×
27.01.2014
216.012.9ba3

ВАНАДИЕВАЯ КАТАЛИТИЧЕСКАЯ СИСТЕМА ДЛЯ СОПОЛИМЕРИЗАЦИИ ЭТИЛЕНА С АЛЬФА-ОЛЕФИНАМИ (ВАРИАНТЫ) И СПОСОБ ПОЛУЧЕНИЯ СОПОЛИМЕРА ЭТИЛЕНА С АЛЬФА-ОЛЕФИНАМИ (ВАРИАНТЫ)

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002505549
Дата охранного документа
27.01.2014
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к металлоорганической химии, в частности к новым каталитическим системам сополимеризации этилена с α-олефинами и способу получения сополимеров этилена с α-олефинами. Описаны ванадиевые каталитические системы, состоящие из комплексного соединения ванадия, сокатализатора и реактиватора, где в качестве соединения ванадия используют следующие комплексы ванадия: Также описан способ получения сополимера этилена и α-олефинов с углеводородной цепью от 2 до 12 атомов углерода с использованием предложенных ванадиевых каталитических систем в среде углеводородного растворителя в интервале температур от 0 до 80°С и давлении мономеров в интервале от 0,1 до 1,1 МПа в присутствии регулятора молекулярной массы. Достигаемый технический результат выражается в увеличении активности каталитической системы, которая сохраняется в течение всего времени проведения процесса сополимеризации при низком соотношении Al/V<100, уменьшении расхода компонентов каталитической системы. Также технический результат выражается в уменьшении содержания ванадия в конечном продукте и в том, что получаемый полимер имеет статистическое распределение сомономеров и узкое молекулярно-массовое распределение. 6 н. и 9 з.п. ф-лы, 1 табл., 27 пр.
Реферат Свернуть Развернуть

Изобретение относится к каталитической системе сополимеризации этилена с α-олефинами и способу получения сополимеров этилена с α-олефинами, имеющих высокую молекулярную массу, узкое молекулярно-массовое распределение и контролируемое содержание α-олефина.

В последнее время заметно возрос интерес к сополимерам этилена с высшими α-олефинми. Фирма Dow, разработала и внедрила технологию получения сополимеров этилена и октена под названием Insite®. В качестве катализатора сополимеризации в данной технологии используют моноциклопентадиенильное производное титана, а в качестве сокатализатора - метилалюмооксан (МАО). По этой технологии также получают сополимеры этилена с октеном под торговой маркой Affinity® (содержание октена до 20 массовых %) и Engage® (содержание октена выше 20 массовых %). Известно, что фирма Еххоn производит около 30 марок этиленбутеновых и этиленгексеновых сополимеров под названием Exact® [С.С.Иванчев, Катализ в промышленности, 2002,№6, с.15-26].

В середине 20 века значительное внимание к процессу сополимеризации этилена и пропилена было обусловлено тем, что по своим свойствам, по сравнению со всеми другими известными эластомерами, сополимеры этилена и пропилена близки по некоторым свойствам к натуральному каучуку, а по некоторым и превосходят его. По эластичности, ширине области рабочих температур, устойчивости к воздействию окислителей, растворителей, тепловому старению, истиранию этиленпропиленовые резины значительно превосходят все известные синтетические каучуки [Н.М. Сеидов Новые синтетические каучуки на основе этилена и α-олефинов, Элм, Баку, 1981].

Для получения сополимеров с наилучшими свойствами необходимо обеспечить равномерное распределение мономерных звеньев в макромолекулах, узкое молекулярно-массовое распределение и отсутствие гомополимеров этилена и α-олефинов [Чирков Н.М., Матковский П.Е. Сополимеризация на комплексных катализаторах. Наука, 1974].

Первые каталитические системы для процесса сополимеризации были получены Наттой с сотр. в середине 20 века. Они представляют собой продукт взаимодействия алюминийорганического соединения и окситрихлорида ванадия [Natta G., J. Polymer Sci., 34, 21-48 (1959)]. Существенным недостатком этих систем является высокое конечное содержание металла в получаемом полимере, что удорожает его стоимость из-за проведения дополнительной очистки продукта сополимеризации перед дальнейшим использованием.

Существует каталитическая система типа Циглера-Натта для полимеризации этилена и сополимеризации этилена с α-олефинами [патент РФ 2047355], представляющая собой продукт взаимодействия аддукта хлорида магния и алифатических спиртов в присутствии галогенида ванадия в сочетании с хлорсодержащими алюминийорганическими соединениями AlRxCl3-x

Основными недостатками такой каталитической системы являются ее низкая активность при температурах ниже 50°С и высокий показатель полидисперсности получаемого продукта полимеризации - более 3,5. Кроме того, к недостаткам каталитических систем Циглера-Натта можно отнести их полицентровость, что определяет образование сополимеров с широкими молекулярно-массовыми характеристиками и значительной фракционной и композиционной неоднородностью [Чирков Н.М., Матковский П.Е. Сополимеризация на комплексных катализаторах, Наука, 1974; патент РФ 2250237].

Последней тенденцией в синтезе сополимеров этилена и α-олефинов является применение металлоценовых или постметаллоценовых каталитических систем, которые представляет собой комплексы переходных металлов, содержащие один или несколько органических лигандов. Применение таких катализаторов позволяет достигнуть высоких выходов полимера, улучшить его композиционную однородность и более гибко регулировать состав конечного продукта. Помимо этого, металлоценовые и постметаллоценовые каталитические системы имеют недостаток - требуется большое количество активатора - МАО, примерно 1000 эквивалентов, что сильно усложняет и удорожает процесс [Angew. Chem. Int. Ed. 1999, 38, 428-447].

