×
27.03.2014
216.012.ae7e

Результат интеллектуальной деятельности: ТВЕРДООКСИДНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ МЕМБРАН ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электротехники, а именно к твердооксидным мембранным материалам, и может быть использовано, в частности, для получения кислорода или водорода. Твердооксидный композитный материал для мембран электрохимических устройств содержит титанато-феррит стронция и представляет собой композит на основе содопированного оксида церия и титанато-феррита стронция, состав которого отвечает формуле (1-x)Ce(SmSr)O - xSrTiFeO, где x=0,25; 0,50; 0,75. Материалы обладают свойствами, характерными для индивидуальных фаз. Технический результат - повышение устойчивости материала в восстановительной атмосфере при сохранении или повышении механической прочности и уровня общей электропроводности. 1 табл., 13 ил.
Основные результаты: Твердооксидный композитный материал для мембран электрохимических устройств, содержащий титанато-феррит стронция, отличающийся тем, что материал представляет собой композит на основе содопированного оксида церия и титанато-феррита стронция, состав которого отвечает формуле (1-x)Ce(SmSr)O - xSrTiFeO, где х=0,25; 0,50; 0,75.

Изобретение относится к области электротехники, а именно к твердооксидным мембранным материалам, которые могут быть использованы в высокотемпературных электрохимических устройствах для получения водорода и/или кислорода.

Известен твердооксидный материал на основе оксида церия, содопированный стронцием и самарием Ce0.8(Sm1-xSrx)0.2O2-δ (Zhan Gao, Xingmin Liu, Bill Bergman, Zhe Zhao. Enhanced ionic conductivity of Ce0.8Sm0.2O2-δ by Sr addition // Journal of Power Sources 208 (2012) 225-231) [l]. Данный материал обладает высокой ионной проводимостью, значительной электронной проводимостью, стабильностью в восстановительной атмосфере, в связи с чем может применяться в качестве мембран для получения водорода. В тоже время данный материал характеризуется низким уровнем электронной (дырочной) проводимости в окислительной атмосфере, что делает невозможным применение данной керамики как мембраны для получения кислорода. Стоит отметить, что получение газоплотной керамики из известного материала (относительная плотность 98%) требует высоких температур спекания -1600°С.

Известный твердооксидный материал на основе титанато-феррита стронция SrTi1-xFexO3-x/2 (Svein Steinsvik, Renato Bugge, Jon Gjonnes, Johan Tafto, Truls Norby .The defect structure of SrTi1-xFexO3-y (x=0-0.8) investigated by electrical conductivity measurement and electron energy loss spectroscopy (EELS) J. Phis. Chem. Solids 58, 1997, 969-976) [3] характеризуется высокой ионно-электронной проводимостью как в окислительной, так и в восстановительной атмосфере и может использоваться в качестве мембран для получения кислорода и водорода. Спекание в плотную керамику (относительная плотность ~90%) известного материала протекает при невысоких температурах порядка 1200-1350°С. Исследование свойств данного материала выявили его недостаточную термодинамическую стабильность в восстановительной атмосфере, низкую устойчивость к термоциклированию и низкую механическую прочность.

Задача настоящего изобретения состоит в разработке твердооксидного материала мембран для получения водорода и/или кислорода с высокой термодинамической стабильностью и механической прочностью в условиях работы электрохимических устройств.

Для решения поставленной задачи заявлен твердооксидный композитный материал для мембран электрохимических устройств, содержащий титанато-феррит стронция, отличающийся тем, что материал представляет собой композит на основе содопированного оксида церия и титанато-феррита стронция, состав которого отвечает формуле (1-x)Ce0.8(Sm0.8Sr0.2)0.2O2-δ-xSrTi0.5Fe0.5O3-δ, где х=0,25; 0,50; 0,75.

