×
20.03.2014
216.012.ab87

СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНЫХ ПОРОШКОВ МЕТАЛЛОВ ИЛИ ИХ СПЛАВОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области порошковой металлургии. Порошкообразный хлорид металла или порошкообразную смесь по крайней мере двух хлоридов металлов обрабатывают в атмосфере водяного пара, который подают в реакционное пространство со скоростью 50-100 мл/мин, при температуре 400-800°C в присутствии активированного угля или при подаче в реакционное пространство оксида углерода(II), получаемого при разложении муравьиной кислоты HCOOH. Изобретение обеспечивает надежное получение нанодисперсных порошков металлов или их сплавов из ряда 3-d металлов: Ni, Co, Cu, Fe, Zn. 1 ил., 3 пр.
Основные результаты: Способ получения нанодисперсных металлических порошков, включающий обработку газом-восстановителем при высокой температуре, отличающийся тем, что порошкообразный хлорид соответствующего металла или порошкообразную смесь по крайней мере двух хлоридов металлов обрабатывают в атмосфере водяного пара, который подают в реакционное пространство со скоростью 50-100 мл/мин, при температуре 400-800°C в присутствии активированного угля, взятого в мольном соотношении Me:C=1:3÷1:5, или при подаче в реакционное пространство оксида углерода(II), получаемого при разложении муравьиной кислоты HCOOH, взятой в мольном соотношении Me:HCOOH=1:5÷1:7.
Реферат Свернуть Развернуть

Изобретение относится к области порошковой металлургии, конкретно к области получения нанодисперсных порошков металлов или их сплавов из ряда 3-d металлов: Ni, Co, Cu, Fe, Zn, которые могут быть использованы в порошковой металлургии для улучшения процесса спекания; в химической промышленности как наполнители полимеров и катализаторы реакций; как добавки к антикоррозионным покрытиям; и т.д.

Известен способ получения порошков редких металлов, включающий металлотермическое восстановление расплавленной шихты из двойной комплексной соли галогенида редкого металла и хлорида калия при нагревании и перемешивании, гидрометаллургическую обработку восстановленной реакционной массы, сушку порошка, при этом восстановление проводят магнием, который вводят единовременно при 750-800°C в течение 15±5 минут с последующим охлаждением расплава до комнатной температуры со скоростью 50-100°/мин. В результате получают нанопорошки редких металлов (патент РФ №2416493, МПК B22F 9/18, 2011 год).

Недостатки известного способа заключаются в следующем: дороговизна используемого в качестве восстановителя магния, невозможность снизить температуру синтеза, что обусловлено строго фиксированной температурой плавления соли, необходимость введения дополнительных стадий, связанных с отмывкой реакционной массы от хлоридов калия и магния и сушкой полученного продукта.

Известен способ получения порошка металла группы железа, заключающийся в том, что к порошку кислородсодержащего соединения металла группы железа добавляют 2-30 мас.% нитрата соответствующего металла, осуществляют размол в жидкости, практически не растворяющей основное соединение, но растворяющей нитрат, и восстанавливают полученную смесь водородом (патент РФ №2356694, B22F 9/04, 2009 год) прототип).

Недостатком известного способа является необходимость стадий размола в жидкости и отделения продукта, что требует дополнительного оборудования и времени. Другим недостатком является использование в качестве восстановителя водорода в связи с его взрывоопасностью. Кроме того, размер частиц порошка достаточно крупный и достигает 2 мкм.

Таким образом, перед авторами стояла задача разработать простой, надежный способ получения нанодисперсных порошков металлов, а также их сплавов.

Поставленная задача решена в предлагаемом способе получения нанопорошков металлов или их сплавов, включающем обработку газом-восстановителем при высокой температуре, в котором хлорид соответствующего металла или смесь хлоридов обрабатывают в атмосфере водяного пара, который подают в реакционное пространство со скоростью 50-100 мл/мин, при температуре 400-800°C в присутствии активированного угля, взятого в мольном соотношении Men+:C=1:3÷1:5, или при подаче в реакционное пространство оксида углерода(II), получаемого при разложении муравьиной кислоты НСООН, взятой в мольном соотношении Men+:HCOOH=1:5÷1:7.

В настоящее время не известен способ получения нанопорошков металлов или их сплавов путем обработки хлорида соответствующего металла в атмосфере водяного пара, подаваемого в реакционное пространство с определенной скоростью при повышенной температуре в присутствии активированного угля, взятого в определенном отношении к исходному количеству ионов металла, или при подаче в реакционное пространство оксида углерода(II), получаемого при разложении муравьиной кислоты HCOOH, необходимое количество которой также определяется количеством ионов металла.

