×
20.03.2014
216.012.ab28

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СОСТАВЛЯЮЩИХ ИМПЕДАНСА БИООБЪЕКТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине и может быть использовано для оценки функционального состояния организма. Способ заключается в подаче на биообъект импульса стабилизированного тока, измерении напряжения на биообъекте в фиксированные два момента времени после начала импульса тока и дополнительном измерении амплитуды стабилизированного тока I Моменты времени фиксации напряжения представляют собой t и t, причем t=2t В качестве составляющих импеданса биообъекта определяют активное сопротивление R и эквивалентную емкость C тканей биообъекта, которые рассчитывают по формулам: где E - установившееся значение потенциала с постоянной времени T, причем где U и U - соответственно напряжение на биообъекте в моменты времени t и t; при этом C=T/R. Способ обеспечивает повышение точности и оперативности определения составляющих комплексного сопротивления биообъекта за счет устранения методической и учета динамической погрешности, имеющих место в ближайшем аналоге изобретения. 4 ил., 1 табл.
Основные результаты: Способ определения составляющих импеданса биообъекта, заключающийся в подаче на биообъект импульса стабилизированного тока, измерении напряжения на биообъекте в фиксированные два момента времени после начала импульса тока, отличающийся тем, что дополнительно измеряют амплитуду стабилизированного тока I, моменты времени фиксации напряжения представляют собой t и t, причем t=2t; а в качестве составляющих импеданса биообъекта определяют активное сопротивление R и эквивалентную емкость C тканей биообъекта, которые рассчитывают по следующим формулам: где E - установившееся значение потенциала с постоянной времени T, причем где U и U - соответственно напряжение на биообъекте в моменты времени t и t;при этом C=T/R.

Предлагаемое изобретение относится к медицине и может быть использовано для оценки функционального состояния организма.

Известен способ бесконтактного измерения удельного электросопротивления [см. А.с .СССР №1642410, МПК5 G01R 27/02, опубл. 1991 г., бюл. №14], согласно которому измеряемый образец размещают на катушке индуктивности колебательного контура и измеряют изменение добротности контура, при этом индуктивность контура измеряют в диапазоне 135-155 МГц с помощью катушек Гельмгольца, а удельное электросопротивление образца определяют по формуле.

Данный способ обладает низкой точностью из-за изменения конструктивных параметров.

По способу измерения резистивной и емкостной составляющих комплексного сопротивления [см. Патент РФ №2003123, МПК G01R 27/26, опубл. 1993 г., бюл. №41-42] измеряемое сопротивление периодически подключают вначале к эталонному источнику напряжения на априорно заданное время t1, затем измеряемое сопротивление закорачивают, мгновенное значение падения напряжения U1 на сопротивлении измеряют в конце временного промежутка t1. Через априорно заданное время t2=t1 после закорачивания измеряют значение падения напряжения U2. Резистивную и емкостную составляющие вычисляют по формулам:

Недостатком способа является низкая точность из-за существенного влияния на результаты измерения изменения режимов характеристик.

Наиболее близким к заявленному техническому решению является способ определения составляющих импеданса биообъекта [см. А.с. СССР №1397024, МПК А61B 5/05, опубл. 1988 г., бюл. №19], заключающийся в том, что на биообъект подается через электроды импульс стабилизированного тока определенной полярности (например, положительной) и амплитудой I0. Вследствие емкостного характера реактивной составляющей импеданса биообъекта происходит переходной процесс нарастания напряжения на биообъекте, которое измеряется в фиксированные два момента времени t1 и t2 после начала импульса тока, получая соответственно значения напряжения U1 и U2. Измерение в момент времени t2 производится, когда емкость тканей биообъекта заряжена полностью и переходной процесс закончился.

Величина стабилизированного тока I0 выбирается такой, чтобы за время действия импульса тока произошел полный заряд емкости тканей биообъекта. Тогда напряжение на биообъекте пропорционально величине активной составляющей импеданса биообъекта.

