×
10.03.2014
216.012.aa42

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КРИСТАЛЛИЧЕСКОЙ ФАЗЫ В АМОРФНЫХ ПЛЕНКАХ НАНОРАЗМЕРНОЙ ТОЛЩИНЫ

Вид РИД

Изобретение

Аннотация: Использование: для определения кристаллической фазы в аморфных пленках наноразмерной толщины. Сущность заключается в том, что выполняют бомбардировку поверхности пучком ионов и регистрацию интенсивности отраженных ионов, при этом анализируемую поверхность бомбардируют ионами инертного газа с энергией менее 100 эВ и регистрируют энергетический спектр отраженных ионов в диапазоне энергий, больше энергии первичных ионов, затем по энергиям пиков парного соударения в полученном спектре определяют типы атомов в одном верхнем монослое атомов, по наличию пика с энергией, равной энергии бомбардирующих ионов, судят о наличии кристаллической фазы на аморфной или аморфизованной поверхности, в том числе в пленке наноразмерной толщины, а по отношению величин указанного пика без потерь энергии к пику или пикам парного соударения определяют поверхностную концентрацию кристаллической фазы на аморфной или аморфизованной поверхности. Технический результат: уменьшение глубины анализируемого слоя до субнаноразмерных величин, повышение достоверности результатов анализа и повышение совместимости аппаратуры для реализации способа с другими методами анализа и технологическим оборудованием. 2 ил.
Основные результаты: Способ определения кристаллической фазы в аморфных пленках наноразмерной толщины, заключающийся в бомбардировке поверхности пучком ионов и регистрации интенсивности отраженных ионов, отличающийся тем, что анализируемую поверхность бомбардируют ионами инертного газа с энергией менее 100 эВ и регистрируют энергетический спектр отраженных ионов в диапазоне энергий, больше энергии первичных ионов, затем по энергиям пиков парного соударения в полученном спектре определяют типы атомов в одном верхнем монослое атомов, по наличию пика с энергией, равной энергии бомбардирующих ионов, судят о наличии кристаллической фазы на аморфной или аморфизованной поверхности, в том числе в пленке наноразмерной толщины, а по отношению величин указанного пика без потерь энергии к пику или пикам парного соударения определяют поверхностную концентрацию кристаллической фазы на аморфной или аморфизованной поверхности.

Предлагаемое изобретение относится к области нано- и микроэлектроники и аналитического приборостроения и может быть использовано при разработке и исследований свойств пленочных структур на аморфных и кристаллических материалах.

Известен способ определения кристаллического состояния поверхности, заключающийся в облучении поверхности электронным пучком и регистрации отраженных электронов (дифракция медленных электронов). Недостатком известного метода является малая совместимость аналитических устройств для его реализации с устройствами для других методов анализа или с технологическим оборудованием при вакуумных методах обработки. Анализатор аппаратуры метода дифракции медленных электронов занимает около исследуемого объекта телесный угол более 120 градусов, что затрудняет встраивание других аналитических устройств. Результаты измерений содержат информацию о трансляционной симметрии и не содержат сведений о типах атомов поверхности [Черепин В.Т., Васильев М.А. Методы и приборы для анализа поверхности материалов. Справочник. - Киев: Наукова думка, 1982. - 600 с.].

Наиболее близким к предлагаемому изобретению является способ определения кристаллической фазы в аморфных пленках, заключающийся в бомбардировке поверхности пучком ионов и регистрации интенсивности отраженных ионов. Этот способ, называемый также методом протонографии, реализуется с использованием протонов высоких (более 100 кэВ) на основе резерфордовского рассеяния и имеет большую глубину анализируемого слоя, а именно доли микрометра, что выходит за пределы нанотехнологических размерностей и аналитических требований микроэлектроники [2. Лейман К. Взаимодействие излучения с твердым телом и образование элементарных дефектов. / Пер. с англ. Г.И.Бабкина. - М.: Атомиздат, 1979. - 296 с.; 3. Петров Н.Н., Аброян И.А. Диагностика поверхности с помощью ионных пучков. Изд. ЛГУ, 1977. 160 с.].

Технический результат направлен на уменьшение глубины анализируемого слоя до субнаноразмерных величин, повышение достоверности результатов анализа и повышение совместимости аппаратуры для его реализации с другими методами анализа и технологическим оборудованием.

