×
20.10.2013
216.012.7664

Результат интеллектуальной деятельности: СПОСОБ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ СУЛЬФИДНЫХ СОЕДИНЕНИЙ НА ОСНОВЕ ПОЛУТОРНЫХ СУЛЬФИДОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области химической технологии и касается получения кристаллов сульфидных соединений на основе полуторных сульфидов редкоземельных элементов (ПСРЗЭ), легированных оловом, в том числе и в виде высокотемпературной полиморфной γ-модификации (ВТПМ). Способ включает загрузку исходных компонентов в термостойкий тигель, помещение тигля в кварцевый реактор, вакуумирование и герметизацию реактора, нагрев реактора в печи. В качестве исходных компонентов используют смесь полуторного сульфида редкоземельного элемента, РЗЭ=Y, La-Lu, и сульфида олова, или смесь порошков полуторных сульфидов РЗЭ и сульфида олова, или смесь элементарных лантаноида, олова и серы, взятых в стехиометрическом соотношении для синтеза LnS и SnS, нагревают реактор выше температуры расплавления сульфида олова, служащего в расплавленном состоянии растворителем, выдерживают при этой температуре до гомогенизации раствора-расплава, затем создают градиент температуры по длине реактора для массопереноса растворителя из раствора-расплава в более холодную часть реактора и выдерживают для последующего испарения растворителя и кристаллизации из раствора-расплава с легированием кристаллов катионом олова. Технический результат - возможность выращивать кристаллы высокотемпературной полиморфной модификации со структурой типа ThP - кубическая, увеличение размеров выращиваемых кристаллов, расширение ряда выращиваемых кристаллов ПСРЗЭ и сокращение потерь РЗЭ в процессе кристаллизации. 1 з.п. ф-лы, 1 табл., 4 пр.

Изобретение относится к области химической технологии, а именно к способам выращивания кристаллов, и касается получения кристаллов сульфидных соединений на основе полуторных сульфидов редкоземельных элементов (ПСРЗЭ), легированных оловом, в том числе и в виде высокотемпературной полиморфной γ-модификации (ВТПМ).

Основной отличительной особенностью процесса выращивания кристаллов сульфидных соединений является необходимость проводить процесс в закрытом реакторе, исключающем взаимодействие с кислородом воздуха и влагой, которые могут приводить к окислению растущих кристаллов. Выполнение этого условия при росте кристаллов из собственного расплава в случае тугоплавких, порядка 2000°С, сульфидных соединений на основе ПСРЗЭ упирается в ряд технических сложностей, решение которых представляется серьезной проблемой. С одной стороны, это отсутствие подходящих конструкционных материалов, которые были бы инертны по отношению к расплаву и пару, при этом обеспечивая необходимый уровень герметичности реактора. С другой стороны, это необходимость обеспечивать давление паров серы на уровне несколько атмосфер, для того, чтобы предотвратить разложение сульфида при температуре плавления. Другой отличительной особенностью, относящейся, в частности, к ПСРЗЭ, является наличие нескольких полиморфных модификаций. Причем наибольший интерес для практического применения представляет высокотемпературная γ-модификация с кубической структурой типа Th3P4, имеющая область стабильности при температурах выше 1300°С, при которых наиболее распространенный конструкционный материал - кварцевое стекло - не может быть использован в качестве реактора.

Известны разные способы выращивания кристаллов ПСРЗЭ.

Известен способ выращивания кристаллов ВТПМ ПСРЗЭ из собственного расплава. Крупноблочные кристаллы ВТПМ (структурный тип Th3P4) с размерами до: диаметр - 15 мм, длина - 20 мм, растут из собственного расплава при давлении пара серы 1 атм. и температуре 1800-2000°С (А.А. Kamarzin, K.E. Mironov, V.V. Sokolov, Yu. N. Malovitsky, I.G. Vasilyeva // J. Cryst. Growth. 1981. V.52. P.619-622). Исходное сырье - порошок ПСРЗЭ загружают в графитовый или стеклоуглеродный тигель с коническим дном. Тигель помещают в кварцевый реактор специальной формы. В верхней части реактора есть отсек, в который помещают элементарную серу, которая в процессе роста кристаллов нагревается до температуры кипения и обеспечивает в реакторе атмосферу паров серы. В процессе роста кристаллов реактор продувают инертным газом. Необходимую температуру до 2000°С обеспечивают за счет высокочастотного индукционного нагрева тигля, при этом возникает необходимость экранировать кварцевый реактор от тигля. Рост кристаллов ведут протягиванием реактора через высокочастотный индуктор в течение нескольких часов.