Наиболее близким аналогом к настоящему изобретению является каталитическая система для получения сополимеров этилена с α-олефинами, описанная в работе [Organometallics 2009, 28, 1817-1825, Synthesis, Structural Characterization, and Olefin Polymerization Behavior of Vanadium(III) Complexes Bearing Tridentate Schiff Base Ligands, Ji-Qian Wu, Li Pan, Yan-Guo Li, San-Rong Liu and Yue-Sheng Li], представляющая собой соединение ванадия с феноксиминным лигандом, в сочетании с хлорсодержащими алюминийорганическими соединениями и с хлорсодержащим сложным эфиром органической кислоты. В работе исследуют активность каталитической системы в полимеризации этилена и сополимеризации этилена с гексеном. Данные катализаторы проявляют высокую активность в полимеризации этилена (20 600 кг ПЭ/мольмет*ч) при мольном соотношении Al/V=4000. При использовании такой каталитической системы получают полимер с полидисперсностью 2,00, что свидетельствует об одноцентровости каталитической системы Время испытания катализаторов во всех опытах составляет 10 минут. Расчет каталитической активности осуществляют в единицах кг полимера/мольметалла·ч, то есть выход полимера при работе катализатора в течение одного часа. Однако из литературы известно [Иванчев С.С. Успехи в создании новых катализаторов полимеризации этилена и α-олефинов // Успехи Химии 76 (7) 2007 669-690], что для гомогенных каталитических систем кинетика полимеризации характеризуется высокой скоростью в начальный момент времени, с последующим ее уменьшением.

Таким образом, в данной работе при расчете каталитической активности за первые 10 минут не учитывается ее дальнейшее снижение, и полученное значение не может быть использовано для вычисления выхода полимера при работе катализатора в течение 1 часа.

Основным недостатком этой каталитической системы является использование большого количества сокатализатора (Al/V=4000). Применение такого соотношения увеличивает активность каталитической системы, но требует тщательной отмывки продукта реакции для достижения требуемых потребительских свойств конечного продукта, а именно устойчивость к действию агрессивных веществ и зольность.

Существует способ получения полиэтилена и сополимеров этилена с α-олефинами [патент РФ 2381236] в режиме суспензии в среде углеводородного растворителя с использованием каталитической системы Циглеровского типа, которая представляет собой четыреххлористый титан, нанесенный на магнийсодержащий носитель, в сочетании с сокатализатором - триалкилалюминием. Процесс проводят при температуре 60-100°С и давлении 0,2-4,0 МПа в присутствии водорода в качестве регулятора молекулярной массы.

Недостатком вышеописанного способа является необходимость применения высоких температур и давления в связи с тем, что при более низких температурах Циглеровские катализаторы являются малоактивными как в процессах полимеризации, так и сополимеризации.

Наиболее близким по технической сущности к настоящему изобретению является способ получения сополимеров этилена с α-олефинами и сополимеров пропилена с α-олефинами [патент РФ 2250237], в присутствии гомогенной двухкомпонентной каталитической системы, содержащей диалкильные мостиковые бисинденильные металлоценовые комплексы металлов IVB группы и триалкилалюминий при мольном соотношении Al/М=50-500 в среде органического растворителя или жидкого мономера при температуре 30°С. Процесс сополимеризации проводят при мольном соотношении мономеров этилен/пропилен = 0,7/1 и общем давлении 1,1 МПа. При этом содержание α-олефинов в получаемом сополимере не превышает 17 мольных %.

Недостатком данного способа получения сополимеров является необходимость использования высокого давления при проведении процесса. Кроме того, кинетика полимеризации на циркониевых катализаторах характеризуется высокой скоростью в начальный момент времени, также отличительным свойством циркониевых систем является их непродолжительное время жизни, как правило первые 10 минут [Доклады АН 404, 57 (2005)]. При этом процесс сопровождается высоким экзотермическим эффектом, что приводит к трудностям по отводу большого количества тепла от реакционной смеси с целью поддержания ее постоянной температуры [Ethylene-propylene copolymerization with 2-Arylindene Zirconocenes, R.Kravchenko, R.M.Waymouth, Macromolecules 31 (1), 1998, 1-6]. В данном изобретении в качестве активной компоненты каталитической системы применяют дорогостоящие и требующие особых методов получения метильные комплексы циркония. Таким образом, в начальный момент времени процесс имеет нестационарный характер, что делает сложным осуществление точного контроля распределения мономерных звеньев в полимерной цепи и регулирование вхождения второго α-олефина в продукт сополимеризации.

Задачей изобретения является создание новых эффективных каталитических систем для сополимеризации этилена с α-олефинами, а также способа сополимеризации этилена с α-олефинами.

Достигаемый технический результат выражается в увеличении активности каталитической системы, которая сохраняется в течение всего времени проведения процесса сополимеризации при низком соотношении Al/V<100, уменьшении расхода компонентов каталитической системы. Также технический результат выражается в уменьшении содержания ванадия в конечном продукте и в том, что, получаемый полимер имеет статистическое распределение сомономеров и узкое молекулярно-массовое распределение.

Поставленная задача и технический результат достигаются за счет применения гомогенной ванадиевой каталитической системы, состоящей из комплексного соединения ванадия, сокатализатора и реактиватора, где в качестве соединения ванадия используют комплекс ванадия формулы:

или комплекс ванадия формулы:

или комплекс ванадия формулы:

При этом концентрация ванадия в растворе составляет от 0,001 до 0,01 г/л растворителя.