Исследования, проведенные авторами, позволили установить, что в процессе получения металла в порошкообразном состоянии при обработке исходного хлорида металла или смеси хлоридов в атмосфере водяного пара в предлагаемом температурном интервале в присутствии активированного угля, предварительно помещенного в реакционное пространство, инициируется восстановление промежуточных оксидов, полученных в химически активном нанокристаллическом состоянии. При этом существенными являются параметры проведения процесса. Так, при подаче водяного пара в реакционное пространство со скоростью менее 50 мл/мин и снижение температуры ниже 400°C значительно увеличивается время прохождения процесса. При подаче водяного пара в реакционное пространство со скоростью более 100 мл/мин возможен выброс реакционной массы из реакционного пространства. Повышение температуры выше 800°С приводит к увеличению частиц конечного продукта до микронных размеров. В случае уменьшения соотношения между количеством активированного угля и исходным хлоридом (Men+:C менее, чем 1:3) конечный продукт будет загрязнен примесями. Увеличение соотношения между количеством активированного угля и исходным хлоридом (Ме+:C более, чем 1:5) приводит к неоправданному расходу реагентов. При альтернативном осуществлении процесса существенным является количество используемой муравьиной кислоты. Так, при уменьшении соотношения Me+:HCOOH менее 1:5 конечный продукт будет загрязнен примесями. Увеличение соотношения Ме+:HCOOH более 1:7 приводит к неоправданному расходу реагентов.

Предлагаемый способ может быть осуществлен следующим образом. Сухой порошкообразный, хлорид соответствующего металла или сухую порошкообразную смесь по крайней мере двух хлоридов металлов загружают в реакционное пространство кварцевой трубы, которую помещают в трубчатую печь. В кварцевую трубу предварительно загружают активированный уголь, взятый в мольном соотношении Me+:C=1:3÷1:5. Кварцевая труба снабжена подводящими и отводящими трубками. Включают подачу водяного пара со скоростью 50-100 мл/мин. Нагрев трубчатой печи производят со скоростью 10-15°/мин до температуры 400-800°C и затем выдерживают при этой температуре до полного прохождения реакции, глубину прохождения которой контролируют путем измерения электропроводности образующегося раствора соляной кислоты. Применение замкнутого цикла позволяет избежать попадания следовых количеств хлорводорода в атмосферу, поскольку газообразный продукт реакции улавливают в резервуар с холодной дистиллированной водой. После прекращения изменения электропроводности подачу водяного пара прекращают и снижают температуру печи до комнатной. После чего вынимают кварцевую трубу и извлекают готовый продукт - нанокристаллический порошок индивидуального металла или сплав металлов.

В случае альтернативного осуществления процесса одна из подводящих трубок кварцевой трубы соединена с модифицированным аппаратом Кипа, в который подают муравьиную кислоту, взятую в мольном соотношении Me+:HCOOH=1:5÷1:7, и концентрированную серную кислоту. Газообразный продукт реакции (оксид углерода) поступает в реакционную зону.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. 5 г сухого порошкообразного хлорида железа FeCl3·6H2O загружают в реакционное пространство кварцевой трубы, которую помещают в трубчатую печь. В кварцевую трубу предварительно загружают активированный уголь, взятый в мольном соотношении Fe3+:C=1:3. Масса вводимого углерода составляет 0,65 г. Кварцевая труба снабжена подводящими и отводящими трубками. Включают подачу водяного пара со скоростью 50 мл/мин. Нагрев трубчатой печи производят со скоростью 15°/мин до температуры 800°C и затем выдерживают при этой температуре до полного прохождения реакции, глубину прохождения которой контролируют путем измерения каждые 10 мин электропроводности образующегося раствора галоидоводородной кислоты. После прекращения изменения электропроводности подачу водяного пара прекращают и снижают температуру печи до комнатной. После чего вынимают кварцевую трубу и извлекают готовый продукт - нанокристаллический порошок железа с размером частиц 150-200 нм. Аттестацию полученного продукта проводят методами рентгенофазового анализа и растровой электронной микроскопии.

