример 1: 0,02 г (0,063 ммоль) 4-карбоксибензолдиазоний тозилата растворяют в 15 мл дистиллированной воды, добавляют 0,03 г (0,5 ммоль) наноразмерных частиц железа, покрытых углеродной оболочкой, затем реакционную смесь интенсивно перемешивают и оставляют при комнатной температуре. Последующая спонтанная функционализация наноразмерных частиц происходит в течение 30 минут. Из реакционной смеси продукт выделяют при помощи магнита, избыток 4-карбоксибензолдиазоний тозилата сначала отмывают дистиллированной водой, а затем метиловым спиртом, ацетоном и сушат на воздухе. Полученный функционализированный порошок наночастиц железа (3 мг) промывался фосфатным буферным раствором порционно трижды объемами 1,5 мл. Далее промытый образец функционализированных наночастиц суспендировали в 1 мл фосфатного буферного раствора. К полученной суспензии добавляли 0.33 ммоль EDC и 0.33 ммоль NHS. После суспензию подвергали озвучиванию на ультразвуковом диспергаторе в течение 1 секунды. Время активации 15 минут. Активированный образец трижды промывался фосфатным буферным раствором. К полученному образцу прибавляли 0.002 ммоль биомолекулы BSA. Время присоединения белковых молекул 30 минут. Далее проводилась промывка образца трижды водой и еще трижды фосфатным буфером.

Пример 2: 0,02 г (0,063 ммоль) 4-карбоксибензолдиазоний тозилата растворяют в 15 мл дистиллированной воды, добавляют 0,03 г (0,5 ммоль) наноразмерных частиц железа, покрытых углеродной оболочкой, затем реакционную смесь интенсивно перемешивают и оставляют при комнатной температуре. Последующая спонтанная функционализация наноразмерных частиц происходит в течение 30 минут. Из реакционной смеси продукт выделяют при помощи магнита, избыток 4-карбоксибензолдиазоний тозилата сначала отмывают дистиллированной водой, а затем метиловым спиртом, ацетоном и сушат на воздухе. Полученный функционализированный порошок наночастиц железа, покрытый углеродной оболочкой массой 3 мг, промывался ДМСО порционно трижды объемами 1,5 мл. К промытому образцу функционализированных наночастиц после промывки прибавлялось 1,5 мл ДМСО. К полученной суспензии добавляли 0.33 ммоль DCC и 0.33 ммоль NHS. После суспензию подвергали озвучиванию на ультразвуковом диспергаторе в течение 1 секунды. Время активации 15 минут. Активированный образец дважды промывался ДМСО и еще трижды дистиллированной водой. К полученному образцу прибавляли 0.002 ммоль биомолекулы BSA. Время присоединения белковых молекул 20 мин. Далее проводилась промывка образца трижды водой и еще трижды фосфатным буфером.

Пример 3: 0,02 г (0,063 ммоль) 4-карбоксибензолдиазоний тозилата растворяют в 15 мл дистиллированной воды, добавляют 0,03 г (0,5 ммоль) наноразмерных частиц железа, покрытых углеродной оболочкой, затем реакционную смесь интенсивно перемешивают и оставляют при комнатной температуре. Последующая спонтанная функционализация наноразмерных частиц происходит в течение 30 минут. Из реакционной смеси продукт выделяют при помощи магнита, избыток 4-карбоксибензолдиазоний тозилата сначала отмывают дистиллированной водой, а затем метиловым спиртом, ацетоном и сушат на воздухе. Далее промытый образец функционализированных наночастиц (3 мг) суспендировали в 1 мл дистиллированной воды. К полученной суспензии добавляли 0.33 ммоль EDC и 0.33 ммоль NHS. После суспензию подвергали озвучиванию на ультразвуковом диспергаторе в течение 1 секунды. Время активации 15 минут. Активированный образец трижды промывался дистиллированной водой. К полученному образцу прибавляли 0.002 ммоль биомолекулы BSA. Время присоединения белковых молекул 30 минут. Далее проводилась промывка образца трижды водой.