В качестве сокатализатора, необходимого для перевода комплекса ванадия в активную форму в степень окисления 3+, используется любые алюминий органические соединения общей формулой:

AlRxHaly,

где R - алкильный радикал C1-C9; Hal - галоген из числа Cl, Br или I; x равно от 1 до 3, у=3-х.

Сокатализатор используется при соотношении ванадий/сокатализатор от 1:1 до 1:100.

В процессе сополимеризации происходит восстановление активной формы соединения ванадия в неактивную для процесса сополимеризации форму. Поэтому в ходе процесса добавляют реактиватор, который необходим для перевода соединения ванадия из неактивной формы (степень окисления ванадия 2+) в активную (степень окисления ванадия 3+).

В качестве реактиватора могут использоваться любые хлорорганические соединения общей формулы:

где R - алкильный радикал C19.

Реактиватор используется при соотношении ванадий/реактиватор от 1:1 до 1:20.

Реакцию сополимеризации проводят в среде любого углеводородного растворителя (гексан, гептан, толуол, смесь изомеров пентанов, гексанов, гептанов, нефрас) в интервале температур от 0 до 80°С и давлении мономеров в интервале от 0,1 до 1,1 МПа. Процесс полимеризации может быть осуществлен как при постоянной подаче мономеров в течение заданного промежутка времени в интервале от 0 до 180 минут, так и при однократном их введении при заданном мольном соотношении компонентов. Молекулярную массу сополимеров можно контролировать путем введения регулятора молекулярной массы, в качестве которого может выступать водород, диэтилцинк, диизобутилалюминийгидрид и др.

Также поставленная задача и технический результат достигают, если сополимеризацию проводят в среде любого углеводородного растворителя (гексан, гептан, толуол, смесь изомеров пентанов, гексанов, гептанов, нефрас) в интервале температур от 0 до 80°С и давлении мономеров в интервале от 0,1 до 1,1 МПа в присутствии регулятора молекулярной массы и ванадиевой каталитической системы, состоящей из комплексного соединения ванадия и сокатализатора, где в качестве комплексного соединения ванадия используют соединение общей формулы:

где Alk - СН3, С2Н5, С3Н7, С4Н9;

При этом концентрация ванадия в растворе составляет от 0,001 до 0,01 г/л растворителя.

Использование данного соединения позволяет проводить процесс сополимеризации без дополнительного добавления реактиватора, так как оно одновременно выступает в качестве как каталитического комплекса ванадия, так и реактиватора.

Также поставленная задача и технический результат могут быть достигнуты, если сополимеризацию проводят в среде любого углеводородного растворителя (гексан, гептан, толуол, смесь изомеров пентанов, гексанов, гептанов, нефрас) в интервале температур от 0 до 80°С и давлении мономеров в интервале от 0,1 до 1,1 МПа в присутствии регулятора молекулярной массы и ванадиевой каталитической системы, состоящей из комплексного соединения ванадия, сокатализатора и реактиватора.

При этом в качестве комплексного соединения ванадия используют соединение формулы:

или соединение формулы:

или соединение общей формулы:

Z1, Z2 гетероатом, может быть выбран из О, S, Se, N, Р, As, предпочтительно О, S, N, Р;

В гетероатом, может быть выбран из О, S, Se, предпочтительно О, S;

Х галоген, может быть выбран из F, Сl, Br, I, предпочтительно Сl, Br;

А, содержащий фрагмент, может быть выбран из алифатического ряда С1-С10, предпочтительнее или ароматического с С6-С24, предпочтительнее или гетероароматического соединения с С1-С10 с одним или тремя гетероатомами, выбранными из О, S, N, P

А1, углеродсодержащий фрагмент может быть выбран из алифатического ряда С1-С10, предпочтительнее СН3, С2Н5, С3Н7, С4Н9, или ароматического с С6-С24, предпочтительнее С6-С12, или гетероароматического соединения с С1-С10 с одним или тремя гетероатомами, выбранными из О, S, N, Р;

А2 углеродсодержащий фрагмент может быть выбран из алифатического ряда С1-С10, предпочтительнее СН3, С2Н5, С3Н7, С4Н9, или ароматического с С6-С24, предпочтительнее С6-С12, или гетероароматического соединения с С1-С10 с одним или тремя гетероатомами, выбранными из О, S, N, Р;

k=0 или 1;

m=3 или 4;

n=1 или 2.

В качестве сокатализатора используют любые алюминий органические соединения общей формулой:

AlRxHalу,

где R - алкильный радикал C19; Hal - галоген из числа Сl, Br или I; x равно от 1 до 3, у=3-х.

Сокатализатор используется при соотношении ванадий/сокатализатор от 1:1 до 1:100.

При этом концентрация ванадия в растворе составляет от 0,001 до 0,01 г/л растворителя.

В качестве реактиватора используют любые хлорорганические соединения общей формулой:

где R - алкильный радикал C19

Реактиватор используется при соотношении ванадий/реактиватор от 1:1 до 1:20.

А в качестве регулятора молекулярной массы используют водород, диэтилцинк, диизобутилалюминийгидрид и др.

Пример 1

Процесс осуществляют с использованием реактора фирмы Buchi Glas Uster типа Polyclave с объемом чаши 1 литр. Термостатирование осуществляют при помощи термостата фирмы Julabo.

