×
10.02.2014
216.012.9ebd

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МЕДНОГО ПОКРЫТИЯ НА КЕРАМИЧЕСКОЙ ПОВЕРХНОСТИ ГАЗОДИНАМИЧЕСКИМ НАПЫЛЕНИЕМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения адгезионно-прочных медных покрытий на керамической поверхности с использованием газодинамического напыления. Проводят предварительное напыление подслоя из оксида меди (1) с последующим напылением медного покрытия и термическую обработку покрытия. Напыление материала подслоя и медного покрытия ведут при давлении воздуха в качестве рабочего газа в интервале 0,5-1,0 МПа, причем для подслоя при температуре в пределах 500-600°С, для медного покрытия - в пределах 300-400°С, а термическую обработку медного покрытия проводят в интервале температур 1065-1070°С в течение 1,0-3,0 часов. Обеспечивается получение медных покрытий, имеющих прочность на отрыв не ниже 50 МПа. 1 пр.
Основные результаты: Способ получения медного покрытия на керамической поверхности газодинамическим напылением, включающий предварительное напыление материала подслоя с последующим напылением медного покрытия и термическую обработку покрытия, отличающийся тем, что в качестве материала подслоя используют оксид меди(I), при этом напыление материала подслоя и медного покрытия ведут при давлении воздуха в качестве рабочего газа в интервале 0,5-1,0 МПа, причем для подслоя при температуре в пределах 500-600°С, для медного покрытия - в пределах 300-400°С, а термическую обработку медного покрытия ведут в интервале температур 1065-1070°С в течение 1,0-3,0 ч.

Изобретение относится к способу получения адгезионно-прочных медных покрытий на поверхности оксида алюминия с использованием газодинамического напыления. Способ может быть использован для медной металлизации керамических подложек.

Известен способ нанесения металлических покрытий на крупноразмерные подложки в вакууме (патент RU №2062818, МПК 6 С23С 14/34, С03С 17/06), которые используется для радиочастотного и оптического диапазона. По этому способу напыление осуществляется в вакуумной камере с использованием источника металлической плазмы. Этот способ не позволяет формировать покрытия на деталях, имеющих размеры более чем габариты вакуумной камеры, имеет низкую производительность и сложен в автоматизации процесса.

Известен способ нанесения покрытий плазменным напылением (Кудинов В.В., Иванов В.И. Нанесение плазмой тугоплавких покрытий. - М.: Машиностроение, 1981. - с.159-165). По этому способу материал покрытия в виде порошка либо проволоки вводится в высокотемпературную плазменную струю, где он интенсивно нагревается, плавится, распыляется и при взаимодействии с поверхностью обрабатываемой детали образует покрытие.

Основными недостатками являются температурные напряжения в покрытии и подложке, приводящие к температурным поводкам и искажению профиля, а также невозможность использовать высокодисперсные наноструктурные композиты, интенсивное взаимодействие частиц с окружающей средой, приводящее к окислению и испарению высокодисперсных порошков.

Известен способ нанесения медного покрытия с использованием газодинамического напыления меди на поверхность из оксида алюминия (Kerstin-Raffaela Donner, Frank Gaertner, and Thomas Klassen "Metallization of Thin A1203 Layers in Power Electronics Using Cold Gas Spraying" Journal of Thermal Spray Technology 2011, Volume 20, Numbers 1-2, Pages 299-306). Согласно этому способу напыление меди проводят в струе азота при давлении 3,0 МПа и температуре 600°С. В качестве подслоя на поверхность оксида алюминия напылялся алюминий газодинамическим способом при температуре 420°С и давлении азота 3,5 МПа. Для увеличения адгезии медного покрытия использовали нагрев подложек в процессе напыления при температуре 280°С.

Основным недостатком указанного способа является повышенные температуры напыления меди 600°С, что приводит к частичному окислению меди за счет кислорода, находящегося в азоте в качестве примеси, а также высокие значения давления азота, что усложняет приборное оформление способа напыления.

Наиболее близким к предлагаемому способу является способ получения медных покрытий (В. Wielage, Т. Grund, С. Rupprecht, S. Kuemmel «New method for producing power electronic circuit boards by cold-gas spraying and investigation of adhesion mechanisms» Surface & Coatings Technology 205 (2010) p.1115-1118), в котором процесс газодинамического напыления подслоя алюминия и слоя меди проводят при давлении азота 2,8 МПа и температуре азота 300°С. Последующая термическая обработка подложек проводилась при 300°С в азоте в течение 10 час., что обеспечивало среднее усилие на отрыв (адгезию) медного покрытия равное 15±3 МПа.

Данный способ не позволяет получить прочность на отрыв (адгезию) медных покрытий больше, чем 20 МПа, что делает этот способ невостребованным в технологии для медной металлизации керамических покрытий, для которой требуется прочность на отрыв не хуже 50МПа. Использование азота в качестве рабочего газа не позволяет снизить затраты на производство медных покрытий по сравнению с использованием воздуха в качестве рабочего газа.

Предлагаемым изобретением решается задача создания способа, обеспечивающего получение медных покрытий газодинамическим напылением с использованием воздуха в качестве рабочего газа, для которых прочность на отрыв (адгезия) не хуже 50 МПа.