Заявляемый твердооксидный материал характеризуется массовыми отношениями фазы перовскита к фазе флюорита 0,25:0,75; 0,50:0,50; 0,75:0,25, что соответствует составу (1-x)Ce0.8(Sm0.8Sr0.2)0.2O2-δ - xSrTi0.5F0.5O3-δ, где х=0,25; 0,50; 0,75. При этом увеличение флюоритной фазы (содопированный оксид церия) в композите приводит к повышению термодинамической стабильности материала в восстановительной атмосфере, увеличению микротвердости керамики до 20%, росту электропроводности. Увеличение перовскитовой фазы (титанато-феррита стронция) в композите приводит к увеличению проводимости в окислительной области. Экспериментально установлено, что при массовом соотношений фазы перовскита к фазе флюорита 0,25:0,75; 0,50:0,50; 0,75:0,25 композитный материал обладает преимуществами обеих фаз, а именно: повышенной термодинамической стабильностью в восстановительной атмосфере, механической прочностью, а также высокой электронно-ионной проводимостью как в восстановительной, так и в окислительной атмосферах. Эффект увеличения проводимости композитных материалов по сравнению с аналогом и прототипом позволяет расширить область применения материалов. По сравнению с аналогом [1] - (Ce0.8(Sm1-xSrx)0.2O2-δ) - композитный материал обладает большей проводимостью в окислительной атмосфере, что позволяет использовать его в качестве мембран для получения кислорода. По сравнению с прототипом [2] - (SrTi0.5Fe0.5O3-δ) - заявленный материал обладает большей механической прочностью и стабильностью в восстановительной атмосфере, что позволяет более эффективно использовать его в качестве мембран для получения водорода. При значении x, близком к 0 или 1, данный эффект практически не проявляется, материалы обладают свойствами, характерными для индивидуальных фаз.

Технический результат, достигаемый заявленным изобретением, заключается в повышении устойчивости твердооксидного материала в восстановительной атмосфере при сохранении или повышении механической прочности и уровня общей электропроводности.

Материалы на основе оксида церия, содопированного редкоземельным элементом (самарий, гадолиний) и стронцием, а также титанато-феррита стронция получали методом твердофазного синтеза из соответствующих оксидов и карбонатов. Синтезированные в течение 10 часов при температуре 1050°С порошки были смешаны в необходимых соотношениях и спечены при температурах 1350-1550°С в течение 3 часов с целью получения газоплотной композитной керамики.

Изобретение иллюстрируется следующим. На фиг.1 представлены рентгенограммы порошков заявленного твердооксидного композитного материала (1-x)Ce0.8(Sm0.8Sr0.2)0.2O2-δ - xSrTi0.5Fe0.5O3-δ. Рентгенофазовый анализ показал, что спеченные образцы заявленного композитного материала являются двухфазными, состоящими из перовскитной (пространственная группа Pm3m) и флюоритной фаз (пространственная группа Fm3m). Фиг.2 иллюстрирует данные сканирующей электронной микроскопии для образца SrTi0.50.5O3-δ, при этом светлые зерна соответствуют фазе флюорита, более темные - перовскитной фазе. На фиг.3 представлены данные сканирующей электронной микроскопии для системы 0,25 Ce0.8(Sm0.8Sr0.2)0.2O2-δ - 0,75 SrTi0.5Fe0.5O3-δ. Фиг.4 иллюстрирует данные сканирующей электронной микроскопии для образца 0,5 Ce0.8(Sm0.8Sr0.2)0.2O2-δ - 0,5 SrTi0.5Fe0.5O3-δ. На фиг.5 представлены данные сканирующей электронной микроскопии для системы 0,75 Ce0.8(Sm0.8Sr0.2)0.2O2-δ - 0,25 SrTi0.5Fe0.5O3-δ. На фиг.6 - данные сканирующей электронной микроскопии для образца Ce0.8(Sm0.8Sr0.2)0.2O2-δ. На фиг.7 представлено распределение элемента - кислорода в композитном материале при х=0,50. На фиг.8 - распределение элемента титана в композитном материале при х=0,50. На фиг.9 - распределение элемента железа в композитном материале при х=0,50. На фиг.10 - распределение элемента стронция в композитном материале при х=0,50. На фиг.11 представлено распределение элемента церия в композитном материале при х=0,50. На фиг.12 представлено распределение элемента самария в композитном материале при х=0,50. Фиг.13 иллюстрирует зависимость электропроводности образцов базовых составов и композитной керамики в зависимости от парциального давления кислорода. На данной фигуре введены обозначения, соответствующие определенному составу исследуемых материалов: ■ - Ce0.8(Sm0.8Sr0.2)0.2O2-δ [1], ♦ - 0,75Ce0.8(Sm0.8Sr0.2)0.2O2-δ - 0,25SrTi0.5Fe0.5O3-δ; ▲ - 0,50Ce0.8(Sm0.8Si0.2)0.2O2-δ - 0,50SeТi0.50.5O3-δ; ● -0,25Ce0.8(Sm0.8Sr0.2)0.2O2-δ - 0,75SrTi0.5Fe0.5O3-δ, × - SrTi0.5Fe0.5O3-δ [2]). В таблице приведены результаты измерения микротвердости, электропроводности при 600, 900°С и температуры спекания образцов заявленного материала и образцов аналогов.