Реактор промывают перегнанным на роторном испарителе гексаном с триэтилалюминием (концентрация 25% масс. в толуоле, объем 2,5 мл) при температуре от 65°С и перемешивании 500 об/мин. Время промывки 2 часа. Промывку реактора повторяют два раза, между промывками реактор заполняют аргоном под давлением 0,15 МПа.

Растворитель для полимеризации - гексан марки ХЧ - перегоняют над триэтилалюминием (концентрация 25% масс.в толуоле, объем 1 мл) в токе азота при Т=69°С в сосуд Шленка. Растворитель в объеме 400 мл переливают в прогретую до 250°С и охлажденную в токе азота бутыль для подачи на полимеризацию.

Из реактора при 40°С в токе азота сливают промывной растворитель и передают через опуск гексан на полимеризацию. Включают мешалку - 500 об/мин и охлаждают реактор до 20°С.

В течение 1 минуты 3 раза осуществляют обмен газовой фазы, продувая пропиленом при остановленной мешалке.

Для полимеризации используют этилен и пропилен полимеризационной чистоты, находящиеся в баллонах. Дозировку осуществляют через систему расходомеров реактора.

Включают мешалку и дозируют 4 г этилена со скоростью подачи 0,4 г/мин в течении 10 мин с использованием расходомера. Далее аналогично дозируют пропилен в количестве 63 г - со скоростью 110 г/час в течение 34 мин. После загрузки давление в аппарате составляет 0,37 МПа.

Приготовление каталитического комплекса осуществляют отдельно, с использованием боксового оборудования, находящегося под аргоновой подушкой. В качестве катализатора используют соединение ванадия, имеющее следующую структурную формулу:

Дозировки используемых компонентов при этом составляют:

Соединение ванадия общей формулой С4Н10ОСl3V - 0,0125 г (0,048 ммоль)

ЭАСХ - 0,1186 г (0,96 ммоль)

ЭТХА - 0,0229 г (0,12 ммоль).

Каталитический комплекс перелавливают в аппарат пропиленом.

По окончании полимеризации сбрасывают избыточное давление до атмосферного, после чего выгружают реакционную массу через донный клапан реактора. Далее переосаждают из нее полимер при помощи добавления 200 мл этилового спирта. После этого полимер измельчают, еще раз промывают спиртом и сушат до постоянной массы в вакуум-шкафу при температуре 70°С. Основные параметры определяют с использованием гельпроникающего хроматографа Agillent 1200 с испарительным детектором по светорассеянию на колонке PL gel mixed-C с диапазоном молекулярных масс 200-3000000.

Время полимеризации 1 минута.

Результаты эксперимента в таблице 1

Ванадиевый комплекс 1 синтезируют путем взаимодействия оксихлорида ванадия и 1,2-диметоксиэтана в среде гексана. Выход 98%. Продукт представляет собой твердое вещество темно-коричнового цвета.

Пример 2

Выполняют так же, как и пример 1, но время полимеризации составляет 2 минуты.

Результаты эксперимента в таблице 1.

Пример 3

Выполняют так же, как и пример 1, но время полимеризации составляет 5 минут.

Результаты эксперимента в таблице 1.

Пример 4

Выполняют так же, как и пример 1, но время полимеризации составляет 10 минут.

Результаты эксперимента в таблице 1.

Пример 5

Выполняют так же, как и пример 1, но время полимеризации составляет 15 минут.

Результаты эксперимента в таблице 1.

Пример 6

Выполняют так же, как и пример 1, но время полимеризации составляет 30 минут.

Результаты эксперимента в таблице 1.

Пример 7

Выполняют так же, как и пример 1, но время полимеризации составляет 60 минут.

Результаты эксперимента в таблице 1.

Пример 8

Выполняют так же, как и пример 1, но в качестве α-олефина вместо пропилена используют гексен-1 в количестве 60 г.

Результаты эксперимента в таблице 1.

Пример 9

Выполняют так же, как и пример 1, но вместо пропилена используют октен-1 в количестве 100 г.

Результаты эксперимента в таблице 1.

Пример 10

Выполняют так же, как и пример 1, но в качестве катализатора используют соединение ванадия, имеющее следующую структурную формулу:

Соединение ванадия общей формулой C32H28N2O5V - 0,027 г (0,048 ммоль)

ЭАСХ - 0,5928 г (4,8 ммоль)

ЭТХА - 0,0229 г (0,12 ммоль).

Результаты эксперимента в таблице 1.

Ванадиевый комплекс 2 синтезировали путем взаимодействия пентагидрата сульфата ванадила и 2-[4′-аллилоксифенилимино]фенола в метаноле. Выход 75%. Продукт представляет собой твердое вещество желто-коричнового цвета.

Пример 11

Выполняют так же, как и пример 1, но в качестве катализатора используют соединение ванадия, имеющее следующую структурную формулу:

Дозировки используемых компонентов при этом составляют:

Соединение ванадия общей формулой С6Н16N2 ОСl3 V - 0,014 г (0,048 ммоль)

ЭАСХ - 0,5928 г (4,8 ммоль)

ЭТХА - 0,0229 г (0,12 ммоль).

Соотношение ЭАСХ:ЭТХА: С6Н16N2OCl3 V=100:2,5:1 (мол.).

Результаты эксперимента в таблице 1.

Ванадиевый комплекс 3 синтезировали путем взаимодействия оксихлорида ванадия и NNNN-тетраметилэтилендиамина в среде гексана. Выход 95%. Продукт представляет собой твердое вещество желто-зеленого цвета.

