×
10.03.2014
216.012.aa44

ПОЛУПРОВОДНИКОВЫЙ ГАЗОВЫЙ СЕНСОР

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002509303
Дата охранного документа
10.03.2014
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к аналитическому приборостроению и может быть использовано в газоанализаторах, газосигнализаторах и газовых пожарных извещателях для контроля довзрывных концентраций взрыво-пожароопасных газов и газовых смесей. Полупроводниковый газовый сенсор содержит корпус 1 реакционной камеры 2, выполненный из коррозионно-стойкой стали. Корпус 1, с торца закрытый сеткой 3 из проволоки нержавеющей стали диаметром 0,03-0,04 мм шагом 0,06-0,08 мм. В корпусе 1 по центру реакционной камеры 2 на контактных проводниках 4 установлен шарообразный полупроводниковый газочувствительный элемент 5 при помощи проводов нагревателя 6 и измерительного проводника 7. Внутри полупроводникового газочувствительного элемента 5 размещен нагреватель 6 в виде цилиндрической пружины, внутри которой по ее оси и по диаметру шарообразного полупроводникового элемента 5 расположен прямой измерительный проводник 7. Нагреватель 6 и измерительный проводник 7 газочувствительного элемента 5 выполнены из платиновой проволоки диаметром 0,01-0,02 мм, нагреватель 6 имеет 2-7 витка проволоки, шарообразный полупроводниковый газочувствительный элемент 2 имеет диаметр 0,4-0,8 мм и выполнен из смеси оксида олова SnO: 5-95 мас.% и оксида индия InO: 5-95 мас.%. Изобретение обеспечивает повышение чувствительности полупроводникового газового сенсора к малым концентрациям газа, а также создание простого, надежного, сравнительно дешевого и быстродействующего сенсора, имеющего длительную работу в необслуживаемом режиме. 7 ил., 3 табл.
Основные результаты: Полупроводниковый газовый сенсор, содержащий корпус реакционной камеры, с торца закрытый сеткой, в котором на контактных проводниках установлен шарообразный полупроводниковый газочувствительный элемент, внутри которого размещен нагреватель в виде цилиндрический пружины, внутри которой по ее оси и по диаметру шарообразного полупроводникового элемента расположен прямой измерительный проводник, отличающийся тем, что корпус реакционной камеры выполнен из коррозионно-стойкой стали, сетка выполнена из проволоки нержавеющей стали диаметром 0,03-0,04 мм шагом 0,06-0,08 мм, газочувствительный элемент расположен по центру реакционной камеры, нагреватель и измерительный проводник газочувствительного элемента выполнены из платиновой проволоки диаметром 0,01-0,02 мм, нагреватель имеет 2-7 витка проволоки, шарообразный полупроводниковый газочувствительный элемент имеет диаметр 0,4-0,8 мм и выполнен из смеси оксида олова SnO: 5-95 мас.% и оксида индия InO: 5-95 мас.%.
Реферат Свернуть Развернуть

Предлагаемое изобретение относится к аналитическому приборостроению, а именно к полупроводниковым газовым сенсорам датчиков горючих газов, и может быть использовано в газоанализаторах, газосигнализаторах и газовых пожарных извещателях для контроля довзрывных концентраций взрыво-пожароопасных газов и газовых смесей.

Интенсивная промышленная деятельность и, как следствие, большой выброс вредных веществ в атмосферу привели к опасному уровню нагрузки на окружающую среду. Огромная насыщенность современного бытового и промышленного комплекса техническими средствами, использующими и выделяющими при функционировании различные, в том числе вредные, газы: монооксид и диоксид углерода, аммиак, метан, оксиды азота и др., а также высокая частота возникновения критических ситуаций, сопровождающихся, зачастую, выбросом значительных количеств смесей токсичных и горючих газов, делает весьма важной задачу создания средств постоянного контроля (мониторинга) состава газовоздушной среды.

Известно «Устройство для контроля концентрации опасных газов» по патенту РФ: RU 2411511 от 10.02.2011, МПК8 G01N 27/12, G01W 1/00 - [1], содержащее газовый сенсор и устройства обработки его сигналов. Однако в устройстве [1] не уточнен тип газового сенсора и его принцип работы.

Газовый сенсор является устройством, в котором реакция взаимодействия контролируемого газа с чувствительным элементом (выделение тепла, изменение теплопроводности и др.) преобразуется в электрический сигнал.