Из полученных данных изотермической зависимости электропроводности следует, что образцы заявленного материала обладают высокой электронной (дырочной) проводимостью в окислительной области по сравнению с аналогом [1], что обеспечено присутствием фазы перовскита; высокой ионно-электронной проводимостью и механической прочностью по сравнению с прототипом [2], что связано с присутствием фазы флюорита. Полученные свойства заявленного материала позволяют расширить область его применения.

Таким образом, разработан твердооксидный композитный материал, обладающий повышенной устойчивостью в восстановительной атмосфере, с высоким уровнем общей электропроводности и механической прочностью, пригодный для использования в качестве мембран для получения водорода и кислорода.

Твердооксидный композитный материал для мембран электрохимических устройств, содержащий титанато-феррит стронция, отличающийся тем, что материал представляет собой композит на основе содопированного оксида церия и титанато-феррита стронция, состав которого отвечает формуле (1-x)Ce(SmSr)O - xSrTiFeO, где х=0,25; 0,50; 0,75.
ТВЕРДООКСИДНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ МЕМБРАН ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
ТВЕРДООКСИДНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ МЕМБРАН ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
ТВЕРДООКСИДНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ МЕМБРАН ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
ТВЕРДООКСИДНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ МЕМБРАН ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
ТВЕРДООКСИДНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ МЕМБРАН ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
ТВЕРДООКСИДНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ МЕМБРАН ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
ТВЕРДООКСИДНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ МЕМБРАН ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
ТВЕРДООКСИДНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ МЕМБРАН ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
ТВЕРДООКСИДНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ МЕМБРАН ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
ТВЕРДООКСИДНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ МЕМБРАН ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
ТВЕРДООКСИДНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ МЕМБРАН ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
ТВЕРДООКСИДНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ МЕМБРАН ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
ТВЕРДООКСИДНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ МЕМБРАН ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 103.
19.01.2018
№218.015.ff2d

Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия

Изобретение относится к способу получения алюминиевой лигатуры с 2 мас.% скандия. Способ включает электролиз расплава, содержащего фториды калия, натрия, алюминия, загрузку в расплав оксида скандия и проведение электролиза расплавленной смеси с оксидом скандия в электролизере при температуре...
Тип: Изобретение
Номер охранного документа: 0002629418
Дата охранного документа: 29.08.2017
19.01.2018
№218.016.00d9

Способ утилизации углеродсодержащих отходов

Способ утилизации углеродсодержащих отходов включает отбор углеродсодержащей компоненты из отходов, охлаждение углеродсодержащей компоненты, каталитический синтез метанола из углеродсодержащей компоненты. В качестве отходов используют отработавшие газы из газотурбинных установок...
Тип: Изобретение
Номер охранного документа: 0002629666
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.134a

Способ изготовления анодного материала для топливного элемента с расплавленным карбонатным электролитом