Указанный способ имеет следующие недостатки. Выращиваемые кристаллы, как правило, имеют отклоненный (из-за диссоциации) и неконтролируемый по стехиометрии состав и внутренние напряжения из-за неравномерного прогрева объема тигля. Поэтому требуется проведение дополнительного отжига в парах серы при температуре порядка 1300°С. Использование высоких температур ограничивает время проведения процесса роста кристаллов, по причине разрушения кварцевого реактора и графитового (стеклоуглеродного) тигля, что ограничивает размеры кристаллов, выращиваемых указанным способом.

Известен способ выращивания кристаллов ПСРЗЭ методом химических транспортных реакций при использовании йода в качестве транспортирующего агента при температурах 1150-1200°С (М. Leiss // J. Phys. С: Solid State Phys. V.13. P.151-158). В известном способе исходное сырье - порошок ПСРЗЭ или смесь порошков ПСРЗЭ разных лантаноидов (для получения легированных кристаллов) и кристаллический йод помещают в один конец кварцевого реактора, который вакуумируют и запаивают. Реактор помещают в печь, в которой есть возможность обеспечивать необходимый градиент температур. Рост кристаллов осуществляется за счет реакции химического газофазного транспорта из горячей (1200°С) зоны реактора в холодную (1150°С). Считается, что в ходе процесса лантаноид транспортируется в форме трииодида. Этим способом были выращены игловидные кристаллы смешанных ПСРЗЭ с максимальными размерами до 1,0×2,2×14 мм.

Указанный способ имеет следующие недостатки. Длительность процесса выращивания кристаллов ограничена высокой агрессивностью пара LnI3 к кварцевому реактору при температурах проведения роста кристаллов. Ограничение длительности процесса ограничивает размеры кристаллов, выращиваемых указанным способом. Низкие давления паров LnI3 обуславливают низкую скорость транспорта и, как следствие, низкий выход кристаллов (как по размерам, так и по общей массе). Способ пригоден для выращивания кристаллов только низкотемпературных модификаций ПСРЗЭ и не позволяет выращивать кристаллы высокотемпературной модификации ПСРЗЭ.

Температура фазового перехода ПСРЗЭ в ВТПМ может быть снижена за счет легирования s - и d-элементами. В частности, процесс легирования ПСРЗЭ (La2S3) оловом (IV) при совместном сульфидировании смеси оксидов La2O3 и SnO2 при помощи смеси инертного газа и газа - источника серы при температуре 900°С, как способ получения пигментов (в виде порошков), ранее был описан в изобретении по патенту CN 101200604, С09С 3/06, С09С 1/00, опубл. 18.06.2008. В изобретении по патенту RU 2388773, С09С 1/00, опуб. 10.05.2010, Бюл. №13, представлен способ получения пигментов (в виде порошков) путем легирования полуторного сульфида лантана оловом и кальцием, где в качестве исходного сырья служили La2O3, SnO2 и СаСО3, а процесс сульфидирования проводили при помощи смеси инертного газа и газа - источника серы при температуре 900°С. Однако такие способы не позволяют выращивать кристаллы.

Наиболее близким к заявляемому способу - прототипом - является способ выращивания кристаллов ПСРЗЭ путем кристаллизации из раствора в расплаве, где в качестве растворителя использовали трииодиды РЗЭ (A.W. Sleight and C.T. Prewitt // Inorg. Chem. 1968. V.7. №11. P.2282-2288). В данном способе в качестве исходного сырья берут элементарные металл, серу и йод в отношении 1:1:1, помещают их в графитовый тигель, который помещают в кварцевый реактор. Реактор вакуумируют и запаивают. На первом этапе реактор нагревают до температуры 600°С и выдерживают в течение 1-2 дней для того, чтобы прошел синтез LnSI. На втором этапе температуру повышают до 1100-1275°С (в зависимости от конкретного лантоноида) для того, чтобы прошла реакция диссоциации соединения LnSI, в результате которой образуются Ln2S3 и Lnl3. Трииодид редкоземельного элемента находится в расплавленном состоянии и выступает в качестве растворителя. Рост кристаллов в данных условиях обеспечивается процессом рекристаллизации. Выросшие кристаллы отделяют от растворителя LnI3 отмывкой в этиловом спирте или воде. Кристаллы не легируются растворителем.