Существуют различные газовые сенсоры - электрохимические, оптические, термокаталитические, термокондуктометрические, полупроводниковые, и др., различающиеся по структуре чувствительного элемента и по типу реакции с контролируемым газом.

Полупроводниковые сенсоры обладают ограниченной селективностью, но при этом обеспечивают длительную работу сенсора в необслуживаемом режиме, просты, сравнительно дешевы и обладают малыми массогабаритными показателями. Кроме того полупроводниковые газовые сенсоры обладают наибольшим быстродействием и высокой чувствительностью. Поэтому наиболее предпочтительным для мониторинга газовых сред представляется применение полупроводниковых сенсоров, благодаря их высокому быстродействию, чувствительности к малым концентрациям, высокой технологичности изготовления и низкой стоимости.

Известны полупроводниковые газовые сенсоры пленочной конструкции с применением в качестве газочувствительного элемента полупроводникового состава на основе SnO2, легированного самыми различными соединениями, и другого газочувствительного элемента на основе In2O3, легированного другими соединениями, применение напыленных контактных площадок из платины, а также с размещением пленочного газочувствительного элемента по центру реакционной камеры корпуса датчика:

«Газовый сенсор» по патенту США: US 5837886 от 17.11.1998, МПК6 G01N 27/12, G01W 1/00 - [2].

«Датчик для определения концентрации газов» по патенту РФ: RU 2096774 от 20.11.1997, МПК6 G01N 27/12 - [3].

«Анализатор селективного определения водорода в газах» по патенту РФ: RU 2124718 от 10.01.1999, МПК6 G01N 27/12 - [4].

«Полупроводниковый датчик для обнаружения метана…» по патенту Германии: DE 19924611 от 12.12.2000, МПК7 G01N 27/12, G01N 33/00 - [5].

«Способ селективного определения концентраций вредных примесей в газах и устройство для его реализации» по патенту РФ: RU 2159931 от 27.11.2000, МПК7 G01N 27/12 - [6].

«Способ изготовления чувствительного элемента полупроводникого газового сенсора» по патенту РФ: RU 2319953 от 20.03.2008, МПК7 G01N 27/12 - [7].

Основными недостатками аналогов [2, 3, 4, 5, 6 и 7] является то, что они являются пленочными, то есть газочувствительный слой расположен на плоскости (подложке) и имеет меньшую полезную площадь контакта с газом по сравнению, например, со сферическим газочувствительным слоем. Также неоднородность структуры напыленной платиновой металлизации (нагревателей, рабочих электродов) в зоне контакта с подложкой вызывает дрейф характеристик сенсора, что снижает его точность и надежность.

Известен «Газовый сенсор» по заявке США: US 2001003916 от 21.06.2001, МПК6 G01N 27/12, G01N 33/00 - [8], содержащий установленный на контактных проводниках шарообразный полупроводниковый газочувствительный элемент, внутри которого размещен нагреватель в виде цилиндрический пружины, внутри которой по ее оси и по диаметру шарообразного полупроводникового элемента расположен прямой измерительный проводник, сенсора. Гзочувствительный элемент данного сенсора выполнен из смеси оксида олова SnO2, нагреватель и измерительный проводник газочувствительного элемента выполнены из проволоки сплавов платины.

Прототипом заявляемого изобретения является «Газовый сенсор и способ его работы» по патенту США: US 6565812 от 20.05.2003, МПК7 G01N 27/12, G01N 33/00 - [9], содержащий корпус реакционной камеры, с торца закрытый сеткой, в котором на контактных проводниках (контактных площадках) установлен шарообразный полупроводниковый газочувствительный элемент, внутри которого размещен нагреватель в виде цилиндрический пружины, внутри которой по ее оси и по диаметру шарообразного полупроводникового элемента расположен прямой измерительный проводник, газочувствительный элемент выполнен из легированного оксида олова SnO2 или легированного In2O3. Газочувствительный элемент расположен у днища реакционной камеры на контактных площадках, нагреватель и измерительный проводник газочувствительного элемента выполнены из проволоки сплавов платины.

Недостатками аналога [8] и прототипа [9] является то, что газочувствительный элемент расположен у днища реакционной камеры на контактных площадках, а это приводит к неравномерности температурного поля в реакционной камере, а также к неравномерности подвода к полупроводниковому газочувствительному элементу исходных компонентов и удаление продуктов реакции, то есть приводит к неравномерностям тепломассопереноса, что снижает надежность работы устройства. Практическая реализация аналога [8] и прототипа [9], представленная на сайте: http://www.figaro.co.jp/ - [10], позволяет сделать выводы о сравнительно низкой чувствительности этих полупроводниковых газовых сенсоров к малым концентрациям газов. Кроме того, представленные в [10] полупроводниковые газовые сенсоры имеют высокое энергопотребление и достаточно дороги.