Указанный технический результат достигается тем, что в способе получения медного покрытия газодинамическим напылением предварительно напыляется подслой оксида меди(I), при этом в качестве рабочего газа используется воздух. Повышенные значения адгезии медного покрытия достигается термообработкой в инертном газе.

Для получения заявляемого технического результата в предлагаемом способе напыления медных покрытий, включающем напыление подслоя материала на поверхность оксида алюминия и обеспечивающего адгезию медного покрытия к поверхности оксида алюминия, используется предварительное напыление подслоя из материала, отличного от алюминия. Новым является то, что в качестве подслоя используется оксид меди(I), который напыляется в интервале давлений 0,5-1,0 МПа в интервале температур 500-600°С. Для получения адгезии более 50 МПа используют термообработку медного покрытия в инертной атмосфере в интервале температур 1065-1070°С. Увеличение прочности на отрыв (адгезии) медного покрытия за счет термообработки в инертном газе в интервале температур 1065-1070°С обусловлено образованием эвтектического расплава в системе Cu-Cu2O при температуре 1064°С.

Указанные признаки не выявлены в других технических решениях при изучении уровня данной области техники и, следовательно, решение является новым и имеет изобретательский уровень. Пример.

Навеску оксида меди(I) 5 г помещают в дозатор известного устройства и проводят известным способом (патент RU №2399695 МПК 6 С23С 24/04, В05В 7/14) газодинамическое напыление материала на поверхность из оксида алюминия при давлении воздуха в пределах 0,5-1,0 МПа и нагретого до температуры в пределах 500-600°С. В результате получают равномерное покрытие оксида меди(I) на поверхности оксида алюминия с толщиной в пределах 5-10 мкм. Далее в дозатор помещают навеску меди 5 г и в таком же режиме напыляют медь поверх напыленного оксида меди(I) при давление воздуха в пределах 0,5-1,0 МПа и температуры воздуха в пределах 300-400°С. В результате процесса напыления получают равномерное медное покрытие на поверхности оксида меди(1) с толщиной в пределах до 400 мкм.

Далее проводят термическую обработку медного покрытия в инертной атмосфере при температуре в пределах 1065-1070°С в течение 1-3 часов. В результате термообработки медное покрытие обладает прочностью на отрыв не хуже 50 МПа. Таким образом, в условиях заявленного способа можно получить медное покрытие на поверхности оксида алюминия, для которого прочность на отрыв (адгезия) в 4 раза больше по сравнению с прототипом. Измерение прочности на отрыв (адгезии) медных покрытий проводили на отрывной машине Zwick/Roell 005 методом нормального отрыва по ГОСТ 28089.

Источники информации:

1. Патент RU №2062818, МПК 6 С23С 14/34, С03С 17/06

2. Кудинов В.В., Иванов В.И. Нанесение плазмой тугоплавких покрытий. - М.: Машиностроение, 1981. - с.159-165;

3. Kerstin-Raffaela Donner, Frank Gaertner, and Thomas Klassen "Metallization of Thin A1203 Layers in Power Electronics Using Cold Gas Spraying" Journal of Thermal Spray Technology 2011, Volume 20, Numbers 1-2, Pages 299-306;

4. В. Wielage, T. Grund, С. Rupprecht, S. Kuemmel «New method for producing power electronic circuit boards by cold-gas spraying and investigation of adhesion mechanisms» Surface & Coatings Technology 205 (2010) p.1115-1118 - прототип;

5. Патент RU №2399695, МПК 6 С23С 24/04, В05В 7/14

Способ получения медного покрытия на керамической поверхности газодинамическим напылением, включающий предварительное напыление материала подслоя с последующим напылением медного покрытия и термическую обработку покрытия, отличающийся тем, что в качестве материала подслоя используют оксид меди(I), при этом напыление материала подслоя и медного покрытия ведут при давлении воздуха в качестве рабочего газа в интервале 0,5-1,0 МПа, причем для подслоя при температуре в пределах 500-600°С, для медного покрытия - в пределах 300-400°С, а термическую обработку медного покрытия ведут в интервале температур 1065-1070°С в течение 1,0-3,0 ч.
Источник поступления информации: Роспатент

Показаны записи 41-46 из 46.
13.02.2018
№218.016.29ae

Микросферическая газопроницаемая мембрана и способ ее получения

Изобретение относится к области диффузионно-мембранных технологий, направлено на получение селективных мембран и может быть использовано в газоперерабатывающей, нефтехимической, химической и других отраслях промышленности для извлечения и концентрирования целевых компонентов, например гелия и...
Тип: Изобретение
Номер охранного документа: 0002443463
Дата охранного документа: 27.02.2012
04.04.2018
№218.016.30ef

Люминесцентный детектор катионов щелочных металлов

Изобретение относится к химии пористых металлорганических координационных полимеров и может быть использовано в качестве люминесцентного детектора катионов щелочных металлов. Материал имеет состав (HO)[Zn(ur)(Hfdc)(fdc)]⋅G, где ur - уротропин, fdc=2,5-фурандикарбоксилат, G=4DMF⋅14HO⋅2Hfdc⋅2ur,...
Тип: Изобретение
Номер охранного документа: 0002644894
Дата охранного документа: 14.02.2018
28.08.2018
№218.016.8005