Пример 2. 17,05 г сухого порошкообразного хлорида меди CuCl2·2H2O загружают в реакционное пространство кварцевой трубы, которую помещают в трубчатую печь. Кварцевая труба снабжена подводящими и отводящими трубками. В аппарат Кипа подают муравьиную кислоту, взятую в мольном соотношении Cu+2:HCOOH=1:7, что составляет 27 мл, и через капельную воронку добавляют концентрированную серную кислоту. Газообразный продукт реакции через подводящую трубку поступает в реакционную зону. Одновременно включают подачу водяного пара со скоростью 50 мл/мин. Нагрев трубчатой печи производят со скоростью 10°/мин до температуры 400°C и затем выдерживают при этой температуре до полного прохождения реакции, глубину прохождения которой контролируют путем измерения каждые 10 мин электропроводности образующегося раствора соляной кислоты. После прекращения изменения электропроводности подачу водяного пара прекращают и снижают температуру печи до комнатной. После чего вынимают кварцевую трубу и извлекают готовый продукт - нанокристаллический порошок меди с размером частиц менее 200 нм. Аттестацию полученного продукта проводят методами рентгенофазового анализа и растровой электронной микроскопии.

Пример 3. Смесь 6,5 г сухого порошкообразного хлорида железа FeCl3·6H2O и 3,5 г хлорида кобальта CoCl2·6H2O загружают в реакционное пространство кварцевой трубы, которую помещают в трубчатую печь. В кварцевую трубу предварительно загружают активированный уголь, взятый в мольном соотношении (0,65Co2+0,35Fe3+):C=1:5, что составляет 2,35 г. Кварцевая труба снабжена подводящими и отводящими трубками. Включают подачу водяного пара со скоростью 100 мл/мин. Нагрев трубчатой печи производят со скоростью 15°/мин до температуры 800°C и затем выдерживают при этой температуре до полного прохождения реакции, глубину прохождения которой контролируют путем измерения каждые 10 мин электропроводности образующегося раствора галоидоводородной кислоты. После прекращения изменения электропроводности подачу водяного пара прекращают и снижают температуру печи до комнатной. После чего вынимают кварцевую трубу и извлекают готовый продукт - нанокристаллический порошок сплава железа и кобальта состава Co0,65Fe0,35 с размером частиц 150-200 нм (см. фиг 1). Аттестацию полученного продукта проводят методами рентгенофазового анализа и растровой электронной микроскопии.

Таким образом, авторами предлагается простой, надежный способ получения нанодисперсных порошков металлов, а также их сплавов.

Работа выполнена при поддержке Правительства Свердловской области и РФФИ (грант №10-03-96062-р-урал-а)

Способ получения нанодисперсных металлических порошков, включающий обработку газом-восстановителем при высокой температуре, отличающийся тем, что порошкообразный хлорид соответствующего металла или порошкообразную смесь по крайней мере двух хлоридов металлов обрабатывают в атмосфере водяного пара, который подают в реакционное пространство со скоростью 50-100 мл/мин, при температуре 400-800°C в присутствии активированного угля, взятого в мольном соотношении Me:C=1:3÷1:5, или при подаче в реакционное пространство оксида углерода(II), получаемого при разложении муравьиной кислоты HCOOH, взятой в мольном соотношении Me:HCOOH=1:5÷1:7.
СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНЫХ ПОРОШКОВ МЕТАЛЛОВ ИЛИ ИХ СПЛАВОВ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 100.
18.05.2018
№218.016.5071

Способ получения композита триоксид ванадия/углерод

Изобретение может быть использовано для получения электродного материала литиевых источников тока. Способ получения композита триоксид ванадия/углерод VO/C включает растворение в воде карбоновой кислоты, добавление оксидного соединения ванадия, сушку и последующий отжиг. В качестве карбоновой...
Тип: Изобретение
Номер охранного документа: 0002653020
Дата охранного документа: 04.05.2018
29.05.2018
№218.016.53d3

Способ получения наноструктурированных порошков ферритов и установка для его осуществления

Изобретение может быть использовано в химической промышленности. Способ получения наноструктурированных порошков ферритов включает получение смеси соли азотной кислоты и по крайней мере одного оксидного соединения металла, ультразвуковую обработку, термообработку и фильтрацию. Получают смесь...
Тип: Изобретение
Номер охранного документа: 0002653824
Дата охранного документа: 14.05.2018
09.06.2018
№218.016.5e01