Активное сопротивление R биообъекта определяется по формуле (при параллельной схеме замещения биообъекта)

Эквивалентная емкость С тканей биообъекта вычисляется с помощью выражения

Недостатками прототипа являются: низкая точность из-за наличия динамической и методической погрешности и низкая оперативность, вызванные необходимостью ожидания установившегося режима ВАХ.

Технической задачей способа является повышение точности и оперативности измерения составляющих комплексного сопротивления биообъекта за счет устранения методической и динамической погрешности.

Данная техническая задача решается за счет того, что в способе определения составляющих импеданса биологического объекта, заключающемся в подаче на биообъект импульса стабилизированного тока, измерении напряжения на биообъекте в фиксированные два момента времени после начала импульса тока, в отличие от прототипа, дополнительно измеряют амплитуду стабилизированного тока I0, моменты времени фиксации напряжения представляют собой t1 и t2, причем t2=2t1; а в качестве составляющих импеданса биообъекта определяют активное сопротивление R и эквивалентную емкость С тканей биообъекта, которые рассчитывают по следующим формулам:

где E - установившееся значение потенциала с постоянной времени T, причем

где U1 и U2 - соответственно напряжение на биообъекте в моменты времени t1 и t2;

при этом C=T/R.

Сущность предлагаемого способа поясняется на фиг.1÷4.

Для определения составляющих импеданса биологического объекта на тело пациента в месте измерения сопротивления накладывают измерительные электроды, прикладывают напряжение на измерительную ячейку, состоящую из последовательно включенных измеряемого комплексного и эталонного сопротивлений (фиг.1). После включения напряжения питания на биообъект подают через электроды импульс стабилизированного тока, измеряют его амплитуду I0 (фиг.2,б). В моменты времени t1 и t2, причем t2=2t1, фиксируют (см. фиг.2,а) значения падений напряжения U1 и U2 соответственно на эталонном сопротивлении R0. По измеренным значениям напряжения и времени находят активное сопротивление и эквивалентную емкость тканей биообъекта через установившееся значение потенциала E с постоянной времени T.

Экспериментальная зависимость U(t)=U динамического процесса (фиг.2,а) от импульса стабилизированного тока (фиг.2,б) изменяется по экспоненциальному закону:

Зависимость (1) связывает между собой измеряемое значение амплитуды U напряжения за время t исследования до установившегося значения Е потенциала с постоянной времени Т.

Параметры E и T однозначно определяют динамическую характеристику эксперимента по зависимости (1).

Регистрация параметров E и T организована по двум измеренным значениям амплитуды U1, U2 напряжения в два момента времени t1, t2 из системы уравнений по формуле (1) для первого и второго измерений:

Выразим из уравнений системы t1 и t2:

и запишем отношение:

Решение в явном виде получено при кратном отношении t2/t1=2 после приведения к общему знаменателю:

Проэкспоненциируем данное уравнение и выразим параметр E:

Для нахождения Т подставим выражение (3) в первое уравнение системы (2):

где U1 - напряжение на биообъекте в момент времени t1,

U2 - напряжение на биообъекте в момент времени t2.

С помощью параметров E и T определяют значение активного сопротивления:

Это обусловлено значением тока:

В начальный момент времени t=0, когда e=1:

где начальный ток IH тождественен амплитуде стабилизированного тока I0.

Эквивалентная емкость тканей биообъекта в свою очередь определяется как:

т.к. T=R·C.

Адекватность и эффективность предлагаемого способа представлены ниже.

1. Адекватность предлагаемого способа физике эксперимента доказывает математическое моделирование исследуемой Ui(t)ИДХ 1 относительно эквивалента 2 экспериментальной Uэ(t)ИДХ. По полученным значениям R и C определяется значение периода T (согласно формулы T=R·C), строятся исследуемая 1 и эквивалентная 2 ИДХ (фиг.3).

Затем проводится оценка адекватности полученных зависимостей по формуле определения относительной погрешности:

ее оценка представлена на фиг.4.