Пример 12

Выполняют так же, как и пример 1, но в качестве катализатора используют соединение ванадия, имеющее следующую структурную формулу:

Дозировки используемых компонентов при этом составляют:

Соединение ванадия общей формулой С10H22O7Cl6V2 - 0,013 г (0,023 ммоль) ЭАСХ - 0,3409 г (2,76 ммоль)

ЭТХА - 0,011 г (0,0575 ммоль).

Соотношение ЭАСХ:ЭТХА: С10Н22O7Сl6V2=120:2,5:1 (мол.).

Результаты эксперимента в таблице 1.

Ванадиевый комплекс 4 синтезировали путем взаимодействия оксихлорида ванадия и диметокситриэтиленгликоля в среде гексана. Выход 80%. Продукт представляет собой твердое вещество черного цвета.

Пример 13

Выполняют так же, как и пример 1, но в качестве катализатора используют соединение ванадия, имеющее следующую структурную формулу:

Дозировки используемых компонентов при этом составляют:

Соединение ванадия общей формулой C8H10О3Сl3V - 0,015 г (0,048 ммоль)

ЭАСХ - 0,2371 г (1,92 ммоль)

ЭТХА - 0,0229 г (0,12 ммоль).

Соотношение ЭАСХ:ЭТХА: C8H10O3Cl3V=40:2,5:1 (мол.).

Результаты эксперимента в таблице 1.

Ванадиевый комплекс 5 синтезировали путем взаимодействия оксихлорида ванадия и 1,2-диметоксибензола в среде гексана. Выход 90%. Продукт представляет собой твердое вещество черного цвета.

Пример 14

Выполняют так же, как и пример 1, но в качестве катализатора используют соединение ванадия, имеющее следующую структурную формулу:

Дозировки используемых компонентов при этом составляют:

Соединение ванадия общей формулой С4Н10O2Cl14V - 0,012 г (0,042 ммоль)

ЭАСХ-0,3137 г (2,54 ммоль)

ЭТХА - 0,0201 г (0,105 ммоль).

Соотношение ЭАСХ:ЭТХА: С4Н10O2C14V=60:2,5:1 (мол.).

Результаты эксперимента в таблице 1.

Ванадиевый комплекс 6 синтезировали путем взаимодействия тетрахлорида ванадия и 1,2-диметоксиэтана в среде гексана. Выход 92%. Продукт представляет собой твердое вещество темно-коричневого цвета.

Пример 15

Выполняют так же, как и пример 1, но в качестве катализатора используют соединение ванадия, имеющее следующую структурную формулу:

Дозировки используемых компонентов при этом составляют:

Соединение ванадия общей формулой C21H21N3Cl2V - 0,02 г (0,046 ммоль)

ЭАСХ - 0,8472 г (6,86 ммоль)

ЭТХА - 0,022 г (0,115 ммоль).

Соотношение ЭАСХ:ЭТХА: C21H21N3Cl2V=150:2,5:1 (мол.).

Результаты эксперимента в таблице 1.

Ванадиевый комплекс 7 синтезировали путем взаимодействия тетрахлорида ванадия и дилитиевой соли N-фенилбисаминопиридина в среде абсолютного тетрагидрофурана. Выход 70%. Продукт представляет собой твердое вещество зеленого цвета.

Пример 16

Выполняют так же, как и пример 7, но в качестве сокатализатора используют диэтилалюминий хлорид.

Результаты эксперимента в таблице 1.

Пример 17

Выполняют так же, как и пример 7, но в качестве сокатализатора используют диизобутилалюминий хлорид.

Результаты эксперимента в таблице 1.

Пример 18

Выполняют так же, как и пример 7, но в качестве регулятора молекулярной массы используют водород в количестве 400 мл.

Результаты эксперимента в таблице 1.

Пример 19

Выполняют так же, как и пример 7, но в качестве катализатора используют соединение ванадия, имеющее следующую структурную формулу:

Дозировки используемых компонентов ванадиевой каталитической системы при этом составляют:

- Катализатор: соединение ванадия общей формулой С4Н8Сl3О3V - 0,0120 г (0,046 ммоль).

- Сокатализатор: ЭАСХ - 0,8472 г (2,76 ммоль).

- Реактиватор: ЭТХА - 0,022 г (0,115 ммоль).

Соотношение ЭАСХ:ЭТХА: С4Н8Сl3О3V=60:2,5:1 (мол.).

Результаты эксперимента в таблице 1.

Ванадиевый комплекс 8 синтезировали путем взаимодействия оксихлорида ванадия и 1,4-диоксана в среде гексана. Выход 94%. Продукт представляет собой твердое вещество темно-фиолетового цвета.

Пример 20

Выполняют так же, как и пример 7, но в качестве катализатора используют соединение ванадия, имеющее следующую структурную формулу:

Дозировки используемых компонентов ванадиевой каталитической системы при этом составляют:

- Катализатор: соединение ванадия общей формулой С5Н12Сl3О3V - 0,0127 г (0,046 ммоль).

- Сокатализатор: ЭАСХ - 0,8472 г (2,76 ммоль).

- Реактиватор: ЭТХА - 0,022 г (0,115 ммоль).

Соотношение ЭАСХ:ЭТХА: С5Н12Сl3О3V=60:2,5:1 (мол.).

Результаты эксперимента в таблице 1.

Ванадиевый комплекс 9 синтезировали путем взаимодействия оксихлорида ванадия и 1-метокси, 2-этоксиэтана в среде гексана. Выход 90%. Продукт представляет собой твердое вещество темно-коричневого цвета.