Данный способ имеет следующие признаки, общие с заявляемым изобретением: загрузка исходных компонентов в термостойкий тигель, помещение тигля в кварцевый реактор, вакуумирование и герметизация реактора, нагрев реактора в печи.

Указанный способ имеет следующие недостатки:

1. Взаимодействие с кварцевым реактором паров иодидов LnI3 существенно ограничивает длительность процесса роста кристаллов, и, следовательно, размер выращиваемых кристаллов. Предельный размер полученных данным способом кристаллов составляет 1×1×10 мм.

2. Способ не позволяет выращивать кристаллы высокотемпературной полиморфной модификации со структурой типа Тh3Р4 - кубическая, которая имеет область стабильности выше 1300°С из-за разрушения при высоких температурах реактора и тигля.

3. Полуторные сульфиды редкоземельных элементов La, Er, Tm и Y не могут быть выращены этим способом из-за образования фазы LnSI, которая для этих металлов стабильна при температуре выше 1250°С.

4. При отделении (отмывке) сульфидных кристаллов от растворителя происходит потеря дорогостоящих РЗЭ на уровне 33 масс.%.

Задачей настоящего изобретения является создание способа выращивания кристаллов сульфидных соединений на основе ПСРЗЭ раствор-расплавным методом, позволяющего выращивать кристаллы высокотемпературной полиморфной модификации со структурой типа Th3P4 - кубическая, увеличить размеры выращиваемых кристаллов, расширить ряд выращиваемых кристаллов ПСРЗЭ и сократить потери РЗЭ в процессе кристаллизации.

Задача решается путем использования растворителя, не взаимодействующего с кварцевым реактором и не образующего промежуточных соединений с ПСРЗЭ (РЗЭ=Y, La-Lu), понижающего температуру кристаллизации в растворе-расплаве и отделяемого от растущих кристаллов путем его испарения.

Для решения поставленной задачи в способе выращивания кристаллов сульфидных соединений на основе ПСРЗЭ в качестве растворителя используют расплав SnS, в котором растворяют ПСРЗЭ. Испарение растворителя из раствора-расплава с последующей конденсацией в холодной части реактора обеспечивает пересыщение раствора-расплава и позволяет контролировать процесс кристаллизации. Рост кристаллов ПСРЗЭ из раствора-расплава SnS сопровождается легированием их катионом олова, что приводит к образованию ВТПМ.

Поставленная задача решается следующим образом. В известном способе выращивания кристаллов сульфидных соединений на основе полуторных сульфидов редкоземельных элементов, включающем загрузку исходных компонентов в термостойкий тигель, помещение тигля в реактор из кварцевого стекла, вакуумирование и герметизацию реактора и нагрев реактора в печи, в отличие от прототипа выполнено следующее: в качестве исходных компонентов используют смесь полуторного сульфида редкоземельного элемента (РЗЭ=Y, La-Lu) и сульфида олова, или смесь порошков полуторных сульфидов РЗЭ и сульфида олова, или смесь элементарных лантаноида, олова и серы, взятых в стехиометрическом соотношении для синтеза Ln2S3 и SnS, нагревают реактор выше температуры расплавления сульфида олова, служащего в расплавленном состоянии растворителем, выдерживают при этой температуре до гомогенизации раствора-расплава, затем создают градиент температуры по длине реактора для массопереноса растворителя из раствора-расплава в более холодную часть реактора и выдерживают для последующего испарения растворителя и кристаллизации из раствора-расплава с легированием кристаллов катионом олова.

В частном случае реализации способа - с целью дополнительного улучшения качества и увеличения размеров выращиваемых кристаллов при условии использования в качестве исходных компонентов смеси порошков полуторного сульфида РЗЭ и сульфида олова или смеси порошков полуторных сульфидов РЗЭ и сульфида олова, и помещении на дно тигля затравочного кристалла, обеспечивают осуществление направленной кристаллизации.