Таким образом, недостатки аналогов и прототипа ставят задачу повышения чувствительности полупроводникового газового сенсора (его чувствительности к малым концентрациям). Кроме того, ставятся задачи создания простого, надежного, сравнительно дешевого и быстродействующего сенсора, обеспечивающего его длительную работу в необслуживаемом режиме.

Указанная задача (сущность изобретения) решается тем, что полупроводниковый газовый сенсор, содержащий корпус реакционной камеры с торца закрытый сеткой, в котором на контактных проводниках установлен шарообразный полупроводниковый газочувствительный элемент, внутри которого размещен нагреватель в виде цилиндрический пружины, внутри которой по ее оси и по диаметру шарообразного полупроводникового элемента расположен прямой измерительный проводник, при этом корпус реакционной камеры выполнен из коррозионно-стойкой стали, сетка выполнена из проволоки нержавеющей стали диаметром 0,03-0,04 мм шагом 0,06-0,08 мм, газочувствительный элемент расположен по центру реакционной камеры, нагреватель и измерительный проводник газочувствительного элемента выполнены из платиновой проволоки диаметром 0,01-0,02 мм, нагреватель имеет 2-7 витка проволоки, шарообразный полупроводниковый газочувствительный элемент имеет диаметр 0,4-0,8 мм и выполнен из смеси оксида олова SnO2: 5-95% масс и оксида индия In2O3: 5-95% масс.

Таким образом, выполнение корпуса реакционной камеры из коррозионно-стойкой стали приводит к его химической инертности и к возможности работать в неблагоприятных условиях эксплуатации, что в конечном итоге приводит к повышению надежности устройства.

Выполнение сетки (газообменного фильтра) из проволоки нержавеющей стали диаметром 0,03-0,04 мм шагом 0,06-0,08 мм, также приводит к химической инертности, а размеры проволок сетки и ее шага выбраны из условий оптимизации приемлемого тепломассобмена в реакционной камере, и для улучшения защиты чувствительного элемента от механических примесей газовых сред.

Расположение газочувствительного элемента по центру реакционной камеры дополнительно обеспечивает равномерный его прогрев и его надежную долговечную эксплуатацию, при оптимальном тепломассобмена вокруг полупроводникового газочувствительного элемента.

Введение признаков: «нагреватель и измерительный проводник газочувствительного элемента выполнены из платиновой проволоки диаметром 0,01-0,02 мм», «нагреватель имеет 2-7 витка проволоки» и «шарообразный полупроводниковый газочувствительный элемент имеет диаметр 0,4-0,8 мм» также получено из расчетно-имперических исследований и оптимизации диффузионных и теловых режимов при создании заявляемого устройства.

Введение признака: «полупроводниковый газочувствительный элемент выполнен из смеси оксида олова SnO2: 5-95% масс и оксида индия In2O3: 5-95% масс» задает состав газочувствительного элемента для достижения его максимальной чувствительности для конкретного газа (смеси газов) и стабильности работы самого элемента. Выполнение полупроводникового газочувствительного элемента полностью из смеси оксидов олова SnO2 и индия In2O3, по сравнению с элементами только с поверхностным газочувствительным слоем позволяет существенно повысить надежность работы и условия его регенерации (полупроводникового газочувствительного элемента) при длительной эксплуатации.

Взаимный общий состав полупроводникового газочувствительного элемента, по значению вышеуказанных ингредиентов, а также конструкционных параметров его элементов многовариантный. Он подбирается эмпирическим путем, и в последующем многократно проходит натурные испытания для уточнения состава и размеров элементов.

При изменении процентного соотношения компонентов заявленного устройства, более или менее чем указано в формуле изобретения, существенно ухудшается его качество и эффективность применения.