Пример 21

Выполняют так же, как и пример 7, но в качестве катализатора используют соединение ванадия, имеющее следующую структурную формулу:

Дозировки используемых компонентов ванадиевой каталитической системы при этом составляют:

- Катализатор: соединение ванадия общей формулой С6Н14Сl3О3V - 0,0134 г (0,046 ммоль).

- Сокатализатор: ЭАСХ - 0,8472 г (2,76 ммоль).

- Реактиватор: ЭТХА - 0,022 г (0,115 ммоль).

Соотношение ЭАСХ:ЭТХА: С6Н14Сl3О3V=60:2,5:1 (мол.).

Результаты эксперимента в таблице 1.

Ванадиевый комплекс 10 синтезировали путем взаимодействия оксихлорида ванадия и 1-метокси, 2-изопропоксиэтана в среде гексана. Выход 91%. Продукт представляет собой твердое вещество темно-коричневого цвета.

Пример 22

Выполняют так же, как и пример 7, но в качестве катализатора используют соединение ванадия, имеющее следующую структурную формулу:

Дозировки используемых компонентов ванадиевой каталитической системы при этом составляют:

- Катализатор: соединение ванадия общей формулой С7Н16Сl3О3V - 0,0140 г (0,046 ммоль).

- Сокатализатор: ЭАСХ - 0,8472 г (2,76 ммоль).

- Реактиватор: ЭТХА - 0,022 г (0,115 ммоль).

Соотношение ЭАСХ:ЭТХА: С7Н16Сl3О3V=60:2,5:1 (мол.).

Результаты эксперимента в таблице 1.

Ванадиевый комплекс 11 синтезировали путем взаимодействия оксихлорида ванадия и 1-метокси, 2-бутоксиэтана в среде гексана. Выход 93%. Продукт представляет собой твердое вещество темно-коричневого цвета.

Пример 23

Выполняют так же, как и пример 7, но в качестве катализатора используют соединение ванадия, имеющее следующую структурную формулу:

Дозировки используемых компонентов ванадиевой каталитической системы при этом составляют:

- Катализатор: соединение ванадия общей формулой С6Н14Сl3О3V - 0,0134 г (0,046 ммоль).

- Сокатализатор: ЭАСХ - 0,8472 г (2,76 ммоль).

- Реактиватор: ЭТХА - 0,022 г (0,115 ммоль).

Соотношение ЭАСХ:ЭТХА: С6Н14Сl3O3V=60:2,5:1 (мол.).

Результаты эксперимента в таблице 1.

Ванадиевый комплекс 12 синтезировали путем взаимодействия оксихлорида ванадия и 1,2-диэтоксиэтана в среде гексана. Выход 97%. Продукт представляет собой твердое вещество темно-коричневого цвета.

Пример 24

Выполняют так же, как и пример 7, но в качестве катализатора используют соединение ванадия, имеющее следующую структурную формулу:

Дозировки используемых компонентов ванадиевой каталитической системы при этом составляют:

- Катализатор: соединение ванадия общей формулой C8H18Cl3O3V - 0,0147 г (0,046 ммоль).

- Сокатализатор: ЭАСХ - 0,8472 г (2,76 ммоль).

- Реактиватор: ЭТХА - 0,022 г (0,115 ммоль).

Соотношение ЭАСХ:ЭТХА: С3Н18Cl3О3V=60:2,5:1 (мол.).

Результаты эксперимента в таблице 1.

Ванадиевый комплекс 13 синтезировали путем взаимодействия оксихлорида ванадия и 1,2-диизопропоксиэтана в среде гексана. Выход 94%. Продукт представляет собой твердое вещество темно-коричневого цвета.

Пример 25

Выполняют так же, как и пример 7, но в качестве катализатора используют соединение ванадия, имеющее следующую структурную формулу:

Дозировки используемых компонентов ванадиевой каталитической системы при этом составляют:

- Катализатор: соединение ванадия общей формулой C10H22Cl3O3V - 0,0160 г (0,046 ммоль).

- Сокатализатор: ЭАСХ - 0,8472 г (2,76 ммоль).

- Реактиватор: ЭТХА - 0,022 г (0,115 ммоль).

Соотношение ЭАСХ:ЭТХА: С10Н22Сl3О3V=60:2,5:1 (мол.).

Результаты эксперимента в таблице 1.

Ванадиевый комплекс 14 синтезировали путем взаимодействия оксихлорида ванадия и 1,2-дибутоксиэтана в среде гексана. Выход 90%. Продукт представляет собой твердое вещество темно-коричневого цвета.

Пример 26

Выполняют так же, как и пример 7, но в качестве катализатора используют соединение ванадия, имеющее следующую структурную формулу:

Дозировки используемых компонентов ванадиевой каталитической системы при этом составляют:

- Катализатор: соединение ванадия общей формулой С16Н18Cl3О3V - 0,0191 г (0,046 ммоль).

- Сокатализатор: ЭАСХ - 0,8472 г (2,76 ммоль).

- Реактиватор: ЭТХА - 0,022 г (0,115 ммоль).

Соотношение ЭАСХ:ЭТХА: C16H18Cl13O3V=60:2,5:1 (мол.).

Результаты эксперимента в таблице 1.

Ванадиевый комплекс 15 синтезировали путем взаимодействия оксихлорида ванадия и 1,2-дибензилоксиэтана в среде гексана. Выход 81%. Продукт представляет собой твердое вещество черного цвета.

Пример 27

Выполняют так же, как и пример 7, но в качестве катализатора используют соединение ванадия, имеющее следующую структурную формулу:

Дозировки используемых компонентов ванадиевой каталитической системы при этом составляют:

- Катализатор: соединение ванадия общей формулой C8H14Cl5O5V - 0,0190 г (0,046 ммоль).