Заявляемый способ функционирует следующим образом. В качестве исходных компонентов используют смесь полуторного сульфида редкоземельного элемента (РЗЭ=Y, La-Lu) и сульфида олова, или смесь порошков полуторных сульфидов РЗЭ и сульфида олова, или смесь элементарных лантаноида, олова и серы, взятых в стехиометрическом соотношении для синтеза Ln2S3 и SnS. Смесь помещают в термостойкий графитовый или стеклоуглеродный тигель, который в свою очередь помещают в кварцевый реактор. Кварцевый реактор вакуумируют и герметизируют (запаивают). Подготовленный таким образом реактор помещают в двухзонную печь, которую нагревают до температуры около 1100°С. При использовании смеси элементарных Ln, Sn и S скорость нагрева реактора должна обеспечивать полноту протекания реакции синтеза сульфидов, для того чтобы избежать взрыва реактора из-за высокого давления пара свободной серы. Затем проводят выдержку при заданной температуре для гомогенизации (растворения Ln2S3 в расплаве SnS) раствора-расплава, при этом весь реактор находится в изотермических условиях. Для реализации процесса кристаллизации пересыщение раствора-расплава осуществляют постепенным испарением растворителя из тигля с раствором-расплавом. Испарение растворителя из раствора-расплава обеспечивается за счет градиента температуры по длине реактора, что приводит к смещению равновесия раствор-расплав - паровая фаза. Как результат смещения равновесия начинается процесс массопереноса: растворитель из тигля переходит в пар, а пар в свою очередь конденсируется в более холодной части реактора (расплав и пар SnS при температуре около 1100°С не реагируют с кварцевым реактором - доказано экспериментально). При этом происходит увеличение концентрации растворенного вещества (Ln2S3) в растворе-расплаве, и при достижении линии ликвидуса начинается процесс изотермической кристаллизации фазы на основе ПСРЗЭ (в системах Ln2S3-SnS не образуется промежуточных соединений (М. Guittard, M. Julien-Pouzol, S. Jaulmes // Mater. Res. Bull. 1976. V.11. P.1073-1080)). Причем, изменение скорости испарения растворителя (абсолютная величина температуры, градиент температуры, форма реактора и др.) позволяет управлять скоростью кристаллизации. Концентрирование конденсата растворителя в более холодной части реактора (наличие в реакторе коллектора) позволяет вести процесс до полного испарения растворителя из тигля, что обеспечивает фазовую чистоту образующихся кристаллов.

Длительность процесса кристаллизации при использовании сульфида олова в качестве растворителя принципиально не ограничена, так как при используемых температурах не возникают реакции, приводящие к разрушению реактора или тигля.

В процессе роста кристаллов ПСРЗЭ из раствора-расплава сульфида олова происходит их легирование катионом олова (II), что приводит к формированию кристаллов ВТПМ - структурный тип Th3P4, при температуре около 1100°С.

Отсутствие промежуточных соединений в системах Ln2S3-SnS позволяет выращивать предложенным способом кристаллы сульфидных соединений на основе всего редкоземельного ряда с общей формулой Ln2S3 (Ln=Y, La, Се, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu).

Использование в качестве исходного сырья смеси, содержащей разные редкоземельные элементы, позволяет выращивать смешанные по Р3-катиону кристаллы.

В процессе выращивания кристаллов растворитель отделяется от растущих кристаллов, что обеспечивает полноту использования РЗЭ, а также позволяет организовать замкнутый цикл при повторном использовании растворителя.

При использовании затравочных кристаллов, помещаемых на дно тигля в момент загрузки сырья, обеспечивается процесс направленной кристаллизации, что приводит к увеличению размеров выращиваемых кристаллов.

Указанным способом получены следующие результаты.