Технический результат достигается тем, что в способе определения кристаллической фазы в аморфных пленках, заключающемся в бомбардировке поверхности пучком ионов и регистрации интенсивности потока отраженных ионов, при этом анализируемую поверхность бомбардируют ионами инертного газа с энергией в гипертермальном диапазоне (менее 100 эВ) и регистрируют энергетический спектр отраженных ионов в диапазоне энергий, больше энергии первичных ионов, затем по энергиям пиков парного соударения в полученном спектре определяют типы атомов в одном верхнем монослое атомов, по наличию пика с энергией, равной энергии бомбардирующих ионов, судят о наличии кристаллической фазы на аморфной или аморфизованной поверхности кристаллического материала, в том числе в пленке субнаноразмерной толщины, а по отношению величин указанного пика без потерь энергии к пику или пикам парного соударения определяют поверхностную концентрацию кристаллической фазы на аморфной или аморфизованной поверхности.

На Фиг.1 представлена схема устройства для осуществления предлагаемого способа.

На Фиг.2 изображены энергетические спектры ионов Ne+0=28.8 эВ), рассеянных поверхностью InAs(l00): а) кристаллическая поверхность; б) поверхность после аморфизации ионным пучком Ne, при дозе ионов D=1017 ион·см-2, Е0=2 кэВ.

Анализируемый объект (далее - объект) представляет собой материал, на поверхности которого содержатся области с кристаллической и аморфной структурами субнаноразмерной толщины, определяемой единицами моноатомных слоев.

Устройство для реализации способа определения структурно- фазовых состояний и превращений поверхности содержит вакуумную измерительную камеру 1 с аналитическими устройствами и измерительную систему 7. В вакуумной камере расположены вакуумный манипулятор с держателем 2 для анализируемого объекта 3, ионная пушка 4 гипертермальных энергий ионов пучка (Е0=2-100 эВ), энергетический анализатор 5 на указанный диапазон энергий, ионная пушка 6 низких энергий E=0.1-10 кэВ для модификации структурного состояния поверхности. Измерительная система 7 содержит импульсный усилитель 8 и регистрирующее устройство 9 и позволяет измерять токи на выходе коллектора в пределах 10-12-10-19 A (1-107 имп/с).

Ионная пушка 4 предназначена для облучения анализируемой поверхности пучком ионов гипертермальных энергий с заданной массой и энергией. Энергетический анализатор 5 с коллектором в виде вторичного электронного умножителя предназначен для выделения энергетического спектра из потока ионов гипертермальных энергий, рассеянных от поверхности с разными энергиями и под разными углами. Ионная пушка низких энергий 6 предназначена для аморфизации поверхности (при больших плотностях тока пучка) и для совершенствования кристаллической структуры (при малых плотностях тока пучка). Измерительная система 7 имеет широкополосный импульсный усилитель 8, соединенный с коллектором анализатора, и регистрирующее устройство 9 для усиления и счета импульсов.

Измерительная система 7 имеет широкополосный импульсный усилитель 8, соединенный с коллектором анализатора, и регистрирующее устройство 9 для усиления и счета импульсов.

Принцип действия устройства для анализа структурного состояния наноразмерных слоев. С помощью ионной пушки 5 анализируемая поверхность объекта 4 облучается зондирующим ионным пучком гипертермальных энергий E<100 эВ. Часть падающих на поверхность ионов рассеиваются (отражаются) от атомов поверхности под разными углами с разными энергиями в результате однократного парного упругого соударения с атомами поверхности без изменения внутреннего состояния иона и атома поверхности. При таком соударении иона с атомом из-за сравнимости их масс происходит изменение их кинетических энергий. При рассеянии на определенный угол налетающий ион в результате соударения передает часть энергии атому. Величина передаваемой энергии тем больше, чем легче атом поверхности. Измерив энергию рассеянных под определенным углом ионов и зная массу и начальную энергию иона и угол рассеяния от первоначального направления, можно по формулам парного соударения шаров определить массу атомов поверхности, от которых рассеиваются ионы.