- Сокатализатор: ЭАСХ - 0,8472 г (2,76 ммоль).

Соотношение ЭАСХ: C8H14Cl5O5V=60:1 (мол.).

Результаты эксперимента в таблице 1.

Ванадиевый комплекс 16 синтезировали путем взаимодействия оксихлорида ванадия и этил-2,2-дихлор-(2′-метоксиэтокси)пропионата в среде гексана. Выход 60%. Продукт представляет собой твердое вещество темно-зеленого цвета.


ВАНАДИЕВАЯ КАТАЛИТИЧЕСКАЯ СИСТЕМА ДЛЯ СОПОЛИМЕРИЗАЦИИ ЭТИЛЕНА С АЛЬФА-ОЛЕФИНАМИ (ВАРИАНТЫ) И СПОСОБ ПОЛУЧЕНИЯ СОПОЛИМЕРА ЭТИЛЕНА С АЛЬФА-ОЛЕФИНАМИ (ВАРИАНТЫ)
ВАНАДИЕВАЯ КАТАЛИТИЧЕСКАЯ СИСТЕМА ДЛЯ СОПОЛИМЕРИЗАЦИИ ЭТИЛЕНА С АЛЬФА-ОЛЕФИНАМИ (ВАРИАНТЫ) И СПОСОБ ПОЛУЧЕНИЯ СОПОЛИМЕРА ЭТИЛЕНА С АЛЬФА-ОЛЕФИНАМИ (ВАРИАНТЫ)
ВАНАДИЕВАЯ КАТАЛИТИЧЕСКАЯ СИСТЕМА ДЛЯ СОПОЛИМЕРИЗАЦИИ ЭТИЛЕНА С АЛЬФА-ОЛЕФИНАМИ (ВАРИАНТЫ) И СПОСОБ ПОЛУЧЕНИЯ СОПОЛИМЕРА ЭТИЛЕНА С АЛЬФА-ОЛЕФИНАМИ (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Показаны записи 1-8 из 8.
10.01.2013
№216.012.187e

Способ выделения продуктов олигомеризации олефинов и разложения остатков катализатора олигомеризации

Изобретение относится к области получения олефиновых олигомеров, которые находят широкое применение в качестве сополимеров, сырья для приготовления масел и смазок, а также сырья для получения других химических продуктов. Способ выделения продуктов реакции олигомеризации олефинов, проводящейся...
Тип: Изобретение
Номер охранного документа: 0002471762
Дата охранного документа: 10.01.2013
27.03.2013
№216.012.317c

Способ прогнозирования рецидивов у больных острым лейкозом

Изобретение относится к области медицины. Предложен способ прогнозирования рецидивов у больных острым лейкозом. В лимфоцитах периферической крови определяют активность глицерол-3-фосфатдегидрогеназы (Г3ФДГ) и НАДФ-зависимой декарбоксилирующей малатдегидрогеназы (НАДФМДГ). При сочетании...
Тип: Изобретение
Номер охранного документа: 0002478206
Дата охранного документа: 27.03.2013
27.05.2013
№216.012.43ba

Рутениевый катализатор селективного гидрирования ненасыщенных полимеров и способ гидрирования ненасыщенных полимеров

Изобретение относится к производству рутениевого катализатора селективного гидрирования ненасыщенных полимеров. Описан рутениевый катализатор селективного гидрирования ненасыщенных полимеров, представляющий собой комплексное соединение рутения, характеризующийся тем, что в качестве лигандов...
Тип: Изобретение
Номер охранного документа: 0002482915
Дата охранного документа: 27.05.2013
10.12.2013
№216.012.88c0

Способ бромирования бутилкаучука и способ получения бромбутилкаучука

Изобретение относится к производству галогенированных полимеров, в частности бромированных бутилкаучуков, и может быть использовано в нефтехимической и химической промышленности. Способ включает приготовление сырья для получения бромной воды, электрохимическое получение бромной воды, получение...
Тип: Изобретение
Номер охранного документа: 0002500690
Дата охранного документа: 10.12.2013
10.06.2014
№216.012.ce22

Способ прогнозирования риска внутриутробного инфицирования новорожденного

Изобретение относится к области медицины, а именно к акушерству. Определяют показатели, характеризующие течение беременности: при экстрагенитальной патологии матери во время беременности: обострения воспалительных заболеваний мочевыделительной системы (циститы, пиелонефриты); обострения...
Тип: Изобретение
Номер охранного документа: 0002518541
Дата охранного документа: 10.06.2014
20.05.2015
№216.013.4be6

Способ прогнозирования развития терминальной стадии у больных хроническим миелолейкозом

Изобретение относится к медицине, а именно к способу прогнозирования развития терминальной стадии у больных хроническим миелолейкозом. Сущность способа состоит в том, что в лимфоцитах периферической крови больных хроническим лейкозом в развернутой стадии определяют активность двух дегидрогеназ...
Тип: Изобретение
Номер охранного документа: 0002550944
Дата охранного документа: 20.05.2015
20.01.2016
№216.013.a066

Способ прогнозирования инфекционных осложнений у больных миеломной болезнью

Изобретение относится к медицине, а именно к онкогематологии, и может быть использовано для прогноза развития инфекционных осложнений у больных миеломной болезнью. Для этого в сыворотке крови больных определяют уровень содержания цитокинов - фактора некроза опухоли-альфа (ФНО-альфа),...
Тип: Изобретение
Номер охранного документа: 0002572704
Дата охранного документа: 20.01.2016
27.03.2016
№216.014.c946