Пример 1. Смесь сульфидов олова и лантана в мольном отношении 0,95 SnS + 0,05 La2S3 для получения 0,3 граммов кристаллов помещают в стеклоуглеродный тигель. Тигель помещают в кварцевый реактор. Реактор вакуумируют до остаточного давления 10-2-10-3 Торр и запаивают в пламени горелки. Реактор помещают в двухзонную вертикальную печь и нагревают до температуры 1100°С со скоростью около 2000°С/час. При этой температуре реактор выдерживают 12 часов до полного растворения La2S3 в расплаве SnS. Затем температуру в верхней части реактора снижают до 1050°С. В результате разности (градиента) температур происходит перенос массы растворителя из горячей зоны (тигель с раствором-расплавом) в холодную (стенка реактора - коллектор). В таком режиме реактор выдерживают в печи в течение 3 суток, после чего извлекают из печи и закаливают в воду со льдом. В результате в стеклоуглеродном тигле остаются кристаллы темно-красного цвета с максимальным размером 5×5×0,1 мм.

Пример 2. Смесь сульфидов олова и диспрозия в мольном отношении 0,95 SnS + 0,05 Dy2S3 для получения 0,3 граммов кристаллов помещают в стеклоуглеродный тигель. Тигель помещают в кварцевый реактор. Реактор вакуумируют до остаточного давления 10-2-10-3 Торр и запаивают в пламени горелки. Реактор помещают в двухзонную вертикальную печь и нагревают до температуры 1100°C со скоростью около 2000°C/час. При этой температуре реактор выдерживают 12 часов до полного растворения Dy2S3 в расплаве SnS. Затем температуру в верхней части реактора снижают до 1050°C. В результате разности температур происходит перенос массы растворителя из горячей зоны (тигель с раствором-расплавом) в холодную (стенка реактора - коллектор). В таком режиме реактор выдерживают в печи в течение 3 суток, после чего извлекают из печи и закаливают в воду со льдом. В результате в стеклоуглеродном тигле остаются кристаллы темно-красного цвета с максимальным размером 1×1×0,5 мм.

Пример 3. Порошок металлического лютеция, гранулы металлического олова и кристаллы элементарной серы, взятые в стехиометрическом (мольном) отношении 0,10Lu+0,95Sn+1,10S для получения 1,2 граммов кристаллов, помещали в стеклоуглеродный тигель. Тигель помещают в кварцевый реактор. Измельчение металлического лютеция и загрузку реактора осуществляли в сухом боксе с контролем парциальных давлений воды и кислорода на уровне 0,3 и 1,0 ppm соответственно. Реактор вакуумируют до остаточного давления 10-2-10-3 Торр и запаивают в пламени горелки. Подготовленный таким образом реактор помещают в вертикальную двухзонную печь сопротивления и нагревают до 1100°C со скоростью 50 град/час. Для гомогенизации расплава реактор выдерживают при заданной температуре в течение 4 часов, после чего начинают процесс роста кристаллов, для этого температуру в верхней части печи снижают до 1050°C. В результате разности температур происходит перенос массы растворителя из горячей зоны (тигель с раствором-расплавом) в холодную (стенка реактора - коллектор). В таком режиме реактор выдерживают в печи в течение 3 суток, после чего извлекают из печи и закаливают в воду со льдом. В результате в стеклоуглеродном тигле остаются кристаллы светло-коричневого цвета с максимальным размером 0,5×0,5×0,5 мм.

Пример 4. Смесь сульфидов олова, лантана и неодима в мольном отношении 0,95SnS+0,0495La2S3+0,0005Nd2S3 для получения 0,3 граммов кристаллов помещают в стеклоуглеродный тигель. Тигель помещают в кварцевый реактор. Реактор вакуумируют до остаточного давления 10-2-10-3 Торр и запаивают в пламени горелки. Реактор помещают в двухзонную вертикальную печь и нагревают до температуры 1100°C со скоростью около 2000°C/час. При этой температуре реактор выдерживают 12 часов до полного растворения La2S3 и Nd2S3 в расплаве SnS. Затем температуру в верхней части реактора снижают до 1050°C. В результате разности (градиента) температур происходит перенос массы растворителя из горячей зоны (тигель с раствором-расплавом) в холодную (стенка реактора - коллектор). В таком режиме реактор выдерживают в печи в течение 3 суток, после чего извлекают из печи и закаливают в воду со льдом. В результате в стеклоуглеродном тигле остаются кристаллы темно-красного цвета с максимальным размером 1,5×1×0,5 мм.

Характеристики кристаллов, полученных заявленным способом, представлены в таблице.