Способ получения люминесцентного кислород-чувствительного материала

Изобретение относится к получению новых люминесцентных кислород-чувствительных материалов, которые могут быть использованы в качестве сенсоров на кислород. Предложен способ получения люминесцентного кислород-чувствительного материала с использованием полимерной матрицы - фторопласта-32Л и...
Тип: Изобретение
Номер охранного документа: 0002665003
Дата охранного документа: 24.08.2018
10.04.2019
№219.017.0989

Способ электрохимического извлечения серебра из серебросодержащих токопроводящих отходов

Изобретение относится к гидрометаллургии благородных металлов, в частности к способу электрохимического извлечения серебра из серебросодержащих токопроводящих отходов, и может быть использовано при переработке различных видов полиметаллического сырья (лом радиоэлектронной и вычислительной...
Тип: Изобретение
Номер охранного документа: 0002467082
Дата охранного документа: 20.11.2012
10.04.2019
№219.017.09dc

Однородные наночастицы никеля, покрытые оболочкой, и способ их получения

Изобретение относится к нанотехнологии. Однородные наночастицы никеля покрыты оболочкой, состоящей из углеродных слоев. Наночастицы никеля имеют сферическую форму и размер 4-5 нм. Для получения однородных наночастиц никеля, покрытых оболочкой, термическому разложению в инертной атмосфере...
Тип: Изобретение
Номер охранного документа: 0002466098
Дата охранного документа: 10.11.2012
26.06.2019
№219.017.9265

Способ получения материала, обладающего фотоиндуцированной антибактериальной активностью, на основе фторопласта и люминесцентного кластерного комплекса

Изобретение относится к способу получения материалов, обладающих антибактериальной активностью. Способ включает растворение октаэдрических кластерных комплексов молибдена и вольфрама ((CH)N)[{MI}L], где М=Mo, W; L=I, CF,COO или МоВr, и полимера, выбранного из фторопласта-32Л и фторопласта-42, с...
Тип: Изобретение
Номер охранного документа: 0002692371
Дата охранного документа: 24.06.2019
Показаны записи 51-56 из 56.
10.07.2019
№219.017.ac3d

Способ работы сверхзвукового пульсирующего прямоточного воздушно-реактивного двигателя и сверхзвуковой пульсирующий прямоточный воздушно-реактивный двигатель

Способ работы сверхзвукового пульсирующего прямоточного воздушно-реактивного двигателя включает подачу и сжигание топлива в сверхзвуковом потоке в расширяющемся канале камеры сгорания. Подачу и сжигание топлива осуществляют в нескольких расширяющихся участках камеры сгорания в...
Тип: Изобретение
Номер охранного документа: 0002347098
Дата охранного документа: 20.02.2009
10.07.2019
№219.017.adf2

Устройство газодинамического напыления порошковых материалов

Изобретение относится к области металлургии, а именно к устройствам газодинамического напыления порошковых материалов, и может быть использовано в машиностроении и других отраслях промышленности для получения покрытий, придающих различные свойства обрабатываемым поверхностям. Устройство...
Тип: Изобретение
Номер охранного документа: 0002334827
Дата охранного документа: 27.09.2008
10.07.2019
№219.017.b07d

Аэродинамическая труба

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока газа в диапазоне чисел Маха 4-20 в лабораторных условиях. Устройство содержит установленные симметрично с образованием общей форкамеры два дифференциальных...
Тип: Изобретение
Номер охранного документа: 0002436058
Дата охранного документа: 10.12.2011
10.07.2019
№219.017.b084

Импульсная аэродинамическая труба

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока газа в диапазоне чисел Маха 4-20 в лабораторных условиях. Труба содержит форкамеру с электродами, отделенную от газодинамического тракта трубы диафрагмой, и поршень,...
Тип: Изобретение
Номер охранного документа: 0002439523
Дата охранного документа: 10.01.2012
17.04.2020
№220.018.159d

Способ получения электрохимическим оксидированием покрытий на вентильных металлах или сплавах

Изобретение относится к получению электрохимическим оксидированием покрытий на вентильных металлах или сплавах. В способе предварительно на поверхности обрабатываемой детали формируют технологический слой толщиной, обеспечивающей между электролитом и формируемым покрытием тепловую развязку и,...
Тип: Изобретение
Номер охранного документа: 0002718820
Дата охранного документа: 14.04.2020
24.05.2023
№223.018.6fb6

Способ создания объемного изделия на основе гетерогенного материала с заданными физико-механическими характеристиками посредством управляемого лазерного воздействия

Изобретение относится к порошковой металлургии, в частности к технологии лазерного синтеза объемных изделий из порошковых композиций. Может использоваться в различных областях машиностроения. На поверхность подложки наносят слои порошковой композиции, содержащей металлический порошок и...
Тип: Изобретение
Номер охранного документа: 0002795957
Дата охранного документа: 15.05.2023
+ добавить свой РИД