На фиг.1 представлен схематичный разрез предложенного полупроводнивкового газового сенсора (вид с боку - разрез А-А). На фиг.2 - разрез фиг.1 по Б-Б. На фиг.3 - увеличенный разрез (вид с верху) полупроводникового газочувствительного элемента. На фиг.4 - увеличенная фотография газочувствительного элемента. На фиг.5 приведена фотография монтажной электрической платы с расположенным на ней полупроводниковым газовым сенсором (вид сверху). На фиг.6 - структурная схема модуля управления и первичной обработки сигнала сенсора. На фиг.7 - график режима питания полупроводникового газового сенсора (разработки ОАО «Авангард» - ПГС-1А.

Полупроводниковый газовый сенсор содержит корпус 1 реакционной камеры 2, выполненный из коррозионно-стойкой стали. Корпус 1, с торца закрытый сеткой 3 из нержавеющей стали проволокой диаметром 0,03-0,04 мм шагом 0,06-0,08 мм. В корпусе 1 по центру реакционной камеры 2 на контактных проводниках 4 установлен шарообразный полупроводниковый газочувствительный элемент 5 при помощи проводов нагревателя 6 и измерительного проводника 7. Внутри полупроводникового газочувствительного элемента 5 размещен нагреватель 6 в виде цилиндрический пружины, внутри которой по ее оси и по диаметру шарообразного полупроводникового элемента 5 расположен прямой измерительный проводник 7. Нагреватель 6 и измерительный проводник 7 газочувствительного элемента 5 выполнены из платиновой проволоки диаметром 0,01-0,02 мм, нагреватель 6 имеет 2-6 витка проволоки, шарообразный полупроводниковый газочувствительный элемент 2 имеет диаметр 0,4-0,8 мм и выполнен из смеси оксида олова SnO2: 5-95% масс и оксида индия In2O3: 5-95% масс.

Конструкция готового газового сенсора ПГС-1А разработки ОАО «Авангард» представляет собой реакционную камеру 2 (никель-кобальтовый корпус транзисторный Т0-5) 1, сообщающуюся с газовой средой через сетку 3 (газообменный фильтр), выполненную из нержавеющей стали диаметром 0,035 мм шагом 0,07 мм. В корпусе 1 реакционной камеры 2 на контактных проводниках 4 по ее центру установлен шарообразный полупроводниковый элемент 5 диаметром 0,6±0,1 мм из смеси оксида олова SnO2: 80% масс и оксида индия In2O3: 20% масс. Внутри полупроводникового элемента размещен нагреватель 6 в виде цилиндрической пружины (4 витка) диаметром 0,4 мм и шагом 0,02 мм, внутри пружины по ее оси и по диаметру шарообразного полупроводникового газочувствительного элемента размещен прямой измерительный проводник 7. Нагреватель 6 и измерительный проводник 7 выполнены из литого химически чистого и термостабильного платинового микропровода ПЛ-3Т диаметром 0,02 мм.

Микропроводу ПЛ-3Т не свойственны недостатки, присущие сенсорам на подложке, такие как неоднородность структуры напыленной платиновой металлизации (нагревателей, рабочих электродов) в зоне контакта с подложкой и, как следствие, дрейф характеристик сенсора.

Полупроводниковый элемент, представляющий собой оксид олова SnO2 (80% масс) с добавкой оксида индия In2O3 (20% масс.), образует систему SnO2-In2O3, обладающую высокой чувствительностью, быстродействием, удобным диапазоном изменения сопротивлений, низкой рабочей температурой при детектировании окислительных и восстановительных газов. При взаимодействии газа с чувствительным полупроводниковым элементом, газочувствительный состав меняет электрическую проводимость.

Принцип действия полупроводникового газового сенсора основан на хемо-сорбционном взаимодействии тестируемых газов с поверхностью и объемом полупроводникового слоя, приводящего к изменению концентрации электронов в его зоне проводимости.

Молекулы детектируемых газов попадают на поверхность и проникают вглубь газочувствительного слоя. Далее идет процесс реакции молекул детектируемых газов с хемосорбированным кислородом.

При адсорбции окислителей (O2, О3, F2, Cl2, NO2 и др.) происходит обеднение зоны проводимости электронами, что приводит к росту энергетического барьера в области контакта частиц и увеличению сопротивления в этой части газочувствительного слоя.

SnO+O2→2SnO2

При адсорбции газов восстановителей (Н2, СО, СхНу и др.) количество электронов на поверхности области контакта растет.

