×
20.10.2013
216.012.75d2

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНОГО ПОРОШКА КАРБИДА ВОЛЬФРАМА

Вид РИД

Изобретение

№ охранного документа
0002495822
Дата охранного документа
20.10.2013
Аннотация: Изобретение может быть использовано в области порошковой металлургии, в частности в получении ультрадисперсных порошковых материалов на основе карбидов вольфрама, используемых в качестве прекурсоров при производстве твердых сплавов. Способ получения ультрадисперсного порошка смеси карбида вольфрама и металлического кобальта включает получение ультрадисперсного порошка смеси оксидов вольфрама и кобальта путем нейтрализации водного раствора соответствующих неорганических солей в присутствии сажи и последующую карбидизацию, осуществляемую путем восстановления в токе инертного газа со скоростью 4,5-5,0 л/ч при температуре 1150-1250°C. Технический результат - получение ультрадисперсного порошка карбида вольфрама и металлического кобальта с размером частиц ~300 нм. 1 з.п. ф-лы, 2 ил., 2 пр.

Изобретение относится к области порошковой металлургии, в частности к способам получения ультрадисперсных порошковых материалов на основе карбидов вольфрама, используемых в качестве прекурсоров при производстве твердых сплавов.

Известен способ получения порошка карбида вольфрама, включающий выпаривание водной суспензии вольфрамата аммония (20-70 мас.%) с заранее введенным ультрадисперсным углеродом при температуре 350°C до получения порошкообразного прекурсора, состоящего из оксида вольфрама и углерода, который далее подвергается карбидизации при температуре 900-1600°C в течение часа в атмосфере инертного газа, в частности смеси азота и оксида углерода, полученного в процессе карбидизации прекурсора, или в атмосфере водорода при 800°C. В результате получают карбид вольфрама с размером частиц 0,8-1 мкм (патент US №6852304, С01В 31/34, 2005 г.). Для получения твердого керамического материала (цементированного карбида) полученный порошок карбида вольфрама смешивают с порошкообразным кобальтом в качестве связующего и рядом других карбидов в качестве специальных добавок, прессуют и отжигают при температуре 1360°C.

Недостатками известного способа являются длительная стадия выпаривания суспензии мета- и паравольфраматов аммония с углеродом, крупный размер частиц получаемого порошка карбида вольфрама, необходимость дополнительного введения кобальта и последующего отжига для получения цементированного карбида.

Наиболее близким к предлагаемому способу является способ получения ультра-нанодисперсного порошка карбида вольфрама или смеси карбидов вольфрама и кобальта (Патент RU 2418742, С01В 31/34, 2011 г.) (прототип), включающий получение ультрадисперсного порошка соответствующего оксида или смеси оксидов путем нейтрализации водного раствора соответствующей неорганической соли или смеси солей в присутствии сажи, предварительно введенной в раствор в количестве МеО:С=1:(2-5) в пересчете на оксид или на смесь оксидов WO3 и Co3O4 и последующую карбидизацию путем обработки микроволновым излучением с частотой 2450-3000 МГц при мощности 700-1200 Вт.

Недостатком известного способа является возможность получения смеси сложных карбидов вольфрама и кобальта состава Co3W3C и Co6W6C, что в дальнейшем создает трудности при получении цементированных карбидов, поскольку необходимо в исходной смеси наличие металлического кобальта, служащего связующим. Возможность получения смеси карбидов обусловлена тем, что при формировании конечного продукта наблюдается большое содержание остатков высокотемпературного синтеза - свободного углерода из-за защитного углеродного слоя и неустойчивого состава и давления газа в микроволновой муфельной печи.

Перед авторами стояла задача получить ультрадисперсный порошок смеси карбида вольфрама и металлического кобальта, с размером частиц ~300 нм, который является прекурсором для синтеза вольфрамовых твердых сплавов.

Поставленная задача решена в предлагаемом способе получения ультрадисперсного порошка смеси карбида вольфрама и металлического кобальта, включающем получение ульрадисперсного порошка смеси оксидов вольфрама и кобальта путем нейтрализации водного раствора соответствующих неорганических солей в присутствии сажи, предварительно введенной в раствор, и последующую карбидизацию, в котором сажу вводят в количестве (в пересчете на каждый оксид) МеО:С=1:3÷4, где Me - W или Со, а карбидизацию осуществляют путем восстановления в токе инертного газа со скоростью 4,5-5,0 л/час при температуре 1150-1250°.

При этом в качестве инертной атмосферы могут использовать аргон или азот.

В настоящее время не известен способ получения смеси карбида вольфрама и металлического кобальта, в котором карбидизацию осуществляют в токе инертного газа с определенной скоростью в узком интервале температур. В результате исследований установлено, что в случае введения сажи в количестве (в пересчете на каждый карбид) МеО:С=1:3÷4, где Me - W или Со и осуществления карбидизации при температуре 1150-1250°, процесс восстановления протекает с образование карбида вольфрама гексагональной модификации и металлического кобальта кубической модификации.