Характеристика La2S3-SnS Dy2S3-SnS Lu2S3-SnS La2S3-Nd2S3-SnS
Химическая формула (микрозондовый анализ) La2,36Sn0,46S4 Dy2,56Sn0,24S4 Lu2S2,82 La2,35Nd0,02Sn0,44S4
Тип структуры (монокристальные исследования методом РСА) Кубическая, Th3P4 Кубическая, Th3P4 Гексагональная,
α-Al2O3
Кубическая, Th3P4
Цвет, прозрачность (визуальная оценка) Темно-красный, прозрачный Темно-красный, прозрачный Светло-коричневый, прозрачный Темно-красный, прозрачный

Таким образом, по сравнению с прототипом, способ позволяет выращивать кристаллы сульфидных соединений на основе ПСРЗЭ, легированных катионом олова, в том числе кристаллы высокотемпературной полиморфной модификации со структурой типа Тh3Р4-кубическая, позволяет увеличить размеры выращиваемых кристаллов, расширить ряд выращиваемых кристаллов ПСРЗЭ и сократить потери РЗЭ в процессе кристаллизации.

Источник поступления информации: Роспатент

Показаны записи 31-34 из 34.
28.08.2018
№218.016.8005

Способ получения люминесцентного кислород-чувствительного материала

Изобретение относится к получению новых люминесцентных кислород-чувствительных материалов, которые могут быть использованы в качестве сенсоров на кислород. Предложен способ получения люминесцентного кислород-чувствительного материала с использованием полимерной матрицы - фторопласта-32Л и...
Тип: Изобретение
Номер охранного документа: 0002665003
Дата охранного документа: 24.08.2018
10.04.2019
№219.017.0989

Способ электрохимического извлечения серебра из серебросодержащих токопроводящих отходов

Изобретение относится к гидрометаллургии благородных металлов, в частности к способу электрохимического извлечения серебра из серебросодержащих токопроводящих отходов, и может быть использовано при переработке различных видов полиметаллического сырья (лом радиоэлектронной и вычислительной...
Тип: Изобретение
Номер охранного документа: 0002467082
Дата охранного документа: 20.11.2012
10.04.2019
№219.017.09dc

Однородные наночастицы никеля, покрытые оболочкой, и способ их получения

Изобретение относится к нанотехнологии. Однородные наночастицы никеля покрыты оболочкой, состоящей из углеродных слоев. Наночастицы никеля имеют сферическую форму и размер 4-5 нм. Для получения однородных наночастиц никеля, покрытых оболочкой, термическому разложению в инертной атмосфере...
Тип: Изобретение
Номер охранного документа: 0002466098
Дата охранного документа: 10.11.2012
26.06.2019
№219.017.9265

Способ получения материала, обладающего фотоиндуцированной антибактериальной активностью, на основе фторопласта и люминесцентного кластерного комплекса

Изобретение относится к способу получения материалов, обладающих антибактериальной активностью. Способ включает растворение октаэдрических кластерных комплексов молибдена и вольфрама ((CH)N)[{MI}L], где М=Mo, W; L=I, CF,COO или МоВr, и полимера, выбранного из фторопласта-32Л и фторопласта-42, с...
Тип: Изобретение
Номер охранного документа: 0002692371
Дата охранного документа: 24.06.2019
Показаны записи 21-30 из 30.
27.08.2015
№216.013.7559

Способ получения массивов ориентированных углеродных нанотрубок на поверхности подложки

Изобретение относится к технологиям получения массивов углеродных нанотрубок на поверхности подложки. В реакционной камере формируют поток рабочего газа, содержащего несущий газ, газообразный углеводород и предшественник катализатора для синтеза углеродных нанотрубок. Поток рабочего газа...
Тип: Изобретение
Номер охранного документа: 0002561616
Дата охранного документа: 27.08.2015
20.09.2015
№216.013.7baa

Композиционный протонпроводящий материал

Изобретение относится к химии нанопористых металлорганических координационных полимеров, а именно к композиционному протонпроводящему материалу. Материал имеет состав общей формулы (1-y) CFIM · y Cr-MIL-101, где y - мольное количество Cr-MIL-101, равное 0.05 или 0.1 моль, состоящий из...
Тип: Изобретение
Номер охранного документа: 0002563255
Дата охранного документа: 20.09.2015
20.10.2015
№216.013.832b