SnO2+CO→SnO+CO2

Два электрона переходят в зону проводимости полупроводника, соответственно растет электрическая проводимость газочувствительного состава. Изменение сопротивления полупроводникового состава регистрируется на измерительном электроде и отрицательном контакте нагревателя с применением модуля управления и первичной обработки (МУПО). На фиг.6 приведены условные обозначения МУПО: УП - узел питания, ЧЭ - чувствительный элемент (полупроводниковый газовый сенсор), ДТ - датчик температуры, НУ - нормирующий усилитель, МК - микроконтроллер, Uпит - питающее напряжение, UART - цифровой выходной сигнал (протокол UART).

Для построения электронной схемы МУПО применена современная элементная база, обеспечивающая стабильное напряжение питания сенсора и высокий коэффициент усиления сигнала на малых концентрациях газа.

В схеме МУПО имеется узел управления питанием для различных типов сенсоров, узел усиления и обработки сигнала, узел оцифровки сигнала и передачи его по выходной шине с интерфейсом I2C.

Исследование сенсорных характеристик сенсора ПГС-1А проводилось на газосмесительной установке производства ОАО «Авангард». Были проведены испытания на чувствительность к газовыми смесям СО-воздух, СН4-воздух и Н2-воздух, а также исследование зависимости показаний от расхода и влажности газовой смеси. Было проведено исследование влияния температуры нагревателя на все вышеуказанные свойства и отработан режим термотренировки сенсора для стабилизации его параметров.

Режим импульсного питания сенсора (фиг.7) был подобран для оптимальной регистрации протекания реакции. Чтобы могла произойти реакция в слое SnO2, необходимо предварительно нагреть область реакции газочувствительного слоя до определенной температуры. Например, для эффективного протекания реакции слоя SnO2 с СО и Н2 температура нагрева должна лежать в диапазоне 100-250°С, а для СН4 - в диапазоне 300-450°С. Повышенная температура понижает энергию связи молекул адсорбированного кислорода с электронами, что способствует намного более легкому освобождению электронов от молекул кислорода и выходу их в зону проводимости. Затем подается импульс низкого напряжения для стабилизации реакции, в конце которого и производится регистрация сигнала. Для водорода и монооксида углерода диапазон оптимальных температур для протекания реакции составляет 100-130°С.

Мощность сенсора в данном режиме составляет 68 мВт.

Результаты испытаний сенсора ПГС-1А на чувствительность ( ) к различным газам представлены в табл.1. Изменение сопротивления при подаче Н2, концентрацией 20 ppm по сравнению с сопротивлением на воздухе, составляет 4,8 раза, СО, концентрацией 86 ppm - более 5 раз, a CH4 0,5% об. - более 10 раз.

Также полупроводниковый газовый сенсор на основе SnO2-In2O3 (ПГС-1А) показал чувствительность к малым концентрациям газов СО (3 ppm) и Н2 (1 ppm). Сигнал сенсора на данных концентрациях возможно выделить на уровне шума.

Таблица 1
Детектируемый газ Концентрация, ppm Чувствительность
Н2 20 4,83
10 2,97
5 2,06
1 1,21
СО 86 5,63
17 2,14
5 1,32
3 1,16
СН4 5000 13,73

Результаты испытаний полупроводникового газового сенсора ПГС-1А на чувствительность к изменению расхода газовой смеси представлены в табл.2. При снижении расхода в 4 раза отклик к СО, концентрацией 86 ppm, упал на 31%.

Таблица 2
Детектируемый газ Расход газовой смеси, мл/мин Чувствительность Снижение чувствительности относительно G=400 мл/мин, %
СО (86 ppm) 400 3,59 -
200 2,85 21
100 2,46 31

В табл.3 представлены результаты испытаний полупроводникового газового сенсора ПГС-1А на чувствительность к изменению влажности газовой смеси. При снижении влажности до 10% RH отклик к СО, концентрацией 86 ppm, упал на 24% относительно показателей смеси, влажностью 50% RH, а при увеличении влажности до 90% RH отклик снизился на 12%. Применение угольного фильтра позволило снизить падение чувствительности при изменении влажности газовой смеси до 2,4%.

Таблица 3
Детектируемый газ Относительная влажность газовой смеси, % RH Чувствительность Снижение чувствительности относительно RH=50%, %
СО (86 ppm) 90 2,70 12
50 3,08 -
10 2,34 24
СО (86 ppm) (с применением угольного фильтра) 90 2,90
50 2,92 0,6
10 2,85 2,4

Компенсация влияния температуры и влажности на сенсор ПГС-1А возможна также и аппаратными методами.