Пример 4: 0,02 г (0,063 ммоль) 4-карбоксибензолдиазоний тозилата растворяют в 15 мл дистиллированной воды, добавляют 0,03 г (0,5 ммоль) наноразмерных частиц железа, покрытых углеродной оболочкой, затем реакционную смесь интенсивно перемешивают и оставляют при комнатной температуре. Последующая спонтанная функционализация наноразмерных частиц происходит в течение 30 минут. Из реакционной смеси продукт выделяют при помощи магнита, избыток 4-карбоксибензолдиазоний тозилата сначала отмывают дистиллированной водой, а затем метиловым спиртом, ацетоном и сушат на воздухе. К промытому образцу функционализированных наночастиц (3 мг) после промывки прибавлялось 1,5 мл дистиллированной воды. К полученной суспензии добавляли 0.33 ммоль DCC и 0.33 ммоль NHS. После суспензию подвергали озвучиванию на ультразвуковом диспергаторе в течение 1 секунды. Время активации 15 минут. Активированный образец промывали трижды дистиллированной водой. К полученному образцу прибавляли 0.002 ммоль белковой молекулы BSA. Время присоединения белковых молекул 20 мин. Далее проводилась промывка образца трижды дистиллированной водой.

Пример 5: 0,02 г (0,063 ммоль) 4-карбоксибензолдиазоний тозилата растворяют в 15 мл дистиллированной воды, добавляют 0,03 г (0,5 ммоль) наноразмерных частиц железа, покрытых углеродной оболочкой, затем реакционную смесь интенсивно перемешивают и оставляют при комнатной температуре. Последующая спонтанная функционализация наноразмерных частиц происходит в течение 30 минут. Из реакционной смеси продукт выделяют при помощи магнита, избыток 4-карбоксибензолдиазоний тозилата сначала отмывают дистиллированной водой, а затем метиловым спиртом, ацетоном и сушат на воздухе. Полученный функционализированный порошок наночастиц железа (3 мг) промывался фосфатным буферным раствором порционно трижды объемами 1,5 мл. Далее промытый образец функционализированных наночастиц суспензировали в 1 мл фосфатного буферного раствора. К полученной суспензии добавляли 0.33 ммоль EDC и 0.33 ммоль NHS. После суспензию подвергали озвучиванию на ультразвуковом диспергаторе в течение 1 секунды. Время активации 15 минут. Активированный образец трижды промывался фосфатным буферным раствором. К полученному образцу прибавляли 0.002 ммоль биомолекулы HrP. Время присоединения белковых молекул 30 минут. Далее проводилась промывка образца трижды водой и еще трижды фосфатным буфером.

Пример 6: 0,02 г (0,063 ммоль) 4-карбоксибензолдиазоний тозилата растворяют в 15 мл дистиллированной воды, добавляют 0,03 г (0,5 ммоль) наноразмерных частиц железа, покрытых углеродной оболочкой, затем реакционную смесь интенсивно перемешивают и оставляют при комнатной температуре. Последующая спонтанная функционализация наноразмерных частиц происходит в течение 30 минут. Из реакционной смеси продукт выделяют при помощи магнита, избыток 4-карбоксибензолдиазоний тозилата сначала отмывают дистиллированной водой, а затем метиловым спиртом, ацетоном и сушат на воздухе. Полученный функционализированный порошок наночастиц железа, покрытых углеродной оболочкой массой 3 мг промывался ДМСО порционно трижды объемами 1,5 мл. К промытому образцу функционализированных наночастиц после промывки прибавлялось 1,5 мл ДМСО. К полученной суспензии добавляли 0.33 ммоль DCC и 0.33 ммоль NHS. После суспензию подвергали озвучиванию на ультразвуковом диспергаторе в течение 1 секунды. Время активации 15 минут. Активированный образец дважды промывался ДМСО и еще трижды дистиллированной водой. К полученному образцу прибавляли 0.002 ммоль биомолекулы HrP. Время присоединения белковых молекул 20 мин. Далее проводилась промывка образца трижды водой и еще трижды фосфатным буфером.