В данной работе впервые установлено, что при бомбардировке поверхности ионами гипертермальных энергий часть ионов отражается от поверхности без потерь энергии и без потери заряда. Эта группа ионов создает в спектре пик при энергии, равной энергии первичных ионов. Впервые установлено, что этот пик в спектре присутствует для кристаллических материалов и не наблюдается как на аморфных материалах, так и на кристаллических материалах с аморфизованной поверхностью. Величина пика без потерь энергии, указывающая на кристаллическое состояние поверхности, относительно пика парного рассеяния увеличивается с уменьшением энергии первичных ионов. Отношение пика без потерь энергии к величине пика парного рассеяния при постоянной энергии первичных ионов увеличивается с увеличением кристаллической фазы.

На Фиг.2 приведены спектры рассеянных ионов гипертермальных ионов поверхности кристаллического арсенида индия InAs(l00) (а) и поверхности кристаллического InAs, аморфизованной ионным пучком (b) с энергией 2 кэВ. Известно, что толщина аморфизованного слоя при таких энергиях аморфизации составляет не более 100 Å. Отсутствие пика без потерь энергии в спектре (b) гипетермальных энергий указывает на то, что поверхность аморфизована, и кристаллическая фаза отсутствует. Аморфизация поверхности ионным пучком с энергией 2 кэВ указывает на то, что толщина аморфизованного слоя не превышает десятков ангстрем. Наличие пика без потерь энергии в спектре рассеянных ионов и его обусловленность решеточной структурой впервые установлено авторами.

Сопоставительный анализ с прототипом показал, что глубина анализируемого слоя предлагаемого метода ограничивается пределом наноразмерных толщин (100 Å). Анализ состава, проводимый с помощью парных соударений ионов с атомами поверхности, по толщине составляет 1 атомный слой. В сравнении с прототипом толщина анализируемого слоя меньше не менее чем в 10 раз, если принять нижний предел толщины анализ 0.1 мкм.

Способ определения кристаллической фазы в аморфных пленках наноразмерной толщины, заключающийся в бомбардировке поверхности пучком ионов и регистрации интенсивности отраженных ионов, отличающийся тем, что анализируемую поверхность бомбардируют ионами инертного газа с энергией менее 100 эВ и регистрируют энергетический спектр отраженных ионов в диапазоне энергий, больше энергии первичных ионов, затем по энергиям пиков парного соударения в полученном спектре определяют типы атомов в одном верхнем монослое атомов, по наличию пика с энергией, равной энергии бомбардирующих ионов, судят о наличии кристаллической фазы на аморфной или аморфизованной поверхности, в том числе в пленке наноразмерной толщины, а по отношению величин указанного пика без потерь энергии к пику или пикам парного соударения определяют поверхностную концентрацию кристаллической фазы на аморфной или аморфизованной поверхности.
СПОСОБ ОПРЕДЕЛЕНИЯ КРИСТАЛЛИЧЕСКОЙ ФАЗЫ В АМОРФНЫХ ПЛЕНКАХ НАНОРАЗМЕРНОЙ ТОЛЩИНЫ
СПОСОБ ОПРЕДЕЛЕНИЯ КРИСТАЛЛИЧЕСКОЙ ФАЗЫ В АМОРФНЫХ ПЛЕНКАХ НАНОРАЗМЕРНОЙ ТОЛЩИНЫ
Источник поступления информации: Роспатент

Показаны записи 101-101 из 101.
04.04.2018
№218.016.36c8

Эмиттер с отрицательным электронным сродством

Использование: для применения в фотоэлектронных преобразователей в инфракрасном диапазоне спектра. Сущность изобретения заключается в том, что эмиттер с отрицательным электронным сродством для фотоэлектронного преобразователя инфракрасного диапазона, содержащий прозрачное окно, полупрозрачную...
Тип: Изобретение
Номер охранного документа: 0002646527
Дата охранного документа: 05.03.2018
Показаны записи 111-120 из 128.
26.06.2019
№219.017.9287

Тренажер подготовки специалистов связи

Предлагаемое изобретение относится к области радиосвязи и направлено на сокращение сроков подготовки специалистов связи. Технический результат предлагаемого изобретения направлен на приобретение специалистами навыков обеспечения связи в сложных условиях, приближенных к реальным, на этапе...
Тип: Изобретение
Номер охранного документа: 0002692266
Дата охранного документа: 24.06.2019
28.06.2019
№219.017.9962