Рутениевый катализатор, способ его получения и применение в реакции метатезиса

Изобретение относится к металлорганической химии, в частности к способу получения карбениевого комплекса рутения и способу метатезисной полимеризации циклических олефинов. Получаемые полимеры по данному изобретению могут использоваться в качестве конструкционных пластиков. Катализатор...
Тип: Изобретение
Номер охранного документа: 0002578593
Дата охранного документа: 27.03.2016
Показаны записи 1-10 из 15.
10.01.2013
№216.012.187e

Способ выделения продуктов олигомеризации олефинов и разложения остатков катализатора олигомеризации

Изобретение относится к области получения олефиновых олигомеров, которые находят широкое применение в качестве сополимеров, сырья для приготовления масел и смазок, а также сырья для получения других химических продуктов. Способ выделения продуктов реакции олигомеризации олефинов, проводящейся...
Тип: Изобретение
Номер охранного документа: 0002471762
Дата охранного документа: 10.01.2013
27.05.2013
№216.012.43ba

Рутениевый катализатор селективного гидрирования ненасыщенных полимеров и способ гидрирования ненасыщенных полимеров

Изобретение относится к производству рутениевого катализатора селективного гидрирования ненасыщенных полимеров. Описан рутениевый катализатор селективного гидрирования ненасыщенных полимеров, представляющий собой комплексное соединение рутения, характеризующийся тем, что в качестве лигандов...
Тип: Изобретение
Номер охранного документа: 0002482915
Дата охранного документа: 27.05.2013
10.12.2013
№216.012.88c0

Способ бромирования бутилкаучука и способ получения бромбутилкаучука

Изобретение относится к производству галогенированных полимеров, в частности бромированных бутилкаучуков, и может быть использовано в нефтехимической и химической промышленности. Способ включает приготовление сырья для получения бромной воды, электрохимическое получение бромной воды, получение...
Тип: Изобретение
Номер охранного документа: 0002500690
Дата охранного документа: 10.12.2013
20.05.2015
№216.013.4be6

Способ прогнозирования развития терминальной стадии у больных хроническим миелолейкозом

Изобретение относится к медицине, а именно к способу прогнозирования развития терминальной стадии у больных хроническим миелолейкозом. Сущность способа состоит в том, что в лимфоцитах периферической крови больных хроническим лейкозом в развернутой стадии определяют активность двух дегидрогеназ...
Тип: Изобретение
Номер охранного документа: 0002550944
Дата охранного документа: 20.05.2015
20.01.2016
№216.013.a066

Способ прогнозирования инфекционных осложнений у больных миеломной болезнью

Изобретение относится к медицине, а именно к онкогематологии, и может быть использовано для прогноза развития инфекционных осложнений у больных миеломной болезнью. Для этого в сыворотке крови больных определяют уровень содержания цитокинов - фактора некроза опухоли-альфа (ФНО-альфа),...
Тип: Изобретение
Номер охранного документа: 0002572704
Дата охранного документа: 20.01.2016
27.03.2016
№216.014.c946

Рутениевый катализатор, способ его получения и применение в реакции метатезиса

Изобретение относится к металлорганической химии, в частности к способу получения карбениевого комплекса рутения и способу метатезисной полимеризации циклических олефинов. Получаемые полимеры по данному изобретению могут использоваться в качестве конструкционных пластиков. Катализатор...
Тип: Изобретение
Номер охранного документа: 0002578593
Дата охранного документа: 27.03.2016
10.05.2018
№218.016.4903

Способ диагностики хронического гастрита, ассоциированного с helicobacter pylori

Изобретение относится к медицине и предназначено для диагностики хронического гастрита, ассоциированного с Helicobacter pylori. Проводят иммунологическое исследование гепаринизированной венозной крови больных. Методом непрямой иммунофлюоресценции в крови определяют абсолютное количество...
Тип: Изобретение
Номер охранного документа: 0002651033
Дата охранного документа: 18.04.2018
19.01.2019
№219.016.b1cf

Способ прогнозирования тяжелого течения механической желтухи доброкачественного генеза

Изобретение относится к медицине и представляет собой способ диагностики тяжелого течения механической желтухи доброкачественного генеза, отличающийся тем, что методом непрямой иммунофлюоресценции в крови определяют абсолютное количество pan-маркеров Т-лимфоцитов и естественных киллеров...
Тип: Изобретение
Номер охранного документа: 0002677468
Дата охранного документа: 17.01.2019
29.03.2019
№219.016.f49b

Способ получения блок-сополимера пропилена и этилена

Изобретение относится к способу получения органических высокомолекулярных соединений, в частности к способам получения блоксополимеров пропилена с этиленом (БСПЭ), используемых в технике для изготовления различных изделий конструкционного назначения методами экструзии и литья. Описан способ...
Тип: Изобретение
Номер охранного документа: 0002411253
Дата охранного документа: 10.02.2011
29.03.2019
№219.016.f561

Способ гидрирования бутадиен-нитрильного каучука

Изобретение относится к производству гидрированных каучуков, в частности к способу селективного гидрирования двойных углерод-углеродных связей бутадиен-нитрильного каучука. В латекс бутадиен-нитрильного каучука добавляют гидразин-гидрат и соединение, содержащее пероксидную группу. Гидрирование...
Тип: Изобретение
Номер охранного документа: 0002470942
Дата охранного документа: 27.12.2012
+ добавить свой РИД