При этом погрешность ε отклонения Ui(t) относительно Uэ(t) не превышает 1,5·10-13%.

2. Повышение точности за счет методической и динамической погрешности приведем на примере активного сопротивления:

где RH=const - информативный параметр ИДХ сопротивления.

Эффективность по точности определяется нелинейностью η сопротивления R относительно постоянного сопротивления RH предлагаемого способа

Как видно (фиг.2,в), сопротивление R=R(t) в прототипе нелинейно, изменяется по экспоненте относительно постоянного параметра RH предлагаемого способа, что обусловлено методической погрешностью.

3. Динамическая погрешность ε определяется нелинейностью η:

т.е. и также растет по экспоненте (фиг.2,в) с увеличением времени t, в то время как мгновенное значение U ИДХ стремится по асимптоте к установившемуся потенциалу (фиг.2,а).

Следовательно, предлагаемый способ, в отличие от прототипа, устраняет и методическую, и динамическую погрешность.

4. Повышение оперативности предлагаемого способа оценивается эффективностью времени измерения t. В предлагаемом способе t≤T измерения не превышает постоянную времени, а для прототипа в 3-5 раз больше tn=(3-5)T для погрешности (5-1)% определения установившегося потенциала E.

Из эффективности, ηt=(3-5)T/T=(3-5) следует, что оперативность предлагаемого способа в 3-5 раз выше известных способов.

Значения погрешностей, возникающих в результате применения способа-прототипа и предлагаемого способа, приведены в таблице 1.

Таблица 1
Результаты Эквивалент Прототип Предлагаемый способ εпрот, % εпр.сп, %
Е, мВ 120 114 120 5 6,4·10-12
Т·10-7, с 42 21,1 42 49,7 6,7·10-12
R, кОм 34,3 32,6 34,3 5 6,5·10-12
С, пФ 123 65 123 47,1 2,7·10-13

Анализ таблицы 1 показывает, что точность предлагаемого метода на несколько порядков выше за счет учета динамической погрешности и устранения методической погрешности.

Таким образом, определение активной и реактивной составляющих комплексного сопротивления согласно методике предлагаемого способа, в отличие от известных решений, повышает точность определения составляющих импеданса биологического объекта на несколько порядков за счет адекватности предлагаемого способа эксперименту при устранении методической и учете динамической погрешности.

Способ определения составляющих импеданса биообъекта, заключающийся в подаче на биообъект импульса стабилизированного тока, измерении напряжения на биообъекте в фиксированные два момента времени после начала импульса тока, отличающийся тем, что дополнительно измеряют амплитуду стабилизированного тока I, моменты времени фиксации напряжения представляют собой t и t, причем t=2t; а в качестве составляющих импеданса биообъекта определяют активное сопротивление R и эквивалентную емкость C тканей биообъекта, которые рассчитывают по следующим формулам: где E - установившееся значение потенциала с постоянной времени T, причем где U и U - соответственно напряжение на биообъекте в моменты времени t и t;при этом C=T/R.
СПОСОБ ОПРЕДЕЛЕНИЯ СОСТАВЛЯЮЩИХ ИМПЕДАНСА БИООБЪЕКТА
СПОСОБ ОПРЕДЕЛЕНИЯ СОСТАВЛЯЮЩИХ ИМПЕДАНСА БИООБЪЕКТА
СПОСОБ ОПРЕДЕЛЕНИЯ СОСТАВЛЯЮЩИХ ИМПЕДАНСА БИООБЪЕКТА
СПОСОБ ОПРЕДЕЛЕНИЯ СОСТАВЛЯЮЩИХ ИМПЕДАНСА БИООБЪЕКТА
СПОСОБ ОПРЕДЕЛЕНИЯ СОСТАВЛЯЮЩИХ ИМПЕДАНСА БИООБЪЕКТА
СПОСОБ ОПРЕДЕЛЕНИЯ СОСТАВЛЯЮЩИХ ИМПЕДАНСА БИООБЪЕКТА
Источник поступления информации: Роспатент