Пример 7: 0,02 г (0,063 ммоль) 4-карбоксибензолдиазоний тозилата растворяют в 15 мл дистиллированной воды, добавляют 0,03 г (0,5 ммоль) наноразмерных частиц железа, покрытых углеродной оболочкой, затем реакционную смесь интенсивно перемешивают и оставляют при комнатной температуре. Последующая спонтанная функционализация наноразмерных частиц происходит в течение 30 минут. Из реакционной смеси продукт выделяют при помощи магнита, избыток 4-карбоксибензолдиазоний тозилата сначала отмывают дистиллированной водой, а затем метиловым спиртом, ацетоном и сушат на воздухе. Далее промытый образец функционализированных наночастиц (3 мг) суспензировали в 1 мл дистиллированной воды. К полученной суспензии добавляли 0.33 ммоль EDC и 0.33 ммоль NHS. После суспензию подвергали озвучиванию на ультразвуковом диспергаторе в течение 1 секунды. Время активации 15 минут. Активированный образец трижды промывался дистиллированной водой. К полученному образцу прибавляли 0.002 ммоль белковых молекул HrP. Время присоединения белковых молекул 30 минут. Далее проводилась промывка образца трижды дистиллированной водой.

Пример 8: 0,02 г (0,063 ммоль) 4-карбоксибензолдиазоний тозилата растворяют в 15 мл дистиллированной воды, добавляют 0,03 г (0,5 ммоль) наноразмерных частиц железа, покрытых углеродной оболочкой, затем реакционною смесь интенсивно перемешивают и оставляют при комнатной температуре. Последующая спонтанная функционализация наноразмерных частиц происходит в течение 30 минут. Из реакционной смеси продукт выделяют при помощи магнита, избыток 4-карбоксибензолдиазоний тозилата сначала отмывают дистиллированной водой, а затем метиловым спиртом, ацетоном и сушат на воздухе. К промытому образцу функционализированных наночастиц (3 мг) после промывки прибавлялось 1,5 мл дистиллированной воды. К полученной суспензии добавляли 0.33 ммоль DCC и 0.33 ммоль NHS. После суспензию подвергали озвучиванию на ультразвуковом диспергаторе в течение 1 секунды. Время активации 15 минут. Активированный образец промывался трижды дистиллированной водой. К полученному образцу прибавляли 0.002 ммоль белковых молекул HrP. Время присоединения белковых молекул 20 мин. Далее проводилась промывка образца трижды дистиллированной водой.

Таким образом, сочетание функционализации поверхности магнитоуправляемых наночастиц железа, покрытых углеродной оболочкой, с использованием 4-карбоксибензолдиазоний тозилата и последующая карбодиимидная активация COOH-группы позволяет иммобилизировать белковые молекулы на поверхности магнитоуправляемых наночастиц железа, покрытых углеродной оболочкой.

Способ иммобилизации белковых молекул на поверхности магнитоуправляемых наночастиц железа, покрытых углеродной оболочкой, включающий взаимодействие порошка с растворенным в воде 4-карбоксибензолдиазоний тозилатом для формирования ковалентной связи органических функциональных групп с поверхностью порошка наночастиц железа, покрытых углеродной оболочкой, дополнительно проводят карбодиимидную активацию с использованием систем: дициклогексилкарбодиимида с N-гидроксисукцинимидом в диметилсульфоксиде (DCC/NHS в ДМСО) или 1-(3-диметиламинопропил)-3-этилкарбодиимид гидрохлорид с N-гидроксисукцинимидом в воде (EDC/NHS в HO) или фосфатном буферном растворе, осуществляют ковалентную «сшивку» белковых молекул с активированной COOH-группой в водной или буферной среде.
СПОСОБ ИММОБИЛИЗАЦИИ БИОМОЛЕКУЛ НА ПОВЕРХНОСТИ МАГНИТОУПРАВЛЯЕМЫХ НАНОЧАСТИЦ ЖЕЛЕЗА ПОКРЫТЫХ УГЛЕРОДНОЙ ОБОЛОЧКОЙ
СПОСОБ ИММОБИЛИЗАЦИИ БИОМОЛЕКУЛ НА ПОВЕРХНОСТИ МАГНИТОУПРАВЛЯЕМЫХ НАНОЧАСТИЦ ЖЕЛЕЗА ПОКРЫТЫХ УГЛЕРОДНОЙ ОБОЛОЧКОЙ
СПОСОБ ИММОБИЛИЗАЦИИ БИОМОЛЕКУЛ НА ПОВЕРХНОСТИ МАГНИТОУПРАВЛЯЕМЫХ НАНОЧАСТИЦ ЖЕЛЕЗА ПОКРЫТЫХ УГЛЕРОДНОЙ ОБОЛОЧКОЙ
Источник поступления информации: Роспатент