Изобретение относится к области электрохимической энергетики, а именно к высокотемпературным топливным элементам с расплавленным карбонатным электролитом. Способ включает обработку порошка металлического никеля или никельсодержащего сплава алюминийсодержащим прекурсором. В качестве...
Тип: Изобретение
Номер охранного документа: 0002634475
Дата охранного документа: 31.10.2017
13.02.2018
№218.016.296f

Способ изготовления газодиффузионного электрода

Изобретение относится к области электротехники и может быть использовано для изготовления источников тока (топливных элементов), систем жизнеобеспечения, для регенерации газов в замкнутых объемных, электролизеров для водородной энергетики, кислородных насосов, датчиков для метрологии и т.д....
Тип: Изобретение
Номер охранного документа: 0001840851
Дата охранного документа: 20.01.2013
17.02.2018
№218.016.2bda

Способ получения пленочного твердого электролита

Изобретение относится к получению тонкопленочного твердого электролита в виде газоплотной пленки оксида. На подложку из материала электрода наносят суспензию, приготовленную из раствора 1-8 мас.% оксидообразующих солей в этаноле и порошка–прекурсора, который получают путем термообработки...
Тип: Изобретение
Номер охранного документа: 0002643152
Дата охранного документа: 31.01.2018
10.05.2018
№218.016.39a3

Способ регенерации хлоридного электролита при электрохимической переработке отработавшего ядерного топлива

Изобретение может быть использовано при электрохимической переработке отработавшего ядерного топлива (ОЯТ) реакторов на быстрых нейтронах. Способ характеризуется тем, что в расплавленный электролит на основе эвтектической смеси хлоридов лития и калия после выделения из него актинидов,...
Тип: Изобретение
Номер охранного документа: 0002647125
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.4853

Способ синтеза наноразмерного порошкообразного материала на основе скандата лантана

Изобретение может быть использовано при изготовлении электрохимических устройств, таких как твердооксидные топливные элементы, электролизеры. Для синтеза наноразмерного порошкообразного материала на основе скандата лантана смесь решеткообразующих компонентов и допанта нагревают в присутствии...
Тип: Изобретение
Номер охранного документа: 0002651009
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4c00

Способ электролитического получения алюминия

Изобретение относится к способу получения алюминия электролизом криолит-глиноземного расплава. Способ включает загрузку оксидно-солевой смеси, содержащей криолит, оксид алюминия, фториды алюминия, кальция и магния, а также металлический алюминий, в период запуска электролизера и ведение...
Тип: Изобретение
Номер охранного документа: 0002651929
Дата охранного документа: 24.04.2018
10.05.2018
№218.016.4e52

Состав высокотемпературного герметика для электрохимических устройств с твердым электролитом на основе галлата лантана

Изобретение относится к составам высокотемпературных герметиков. Описан состав высокотемпературного герметика для электрохимических устройств с твердым электролитом на основе галлата лантана, содержащий оксид кремния в качестве стеклообразователя и корректирующие добавки, в котором в качестве...
Тип: Изобретение
Номер охранного документа: 0002650977
Дата охранного документа: 18.04.2018
29.05.2018
№218.016.5521

Амперометрический способ измерения концентрации кислорода в газовых смесях

Изобретение относится к области газового анализа и может быть использовано для регистрации и измерения содержания кислорода в газовых смесях, в частности в азоте, с помощью электрохимической ячейки на основе протонпроводящего твердого электролита. Амперометрический способ измерения концентрации...
Тип: Изобретение
Номер охранного документа: 0002654389
Дата охранного документа: 17.05.2018
Показаны записи 61-70 из 72.
19.01.2018
№218.015.ff2d

Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия

Изобретение относится к способу получения алюминиевой лигатуры с 2 мас.% скандия. Способ включает электролиз расплава, содержащего фториды калия, натрия, алюминия, загрузку в расплав оксида скандия и проведение электролиза расплавленной смеси с оксидом скандия в электролизере при температуре...
Тип: Изобретение
Номер охранного документа: 0002629418
Дата охранного документа: 29.08.2017
19.01.2018
№218.016.00d9