Нагреваемая аккумуляторная батарея

Изобретение относится к области электротехники, а именно к нагреваемой аккумуляторной батарее, и может быть использовано для повышения готовности транспортных средств в условиях низких температур. Нагреваемая аккумуляторная батарея содержит корпус, блоки положительных и отрицательных...
Тип: Изобретение
Номер охранного документа: 0002692694
Дата охранного документа: 26.06.2019
03.07.2019
№219.017.a429

Способ очистки металлургического кремния от примесей

Изобретение относится к очистке металлургического кремния до степени чистоты солнечного кремния. Сущность изобретения заключается в расплавлении кремния в вакуумной камере и регулировке температуры расплава, при этом обеспечивается давление порядка 0,0001 бар и поддерживается температура...
Тип: Изобретение
Номер охранного документа: 0002693172
Дата охранного документа: 01.07.2019
23.07.2019
№219.017.b6d8

Высоковольтный электростатический генератор

Изобретение относится к области электротехники и направлено на упрощение конструкции высоковольтного электростатического генератора и повышение его электропрочности при заданных размерах. Технический результат достигается тем, что привод выполнен в виде электрически соединенного с землей...
Тип: Изобретение
Номер охранного документа: 0002695108
Дата охранного документа: 19.07.2019
17.08.2019
№219.017.c15a

Система управления циркуляцией теплоносителя в жидкостной системе охлаждения

Изобретение относится к машиностроению, в частности к двигателестроению. Система управления циркуляцией теплоносителя в жидкостной системе охлаждения содержит установленный в теплообменных каналах двигателя жидкостный насос с приводом от электродвигателя и радиатор с вентилятором, сообщающийся...
Тип: Изобретение
Номер охранного документа: 0002697597
Дата охранного документа: 15.08.2019
02.10.2019
№219.017.cbe2

Способ скоростной фланговой стрельбы орудийного звена двухзвенной боевой машины

Изобретение относится к устройствам для пуска снарядов. Способ скоростной фланговой стрельбы заключается в том, что блокируется взаимная подвижность между звеньями двухзвенной боевой машины с одновременным прилеганием к поверхности опорных элементов обоих звеньев машины. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002701627
Дата охранного документа: 30.09.2019
02.10.2019
№219.017.cbfd

Способ скоростной стрельбы башенной установки пушечного вооружения

Изобретение относится к орудийным установкам. Способ уменьшения механических напряжений в башенной установке при скоростной стрельбе, при котором кинетическая энергия движения ствола при откате преобразуется в электрическую энергию, которая преобразуется в тепловую энергию. При откате ствола...
Тип: Изобретение
Номер охранного документа: 0002701630
Дата охранного документа: 30.09.2019
02.10.2019
№219.017.ccb5

Многослойное коррозионностойкое покрытие на основе бинарного сплава тугоплавкого металла ni-w

Изобретение относится к области защитных металлических покрытий, например, для защиты изделий из стали, меди и ее сплавов от коррозии, и может быть использовано для улучшения эксплуатационных и потребительских свойств изделий. Многослойное коррозионностойкое покрытие на основе бинарного сплава...
Тип: Изобретение
Номер охранного документа: 0002701607
Дата охранного документа: 30.09.2019
06.10.2019
№219.017.d331

Способ повышения эффективности очистки кремния

Изобретение относится к технологии очистки кремния, в частности к получению кремния, используемого для производства фотоэлектрических преобразователей, и может быть использовано для повышения скорости прямой очистки кремния. Сущность изобретения заключается в использовании реверсного...
Тип: Изобретение
Номер охранного документа: 0002702173
Дата охранного документа: 04.10.2019
24.11.2019
№219.017.e5d4

Способ очистки металлургического кремния от углерода

Изобретение относится к металлургии и может быть использовано для прямой очистки металлургического кремния от углерода без использования экологически опасных технологических операций до степени чистоты солнечного кремния, используемого в фотоэлектрических преобразователях солнечной энергии в...
Тип: Изобретение
Номер охранного документа: 0002707053
Дата охранного документа: 21.11.2019
+ добавить свой РИД