Исследовательские испытания опытных образцов полупроводниковых газовых сенсоров ПГС-1А показали, что данная конструкция является перспективной для разработки серийного полупроводникового сенсора на горючие и токсичные газы в широком диапазоне концентраций, т.к. является простой, содержащей минимум компонентов и более технологичной, а технология их изготовления менее энергоемкой по сравнению с сенсорами на подложке (Al2O3, Si и др). Сенсоры ПГС-1А могут быть применены в составе газовых пожарных извещателей раннего обнаружения возгораний, газосигнализаторов и течеискателей.

Полагаем, что предложенный полупроводниковый газовый сенсор обладает всеми критериями изобретения, так как:

- полупроводниковый газовый сенсор в совокупности с ограничительными и отличительными признаками формулы изобретения является новым для общеизвестных составов и, следовательно, соответствует критерию "новизна";

- совокупность признаков формулы изобретения - полупроводникового газового сенсора неизвестна на данном уровне развития техники и не следует общеизвестным правилам создания составов припоев для соединения разнородных материалов, что доказывает соответствие критерию "изобретательский уровень";

- реализация заявленного полупроводникового газового сенсора не представляет никаких конструктивно-технических и технологических трудностей, откуда следует соответствие критерию "промышленная применимость".

Литература

1. Патент РФ: RU 2411511 от 10.02.2011, МПК5 G01N 27/12, G01W 1/00, «Устройство для контроля концентрации опасных газов».

2. Патент США: US 5837886 от 17.11.1998, МПК6 G01N 27/12, G01W 1/00, «Газовый сенсор».

3. Патент РФ: RU 2096774 от 20.11.1997, МПК6 G01N 27/12, «Датчик для определения концентрации газов».

4. Патент РФ: RU 2124718 от 10.01.1999, МПК6 G01N 27/12, «Анализатор селективного определения водорода в газах».

5. Патент Германии: DE19924611 от 12.12.2000, МПК7 G01N 27/12, G01N 33/00, «Полупроводниковый датчик для обнаружения метана…».

6. Патент РФ: RU 2159931 от 27.11.2000, МПК7 G01N 27/12, «Способ селективного определения концентраций вредных примесей в газах и устройство для его реализации».

7. Патент РФ: RU 2319953 от 20.03.2008, МПК7 G01N 27/12, «Способ изготовления чувствительного элемента полупроводникого газового сенсора».

8. Заявка США: US 2001003916 от 21.06.2001, МПК6 G01N 27/12, G01N 33/00, «Газовый сенсор».

9. Патент США: US 6565812 от 20.05.2003, МПК7 G01N 27/12, G01N 33/00, «Газовый сенсор и способ его работы» - Прототип.

10. http://www.flgaro.co.jp/.

Полупроводниковый газовый сенсор, содержащий корпус реакционной камеры, с торца закрытый сеткой, в котором на контактных проводниках установлен шарообразный полупроводниковый газочувствительный элемент, внутри которого размещен нагреватель в виде цилиндрический пружины, внутри которой по ее оси и по диаметру шарообразного полупроводникового элемента расположен прямой измерительный проводник, отличающийся тем, что корпус реакционной камеры выполнен из коррозионно-стойкой стали, сетка выполнена из проволоки нержавеющей стали диаметром 0,03-0,04 мм шагом 0,06-0,08 мм, газочувствительный элемент расположен по центру реакционной камеры, нагреватель и измерительный проводник газочувствительного элемента выполнены из платиновой проволоки диаметром 0,01-0,02 мм, нагреватель имеет 2-7 витка проволоки, шарообразный полупроводниковый газочувствительный элемент имеет диаметр 0,4-0,8 мм и выполнен из смеси оксида олова SnO: 5-95 мас.% и оксида индия InO: 5-95 мас.%.
ПОЛУПРОВОДНИКОВЫЙ ГАЗОВЫЙ СЕНСОР
ПОЛУПРОВОДНИКОВЫЙ ГАЗОВЫЙ СЕНСОР
ПОЛУПРОВОДНИКОВЫЙ ГАЗОВЫЙ СЕНСОР
ПОЛУПРОВОДНИКОВЫЙ ГАЗОВЫЙ СЕНСОР
ПОЛУПРОВОДНИКОВЫЙ ГАЗОВЫЙ СЕНСОР
ПОЛУПРОВОДНИКОВЫЙ ГАЗОВЫЙ СЕНСОР
ПОЛУПРОВОДНИКОВЫЙ ГАЗОВЫЙ СЕНСОР
Источник поступления информации: Роспатент