Способ утилизации углеродсодержащих отходов

Способ утилизации углеродсодержащих отходов включает отбор углеродсодержащей компоненты из отходов, охлаждение углеродсодержащей компоненты, каталитический синтез метанола из углеродсодержащей компоненты. В качестве отходов используют отработавшие газы из газотурбинных установок...
Тип: Изобретение
Номер охранного документа: 0002629666
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.134a

Способ изготовления анодного материала для топливного элемента с расплавленным карбонатным электролитом

Изобретение относится к области электрохимической энергетики, а именно к высокотемпературным топливным элементам с расплавленным карбонатным электролитом. Способ включает обработку порошка металлического никеля или никельсодержащего сплава алюминийсодержащим прекурсором. В качестве...
Тип: Изобретение
Номер охранного документа: 0002634475
Дата охранного документа: 31.10.2017
17.02.2018
№218.016.2bda

Способ получения пленочного твердого электролита

Изобретение относится к получению тонкопленочного твердого электролита в виде газоплотной пленки оксида. На подложку из материала электрода наносят суспензию, приготовленную из раствора 1-8 мас.% оксидообразующих солей в этаноле и порошка–прекурсора, который получают путем термообработки...
Тип: Изобретение
Номер охранного документа: 0002643152
Дата охранного документа: 31.01.2018
29.05.2018
№218.016.5521

Амперометрический способ измерения концентрации кислорода в газовых смесях

Изобретение относится к области газового анализа и может быть использовано для регистрации и измерения содержания кислорода в газовых смесях, в частности в азоте, с помощью электрохимической ячейки на основе протонпроводящего твердого электролита. Амперометрический способ измерения концентрации...
Тип: Изобретение
Номер охранного документа: 0002654389
Дата охранного документа: 17.05.2018
16.03.2019
№219.016.e1d6

Твердооксидный протонпроводящий материал

Изобретение относится к высокоплотным твердооксидным протонпроводящим материалам на основе иттрата лантана, которые могут быть использованы в качестве электролитов для среднетемпературных электрохимических устройств, включая твердооксидные топливные элементы, сенсоры и электролизеры. Материал...
Тип: Изобретение
Номер охранного документа: 0002681947
Дата охранного документа: 14.03.2019
21.11.2019
№219.017.e46c

Способ изготовления единичной многослойной ячейки твердооксидного топливного элемента

Изобретение относится к изготовлению единичных многослойных ячеек с тонкослойным электролитом, которые могут быть использованы в качестве твердооксидных топливных элементов (ТОТЭ) или твердооксидных электролизеров (ТОЭ). Способ включает формирование ячейки из слоев функциональных материалов:...
Тип: Изобретение
Номер охранного документа: 0002706417
Дата охранного документа: 19.11.2019
21.12.2019
№219.017.f02a

Твердооксидный электродный материал

Изобретение относится к высокопористым электродным материалам на основе никелата неодима, которые могут быть использованы в качестве воздушных электродов для электрохимических устройств на основе протонпроводящих электролитов, включая твердооксидные топливные элементы, сенсоры и электролизеры....
Тип: Изобретение
Номер охранного документа: 0002709463
Дата охранного документа: 18.12.2019
12.04.2023
№223.018.45ec

Способ моделирования рака яичника в эксперименте у крыс

Изобретение относится к области медицины, а именно к экспериментальной онкологии, фармакологии, и может быть использовано для моделирования рака яичника в эксперименте у крыс. Способ моделирования рака яичника в эксперименте у крыс путем ортотопической трансплантации культуры опухолевых клеток...
Тип: Изобретение
Номер охранного документа: 0002743219
Дата охранного документа: 16.02.2021
22.04.2023
№223.018.50f6

Твердооксидный электролитный материал с протонной проводимостью на основе индата бария-неодима

Изобретение относится к производству материалов для электрохимических устройств, а именно к твердооксидным электролитным материалам с протонной проводимостью на основе индата бария-неодима (BaNdInO), которые могут быть использованы в качестве материала электролита в протонпроводящих...
Тип: Изобретение
Номер охранного документа: 0002794192
Дата охранного документа: 12.04.2023
+ добавить свой РИД