Способ получения композита диоксид молибдена/углерод

Изобретение относится к способу получения композитов в мелкодисперсном состоянии, в частности композита диоксид молибдена/углерод MoO/C, который может быть использован в качестве эффективного анодного материала литиевых источников тока. Способ включает растворение порошка металлического...
Тип: Изобретение
Номер охранного документа: 0002656466
Дата охранного документа: 05.06.2018
20.06.2018
№218.016.6538

Способ получения наноструктурированного углерода

Изобретение относится к химической технологии и может быть использовано при изготовлении сорбентов, катализаторов и носителей для катализаторов, сенсоров, газовых накопителей, конструкционных, футеровочных, оптических материалов и электродов для высокоёмких источников тока и энергетических...
Тип: Изобретение
Номер охранного документа: 0002658036
Дата охранного документа: 19.06.2018
25.06.2018
№218.016.66b0

Способ разделения скандия и сопутствующих металлов

Изобретение относится к технологии неорганических веществ, а именно к гидрометаллургии скандия. Способ разделения скандия и сопутствующих металлов заключается в обработке скандийсодержащего раствора серной кислотой в присутствии соли, содержащей ионы аммония, при нагревании с последующими...
Тип: Изобретение
Номер охранного документа: 0002658399
Дата охранного документа: 21.06.2018
01.07.2018
№218.016.697d

Способ получения серебросодержащей ткани растительного происхождения

Изобретение относится к способу получения серебросодержащих тканей, обладающих антибактериальными свойствами. Способ получения серебросодержащей ткани растительного происхождения включает обработку ткани водным раствором смеси нитрата серебра, восстановителя и соединения, содержащего группу NH,...
Тип: Изобретение
Номер охранного документа: 0002659267
Дата охранного документа: 29.06.2018
05.07.2018
№218.016.6c2a

Способ определения оптических констант пленок химически активных металлов или их сплавов

Изобретение относится к способам оптико-физических измерений. Способ определения оптических констант пленок химически активных металлов или их сплавов включает измерения эллипсометрических параметров и пленки соответствующего металла или его сплава, предварительно нанесенной путем вакуумного...
Тип: Изобретение
Номер охранного документа: 0002659873
Дата охранного документа: 04.07.2018
10.08.2018
№218.016.7b57

Способ получения полых микросфер феррита висмута

Изобретение может быть использовано для получения наноструктурированных порошков феррита висмута BiFeO, применяемых в микроэлектронике, спинтронике, устройствах для магнитной записи информации, в производстве фотокатализаторов, материалов для фотовольтаики. Способ получения полых микросфер...
Тип: Изобретение
Номер охранного документа: 0002663738
Дата охранного документа: 09.08.2018
25.10.2018
№218.016.9605

Способ получения формиата железа (ii)

Изобретение относится к получению солей железа из органических кислот, в частности к соли двухвалентного железа из муравьиной кислоты. Предлагается способ получения формиата железа (II), включающий нагревание соединения железа и муравьиной кислоты в присутствии металлической стружки, где...
Тип: Изобретение
Номер охранного документа: 0002670440
Дата охранного документа: 23.10.2018
15.11.2018
№218.016.9da3

Способ получения нанокристаллического порошка титан-молибденового карбида

Изобретение может быть использовано в металлургии при получении тугоплавкой основы безвольфрамовых твердых сплавов. Способ получения нанокристаллического порошка титан-молибденового карбида включает высокотемпературную обработку исходной смеси порошков соединения титана и молибдена с...
Тип: Изобретение
Номер охранного документа: 0002672422
Дата охранного документа: 14.11.2018
Показаны записи 41-42 из 42.
08.06.2019
№219.017.75db

Способ получения нанопорошков сложного германата лантана и щелочного металла

Изобретение относится к неорганической химии и может быть использовано при получении люминофоров. В азотной кислоте растворяют карбонат щелочного металла, взятый в 50-100 %-ном избытке по сравнению со стехиометрическим, и оксид лантана. Концентрация оксида лантана в полученном растворе...
Тип: Изобретение
Номер охранного документа: 0002690916
Дата охранного документа: 06.06.2019
21.11.2019
№219.017.e401

Способ уничтожения борщевика сосновского

Изобретение относится к сельскому хозяйству. Осуществляют покрытие защитным слоем поверхности зараженного участка почвы с последующим нанесением на защитный слой грунта, в который производят посев задерняющих трав. С зараженного участка предварительно снимают слой почвы на глубину 8-10 см и...
Тип: Изобретение
Номер охранного документа: 0002706552
Дата охранного документа: 19.11.2019
+ добавить свой РИД