Показаны записи 1-10 из 107.
10.01.2013
№216.012.19e6

Индукционный датчик силы

Заявленное изобретение относится к области измерительной техники и может быть использовано для точного и долговременного измерения механических усилий или деформаций конструкций в самых различных областях техники. Заявленный индукционный датчик силы содержит трансформатор механических...
Тип: Изобретение
Номер охранного документа: 0002472122
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.19ea

Устройство для дистанционного измерения давления

Устройство относится к приборостроению и может быть использовано в системах дистанционного сбора информации о давлении в различных отраслях промышленности. Техническим результатом изобретения является повышение чувствительности устройства при измерении малых фазовых сдвигов, соответствующих...
Тип: Изобретение
Номер охранного документа: 0002472126
Дата охранного документа: 10.01.2013
20.02.2013
№216.012.27d3

Силоизмерительный датчик

Изобретение относится к контрольно-измерительной технике и может быть использовано для постоянного измерения усилий в различных резьбовых соединениях строительных элементов и конструкций. Техническим результатом является повышение времени эксплуатации устройства, повышение точности измерения...
Тип: Изобретение
Номер охранного документа: 0002475715
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.283d

Способ предварительной оценки качества диагностических тестов

Изобретение относится к области диагностики технических систем. Технический результат заключается в уменьшении времени проведения диагностики технических систем. Для этого предложен способ предварительной оценки качества диагностических тестов, заключающийся в том, что на основе описания...
Тип: Изобретение
Номер охранного документа: 0002475821
Дата охранного документа: 20.02.2013
27.03.2013
№216.012.3196

Способ идентификации транспортных средств и выявления заявленных на поиск автомобилей при прохождении контрольных пунктов и устройство для его осуществления

Группа изобретений относится к области систем контроля потока транспортных средств (ТС). В способе идентификации транспортных средств и выявления заявленных на поиск автомобилей, при прохождении ТС контрольных пунктов сравнивают коды сигналов, принятых на контрольных пунктах, с кодами...
Тип: Изобретение
Номер охранного документа: 0002478232
Дата охранного документа: 27.03.2013
20.05.2013
№216.012.4018

Система защиты от несанкционированного доступа для транспортных средств

Изобретение относится к транспортной технике и предназначена для использования с целью предотвращения несанкционированного доступа к транспортным средствам, в частности автомобилям. Система содержит логический модуль (1), считыватель (2) транспондера, транспондер (3), блок (4) памяти...
Тип: Изобретение
Номер охранного документа: 0002481978
Дата охранного документа: 20.05.2013
27.07.2013
№216.012.5a95

Способ дистанционного обнаружения вещества

Использование: для поиска и обнаружения наркотиков и взрывчатых веществ посредством магнитного резонанса. Сущность: заключается в том, что осуществляют электромагнитное зондирование предполагаемого места закладки наркотического вещества плоскополяризованным сигналом и прием сигналов с правой и...
Тип: Изобретение
Номер охранного документа: 0002488810
Дата охранного документа: 27.07.2013
20.08.2013
№216.012.6246

Кодовая шкала

Изобретение относится к измерительной технике, в частности к аналого-цифровому преобразованию, а именно к кодовым шкалам преобразователей угла поворота вала в код. Техническим результатом является уменьшение габаритов и массы устройства. Кодовая шкала содержит m информационных кодовых дорожек и...
Тип: Изобретение
Номер охранного документа: 0002490790
Дата охранного документа: 20.08.2013
10.09.2013
№216.012.68fc

Способ контроля движения специальных транспортных средств

Изобретение относится к области контроля движения городского наземного транспорта, мусоровозов, обеспечивающих вывоз бытового и промышленного мусора на специальные свалки или в места их переработки, инкассаторских машин, перевозящих денежные средства из банка различным организациям и из...
Тип: Изобретение
Номер охранного документа: 0002492523
Дата охранного документа: 10.09.2013
27.10.2013
№216.012.7afd

Способ обнаружения и идентификации разыскиваемых транспондеров из множества пассивных транспондеров и система для его осуществления

Предлагаемые способ и система относятся к системам радиочастотной идентификации подвижных и неподвижных объектов (RFID-системы). Технической задачей изобретения является расширение функциональных возможностей известных технических решений путем автоматического определения местоположения...
Тип: Изобретение
Номер охранного документа: 0002497147
Дата охранного документа: 27.10.2013
Показаны записи 1-10 из 58.
10.01.2013
№216.012.19e6