Показаны записи 101-110 из 165.
20.04.2015
№216.013.41dd

Депрессорная присадка к дизельному топливу

Изобретение относится к депрессорной присадке к дизельному топливу, которая включает остаточные продукты нефтепереработки, при этом присадка содержит продукт окисления тяжелой пиролизной смолы и алкилароматические углеводороды при следующих соотношениях реагентов (маc.%): окисленная тяжелая...
Тип: Изобретение
Номер охранного документа: 0002548359
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4246

Комплекс для отбора проб воды и способ его работы

Изобретение относится к технике определения расходов и периодического отбора проб воды с различных фиксированных по глубине горизонтов торфяной залежи. Техническим результатом является упрощение конструкции. Комплекс содержит обсадную трубу-скважину с конусным наконечником и водоприемник....
Тип: Изобретение
Номер охранного документа: 0002548464
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.42d6

Способ выделения геохимических аномалий на основе анализа химического состава речных отложений

Изобретение относится к области геохимии и может быть использовано для поиска геохимических аномалий донных отложений рек. Сущность: проводят геоинформационный анализ исследуемой территории. Отбирают 2-3 пробы донных отложений на малоприточных участках с относительно резким уменьшением...
Тип: Изобретение
Номер охранного документа: 0002548608
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.45f2

Способ получения кремния из силицида магния

Изобретение относится к области неорганического синтеза и может быть использовано для получения чистого кремния. Способ включает получение силицида магния смешиванием диоксида кремния с магнием, термическое разложение силицида магния в кислородсодержащей атмосфере при температуре выше 650°C и...
Тип: Изобретение
Номер охранного документа: 0002549410
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.45f4

Способ переработки монацитового концентрата

Изобретение относится к технологии редких и радиоактивных элементов и может быть использовано для получения концентратов редких и редкоземельных элементов из монацита. Способ переработки монацитового концентрата включает обработку исходного сырья смесью серной кислоты и фторида аммония при...
Тип: Изобретение
Номер охранного документа: 0002549412
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.467d

Устройство для бесконтактного определения коэффициента температуропроводности твердых тел

Изобретение относится к бесконтактным методам исследований теплофизических характеристик твердых тел и может быть использовано для исследований теплофизических характеристик изделий, используемых в авиакосмической, машиностроительной и энергетической промышленности. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002549549
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.4682

Способ определения платины в рудах методом хронопотенциометрии

Изобретение может быть использовано в гидрометаллургии, в различных геологических разработках при поиске и разведке. Способ определения платины в руде методом хронопотенциометрии заключается в том, что платину (IV) переводят в раствор и проводят хронопотенциометрическое определение. При этом...
Тип: Изобретение
Номер охранного документа: 0002549554
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.47e0

Способ определения деформации материала в зоне стружкообразования при резании

Способ относится к исследованиям деформации материала в процессе механической обработки резанием. Деформируемую в процессе резания поверхность образца освещают когерентным монохроматическим излучением. Процесс деформации регистрируют цифровой монохроматической камерой. Формируют опорные точки...
Тип: Изобретение
Номер охранного документа: 0002549907
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4824

Способ профилактики и лечения гастрита, язвенной болезни желудка и двенадцатиперстной кишки

Изобретение относится к медицине, а именно к гастроэнтерологии, и касается лечения гастрита, язвенной болезни желудка и двенадцатиперстной кишки. Для этого вводят внутрь водный раствор высокодисперсного кластерного серебра с концентрацией 0,05-0,5 мг/мл по 30-50 мл 1-2 раза в день в течение...
Тип: Изобретение
Номер охранного документа: 0002549975
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4891

Устройство для защиты от коротких замыканий n присоединений, отходящих от общих шин

Изобретение относится к электротехнике, а именно к технике релейной защиты, и может быть использовано для защиты присоединений подстанции от коротких замыканий. Технический результат заключается в повышении чувствительности устройства и расширении области его использования. Для этого...
Тип: Изобретение
Номер охранного документа: 0002550084
Дата охранного документа: 10.05.2015
Показаны записи 101-110 из 266.
27.03.2014
№216.012.ae67