Показаны записи 11-18 из 18.
26.08.2017
№217.015.db59

Способ определения составляющих импеданса биообъекта

Изобретение относится к области медицины. Для определения составляющих импеданса биологического объекта осуществляют подачу на биообъект импульса стабилизированного тока I и измерение напряжения u. В момент времени t после начала импульса тока в качестве составляющих импеданса биообъекта...
Тип: Изобретение
Номер охранного документа: 0002624172
Дата охранного документа: 30.06.2017
26.08.2017
№217.015.db9c

Способ и система автоматического управления

Изобретение относится к автоматике и может быть использовано в чистых помещениях для поддержания постоянной оптимальной температуры. В способе автоматического управления системами выходную переменную исполнительного механизма подают на вход управляемого объекта, измеряют фактическую величину...
Тип: Изобретение
Номер охранного документа: 0002624136
Дата охранного документа: 30.06.2017
29.12.2017
№217.015.faaf

Способ определения динамики изменения скорости оседания эритроцитов

Изобретение относится к области медицины, а именно к способу определения динамики изменения скорости оседания эритроцитов. Способ определения динамики изменения скорости оседания эритроцитов, включает смешивание исследуемой пробы крови с антикоагулянтом, забор полученного раствора крови с...
Тип: Изобретение
Номер охранного документа: 0002640190
Дата охранного документа: 26.12.2017
20.01.2018
№218.016.0f17

Способ определения ударного объема сердца

Изобретение относится к области медицины, а именно к кардиологии, кардиохирургии, функциональной диагностике. Для определения ударного объема сердца проводят наложение двух электродов на участки тела, регистрацию сопротивления R между электродами при снятии реограммы (РГ), измерение гемоглобина...
Тип: Изобретение
Номер охранного документа: 0002633348
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.190e

Способ определения действительного значения физического параметра

Изобретение относится к области медицины, а именно к диагностике. Для определения концентрации глюкозы в крови регистрируют отношения измеренных натощак значений систолического и диастолического артериальных давлений на левой и правой руках: n - минимальное систолическое к максимальному...
Тип: Изобретение
Номер охранного документа: 0002636181
Дата охранного документа: 21.11.2017
13.02.2018
№218.016.25d8

Неинвазивный экспресс-анализ концентрации глюкозы в крови

Изобретение относится к области медицины, а именно к эндокринологии. Для экспресс-анализа концентрации глюкозы крови накладывают термисторы над поверхностной веной головы испытуемого и измеряют натощак и после приема пищи температуру и концентрацию глюкозы в крови. Определяют концентрацию...
Тип: Изобретение
Номер охранного документа: 0002644298
Дата охранного документа: 08.02.2018
13.02.2018
№218.016.2600

Осциллографический способ измерения артериального давления

Изобретение относится к области медицины, а именно к физиологии и кардиологии. Для измерения артериального давления регистрируют и проводят анализ осциллограмм артерий в частотах от 0 Гц до 60 Гц с последующим электрическим преобразованием. Компрессию пережимной измерительной манжеты продолжают...
Тип: Изобретение
Номер охранного документа: 0002644299
Дата охранного документа: 08.02.2018
04.04.2018
№218.016.2ebe

Способ неинвазивного определения концентрации глюкозы в крови по глюкограмме

Изобретение относится к области медицины, а именно к эндокринологии. Для неинвазивного определения концентрации глюкозы в крови человека по электрическим характеристикам кожи и ткани проводят определение действительного значения концентрации глюкозы крови по калибровочной глюкосименсграмме...
Тип: Изобретение
Номер охранного документа: 0002644501
Дата охранного документа: 12.02.2018
Показаны записи 41-50 из 67.
10.06.2015
№216.013.525a

Способ и устройство определения влажности капиллярно-пористых материалов по ипульсной динамической характеристике