Индукционный датчик силы

Заявленное изобретение относится к области измерительной техники и может быть использовано для точного и долговременного измерения механических усилий или деформаций конструкций в самых различных областях техники. Заявленный индукционный датчик силы содержит трансформатор механических...
Тип: Изобретение
Номер охранного документа: 0002472122
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.19ea

Устройство для дистанционного измерения давления

Устройство относится к приборостроению и может быть использовано в системах дистанционного сбора информации о давлении в различных отраслях промышленности. Техническим результатом изобретения является повышение чувствительности устройства при измерении малых фазовых сдвигов, соответствующих...
Тип: Изобретение
Номер охранного документа: 0002472126
Дата охранного документа: 10.01.2013
20.02.2013
№216.012.27d3

Силоизмерительный датчик

Изобретение относится к контрольно-измерительной технике и может быть использовано для постоянного измерения усилий в различных резьбовых соединениях строительных элементов и конструкций. Техническим результатом является повышение времени эксплуатации устройства, повышение точности измерения...
Тип: Изобретение
Номер охранного документа: 0002475715
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.283d

Способ предварительной оценки качества диагностических тестов

Изобретение относится к области диагностики технических систем. Технический результат заключается в уменьшении времени проведения диагностики технических систем. Для этого предложен способ предварительной оценки качества диагностических тестов, заключающийся в том, что на основе описания...
Тип: Изобретение
Номер охранного документа: 0002475821
Дата охранного документа: 20.02.2013
27.03.2013
№216.012.3196

Способ идентификации транспортных средств и выявления заявленных на поиск автомобилей при прохождении контрольных пунктов и устройство для его осуществления

Группа изобретений относится к области систем контроля потока транспортных средств (ТС). В способе идентификации транспортных средств и выявления заявленных на поиск автомобилей, при прохождении ТС контрольных пунктов сравнивают коды сигналов, принятых на контрольных пунктах, с кодами...
Тип: Изобретение
Номер охранного документа: 0002478232
Дата охранного документа: 27.03.2013
20.05.2013
№216.012.4018

Система защиты от несанкционированного доступа для транспортных средств

Изобретение относится к транспортной технике и предназначена для использования с целью предотвращения несанкционированного доступа к транспортным средствам, в частности автомобилям. Система содержит логический модуль (1), считыватель (2) транспондера, транспондер (3), блок (4) памяти...
Тип: Изобретение
Номер охранного документа: 0002481978
Дата охранного документа: 20.05.2013
27.05.2013
№216.012.43a7

Способ обнаружения местонахождения засыпанных биообъектов или их останков и устройство для его осуществления

Использование: для поиска живых людей или их останков в районах землетрясений и взрывов жилых домов в результате утечки бытового газа, в завалах и укрытиях, а также в альпинизме при поиске людей, засыпанных, например, снежными лавинами или горными обвалами. Сущность: устройство, реализующее...
Тип: Изобретение
Номер охранного документа: 0002482896
Дата охранного документа: 27.05.2013
27.07.2013
№216.012.5a95

Способ дистанционного обнаружения вещества

Использование: для поиска и обнаружения наркотиков и взрывчатых веществ посредством магнитного резонанса. Сущность: заключается в том, что осуществляют электромагнитное зондирование предполагаемого места закладки наркотического вещества плоскополяризованным сигналом и прием сигналов с правой и...
Тип: Изобретение
Номер охранного документа: 0002488810
Дата охранного документа: 27.07.2013
20.08.2013
№216.012.6246

Кодовая шкала

Изобретение относится к измерительной технике, в частности к аналого-цифровому преобразованию, а именно к кодовым шкалам преобразователей угла поворота вала в код. Техническим результатом является уменьшение габаритов и массы устройства. Кодовая шкала содержит m информационных кодовых дорожек и...
Тип: Изобретение
Номер охранного документа: 0002490790
Дата охранного документа: 20.08.2013
10.09.2013
№216.012.68fc

Способ контроля движения специальных транспортных средств

Изобретение относится к области контроля движения городского наземного транспорта, мусоровозов, обеспечивающих вывоз бытового и промышленного мусора на специальные свалки или в места их переработки, инкассаторских машин, перевозящих денежные средства из банка различным организациям и из...
Тип: Изобретение
Номер охранного документа: 0002492523
Дата охранного документа: 10.09.2013
+ добавить свой РИД