Способ получения высокочистого водорода

Изобретение относится к области химии. Горячий водород, образующийся в результате реакции термохимического окисления алюминия водой, пропускают через слой пленки сверхвысокомолекулярного полиэтилена при давлении 1 атм. Изобретение позволяет повысить чистоту водорода. 2 ил.
Тип: Изобретение
Номер охранного документа: 0002510362
Дата охранного документа: 27.03.2014
10.04.2014
№216.012.af7b

Способ получения мета-хлорбензофенона как полупродукта противосудорожного препарата "галодиф"

Изобретение относится к области органической химии, в частности к способу получения мета-хлорбензофенона, являющегося промежуточным продуктом в синтезе оригинального антиконвульсанта «галодиф». Согласно предлагаемому способу мета-хлорбензофенон получают диазотированием 2-aмино-5-хлорбензофенона...
Тип: Изобретение
Номер охранного документа: 0002510638
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.afc8

Многодекадный индуктивный делитель напряжения

Изобретение относится к области электроизмерительной техники. Многодекадный индуктивный делитель напряжения содержит тороидальный ферромагнитный сердечник, декады, каждая из которых выполнена в виде делительной обмотки и состоит из К+1 секций, где К - коэффициент деления декады, имеющих...
Тип: Изобретение
Номер охранного документа: 0002510715
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b225

Многоимпульсный источник для воздействия на стенки жидкозаполненных скважин

Изобретение относится к нефтегазодобывающей отрасли и может быть использовано для повышения нефтегазоотдачи скважин. Многоимпульсный источник для воздействия на стенки жидкозаполненных скважин содержит герметичные камеры, разделенные между собой клапанами, выполненными в виде цилиндров с окнами...
Тип: Изобретение
Номер охранного документа: 0002511321
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.b90d

Способ определения липидов

Изобретение относится к медицине. Сущность способа определения липидов заключается в том, что к 10 мл хлороформного экстракта липидов добавляют 25 мкл 10% раствора тезита при одновременном перемешивании смеси с помощью шейкера при 20°C и частоте колебаний платформы 120 в минуту в течение 30...
Тип: Изобретение
Номер охранного документа: 0002513101
Дата охранного документа: 20.04.2014
20.05.2014
№216.012.c311

Интерференционный переключатель резонансного свч компрессора

Изобретение относится к области радиотехники и может быть использовано в резонансных СВЧ компрессорах в качестве устройства вывода энергии для формирования мощных СВЧ импульсов наносекундной длительности. Технический результат - увеличение рабочей мощности переключателя при неизменной...
Тип: Изобретение
Номер охранного документа: 0002515696
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c465

Устройство для измерения температуры

Изобретение относится к технике измерения физической температуры объекта с помощью термопары и может быть использовано в области температурных измерений с использованием термопар, в частности, в литейном производстве для определения скоростей охлаждения различных зон слитка при кристаллизации...
Тип: Изобретение
Номер охранного документа: 0002516036
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c53b

Однофазный асинхронный электродвигатель

Изобретение относится к области электротехники, а именно к однофазным асинхронным электродвигателям с пусковой обмоткой, и может быть использовано в электроинструменте и бытовой технике, например в холодильных компрессорах, имеющих существенную нагрузку на валу в момент пуска и нередко...
Тип: Изобретение
Номер охранного документа: 0002516250
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c637

Вакуумно-дуговой генератор с жалюзийной системой фильтрации плазмы от микрочастиц

Изобретение относится к плазменным технологиям нанесения пленочных покрытий и предназначено для очистки плазменного потока дуговых ускорителей от микрокапельной фракции. Вакуумно-дуговой генератор с жалюзийной системой фильтрации плазмы от микрочастиц содержит охлаждаемый катод 1 в виде...
Тип: Изобретение
Номер охранного документа: 0002516502
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c7de

Способ оценки эффективности стимуляции антиоксидантной активности

Изобретение относится к медицине и описывает способ оценки эффективности стимуляции антиоксидантной активности путем определения концентрации восстановленного глутатиона, при этом дополнительно в инкубационную среду добавляют 1,4-дитиоэритритол и аскорбиновую кислоту и при увеличении уровня...
Тип: Изобретение
Номер охранного документа: 0002516925
Дата охранного документа: 20.05.2014
+ добавить свой РИД