Группа изобретений относится к измерительной технике, в частности к измерению влажности капиллярно-пористых материалов. Способ определения влажности капиллярно-пористых материалов заключается в том, что осуществляют контакт с образцом с помощью двух электродов, расположенных вдоль линии,...
Тип: Изобретение
Номер охранного документа: 0002552603
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.537f

Способ диагностики патологии микроциркуляции сосудов нижних конечностей

Изобретение относится к медицине и предназначено для диагностики патологии микроциркуляции сосудов нижних конечностей. Производят съемку и определяют S - площадь стопы в видимом диапазоне длин волн. Определяют S - площадь термографической фигуры стоп. Исключают точки термограммы, выходящие за...
Тип: Изобретение
Номер охранного документа: 0002552896
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.5739

Электробаромембранный аппарат рулонного типа

Изобретение относится к мембранным аппаратам рулонного типа и может быть использовано для фильтрации и обратного осмоса. Аппарат содержит коллекторы отвода прикатодного и прианодного пермеата, образованные пространством между полуцилиндрами корпуса аппарата, корпусом аппарата и полимерной...
Тип: Изобретение
Номер охранного документа: 0002553859
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.573b

Гидродинамический смеситель

Изобретение относится к устройствам для перемешивания, эмульгирования, гомогенизации жидких сред и может быть использовано для проведения и интенсификации различных физико-химических, тепломассообменных процессов в системах "жидкость-жидкость" и "газ-жидкость". Смеситель содержит корпус с...
Тип: Изобретение
Номер охранного документа: 0002553861
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.58e1

Устройство контроля плотности

Изобретение относится к области измерительной техники, в частности к устройствам контроля плотности твердой фазы гетерогенных систем и тел неправильной формы, и может найти применение в различных отраслях промышленности. Устройство контроля плотности содержит измерительную емкость с крышкой, к...
Тип: Изобретение
Номер охранного документа: 0002554294
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.58e2

Устройство для измерения температуры

Изобретение относится к области измерительной техники, в частности к термометрии. Устройство содержит термопреобразователь 1, выход которого соединен с индикатором 2 температуры и через последовательно соединенные первый вход первого блока вычитания 3, усилитель 4, масштабирующий элемент 5,...
Тип: Изобретение
Номер охранного документа: 0002554295
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5cf0

Устройство для исследования физико-механических свойств корнеклубнеплодов

Изобретение относится к области сельского хозяйства и может быть использовано для исследования физико-механических свойств корнеклубнеплодов. Устройство для исследования физико-механических свойств корнеклубнеплодов содержит раму (1) с прикрепленными к ней электродвигателем (2), на валу...
Тип: Изобретение
Номер охранного документа: 0002555333
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.6255

Устройство для измельчения

Изобретение относится к сельскохозяйственному производству, в частности к устройствам для измельчения корнеклубнеплодов, используемых в технологических линиях на животноводческих фермах и комплексах. Устройство для измельчения содержит цилиндрический корпус со сменным блоком ножей, вертикально...
Тип: Изобретение
Номер охранного документа: 0002556720
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.6551

Способ сегментации изображения

Изобретение относится к средствам сегментации изображения. Техническим результатом является повышение быстродействия сегментации. В способе для выделения участков изображения, содержащих движущиеся объекты, производят обнуление пикселей с одинаковыми номерами в обоих кадрах последовательно с...
Тип: Изобретение
Номер охранного документа: 0002557484
Дата охранного документа: 20.07.2015
20.08.2015
№216.013.6f82

Конвективно-вакуумная сушилка

Изобретение относится к сушильной технике, а более конкретно к сушильным аппаратам с активными гидродинамическими режимами, предназначенными для сушки дисперсных материалов во взвешенном закрученном слое, и может найти применение при переработке сельскохозяйственных продуктов, получении...
Тип: Изобретение
Номер охранного документа: 0002560116
Дата охранного документа: 20.08.2015
+ добавить свой РИД