Способ получения наноразмерных порошков соединений кремния

Изобретение относится к способам получения порошков химических соединений кремния. Способ получения порошков нитрида кремния или карбида кремния включает предварительный нагрев смеси моносилана с инертным газом-разбавителем и прекурсором. В качестве прекурсора используют газообразный аммиак или...
Тип: Изобретение
Номер охранного документа: 0002565182
Дата охранного документа: 20.10.2015
27.11.2015
№216.013.948b

Способ получения тетрахлороплатоат (ii)-иона и его солей с натрием, калием или аммонием

Изобретение относится к химической промышленности. В качестве предшественника для получения тетрахлороплатоат(II)-иона используют хлорплатиновую кислоту, а в качестве предшественника для получения соли тетрахлороплатоата(II) калия или аммония используют соответствующий гексахлороплатоат....
Тип: Изобретение
Номер охранного документа: 0002569646
Дата охранного документа: 27.11.2015
25.08.2017
№217.015.97a1

Способ получения порошков из наночастиц карбида кремния, покрытых углеродной оболочкой

Изобретение относится к нанотехнологии, а именно к способу получения наноразмерных порошков карбида кремния, покрытых углеродной оболочкой. Способ заключается в том, что смесь прекурсоров: моносилана, аргона и ацетилена, в которую ацетилен вводят в количестве 2,5-15 об.%, при начальном давлении...
Тип: Изобретение
Номер охранного документа: 0002609160
Дата охранного документа: 30.01.2017
26.08.2017
№217.015.debc

Способ получения трис(2-карбоксиэтил)фосфиновых октаэдрических халькогенидных кластерных комплексов рения (варианты)

Изобретение относиться способу получения трис(2-карбоксиэтил)фосфиновых октаэдрических халькогенидных кластерных комплексов рения состава Н[{ReQ}(Р(СНСНСОО))] (Q=S, Se). Способ включает взаимодействие неорганического кластерного комплекса рения состава K[{ReQ}(OH)]⋅8HO, где Q=S или Se, с...
Тип: Изобретение
Номер охранного документа: 0002624776
Дата охранного документа: 10.07.2017
29.12.2017
№217.015.f4f8

Способ получения цианогалогенидных октаэдрических кластерных комплексов молибдена (варианты)

Изобретение относится к комплексным соединениям молибдена, в частности к получению водорастворимых цианогалогенидных октаэдрических кластерных комплексов молибдена состава M[{MoX}(CN)], где M=K или Na; X=Cl, Br или I. Способ включает взаимодействие кластерного комплекса молибдена состава...
Тип: Изобретение
Номер охранного документа: 0002637251
Дата охранного документа: 01.12.2017
19.01.2018
№218.016.0346

Способ получения покрытий на основе металлов платиновой группы на полюсных наконечниках эндокардиальных электродов

Изобретение относится к способу получения покрытия на основе металлов платиновой группы на изделиях в виде полюсных наконечников эндокардиальных электродов. Проводят осаждение из паровой фазы материала покрытия на поверхность изделия. Изделие помещают в реактор на нагреваемый пьедестал, затем в...
Тип: Изобретение
Номер охранного документа: 0002630400
Дата охранного документа: 07.09.2017
13.02.2018
№218.016.26fe

Способ получения стабильных высококонцентрированных органозолей на основе наночастиц серебра для получения электропроводящих пленок

Изобретение относится к области коллоидной химии, а именно к способам получения стабильных органозолей наночастиц металлов, в частности наночастиц серебра, которые перспективны в качестве чернил-красок для получения электропроводящих пленок, электронных красок для электрофоретических дисплеев,...
Тип: Изобретение
Номер охранного документа: 0002644176
Дата охранного документа: 08.02.2018
04.04.2018
№218.016.30ef

Люминесцентный детектор катионов щелочных металлов

Изобретение относится к химии пористых металлорганических координационных полимеров и может быть использовано в качестве люминесцентного детектора катионов щелочных металлов. Материал имеет состав (HO)[Zn(ur)(Hfdc)(fdc)]⋅G, где ur - уротропин, fdc=2,5-фурандикарбоксилат, G=4DMF⋅14HO⋅2Hfdc⋅2ur,...
Тип: Изобретение
Номер охранного документа: 0002644894
Дата охранного документа: 14.02.2018
+ добавить свой РИД