Совокупность технологических операций предлагаемого способа позволяет получать ультрадисперсную порошковую смесь карбида вольфрама и металлического кобальта, при этом необходимо соблюдение предлагаемых интервалов значений рабочих параметров. При введении сажи в соотношении менее, чем 1:3, конечный продукт получают неоднофазным, наблюдается присутствие карбида вольфрама W2C орторомбической структуры. При введении сажи в соотношении более, чем 1:4, на стадии карбидизации формируются сложные карбиды вольфрама и кобальта. Скорость подачи инертного газа 4,5-5,0 л/час является достаточной для создания восстановительной газовой среды на стадии карбидизации, так как обеспечивает отсутствие накопления или вымывания газовых фаз - СО и CO2, образующихся на этой стадии.

Вводимое количество кобальта рассчитывают в зависимости от химического состава сплава, который в дальнейшем необходимо получить. Как показывает производственная практика, содержание кобальта в сплаве находится в диапазоне от 8 до 12 мас.%.

Процесс карбидизации протекает через промежуточные фазы металлического вольфрама, карбида вольфрама W2C и металлического кобальта с получением конечного продукта - смеси карбида вольфрама гексагональной модификации и металлического кобальта, в порошкообразном состоянии с частицами ультрадисперсного размера в диапазоне 300-500 нм. Восстановление проводят в токе аргона или азота со скоростью подачи 4,5-5,0 л/час.

На фиг.1 и 2 приведены электронные изображения микроструктуры и размеров частиц полученной порошкообразной смеси карбида вольфрама и кобальта, в токе аргона и азота, соответственно. Исследования проводились при помощи сканирующего электронного микроскопа фирмы "JEOL" JSM 6390LA.

Таким образом, в результате проведенных авторами исследований установлено, что свежеосажденная вольфрамовая кислота, полученная на инертном носителе на стадии восстановления в токе инертной среды (Ar, N2) при скорости подачи 4,5-5,0 л/час от 200ºC по мере повышения температуры до 800ºC образует оксидные фазы WO3, W18O49 и WO2. При повышении температуры выше 800ºC формируется металлический вольфрам и W2C, а в интервале температур 1150-1250ºC образуется карбид вольфрама гексагональной модификации. Свежеосажденный гидроксид кобальта по мере повышения температуры в тех же условиях переходит сначала в оксидную фазу - Co3O4 и далее идет формирование металлического кобальта кубической модификации.

Предлагаемый способ осуществляют следующим образом.

Берут раствор вольфрамата аммония (натрия), к которому добавляют рассчитанное количество сажи и нейтрализуют соляной кислотой до рН среды 0-2. Азотнокислый кобальт или оксалат кобальта нейтрализуют гидроксидом натрия (аммония) до рН среды 10-12, тоже предварительно введя необходимое количество сажи. Затем удаляют примесные соли водой, отделяют и смешивают полученные осадки. Возможна нейтрализация вольфрамата аммония (натрия) кислым раствором кобальта до рН 6-7. Рассчитанное количество сажи в пересчете на каждый оксид смеси МеО:С=1:3÷4, где Me - W или Со, вводят в исходные растворы до стадии нейтрализации. Далее смесь полученных осадков подвергают термообработке в токе инертной среды (Ar, N2) при скорости подачи 4,5-5,0 л/ч при температуре 1150-1250ºC с выдержкой в течение одного часа.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1.

Берут 600 мл раствора вольфрамата аммония с концентрацией 38 г/л (W). В раствор соляной кислоты 200 мл с концентрацией 18% вводят сажу, рассчитанную на оксид вольфрама, в соотношение WO3:C=1÷4 в количестве 5,95 г. Далее проводят нейтрализацию, раствор вольфрамата аммония постепенно вводят в раствор соляной кислоты при постоянном перемешивании до рН 0. Параллельно берут 200 мл азотнокислого водного раствора кобальта с концентрацией 12,5 г/л Со (в пересчете на кобальт металлический 8% от общей массы), вводят в него рассчитанное количество сажи -0,33 г (Co3O4:С=1:3) и проводят нейтрализацию водным раствором гидроксида натрия до рН 11-12. В результате получают осадки вольфрамовой кислоты и гидроксида кобальта на инертном носителе (саже), которые несколько раз декантируют и промывают дистиллированной водой до нейтральной среды (рН 6). Далее свежеосажденные осадки смешивают при работающей мешалке в дистиллированной воде и фильтруют, сушку проводят в сушильном шкафу при температуре 110ºC. Навеску полученного порошка 5 г с размером частиц 50-200 нм помещают в кварцевую лодочку, которую в свою очередь помещают в кварцевую трубу (⌀ 40 мм) лабораторной трубчатой электропечи сопротивления СУОЛ-0,25.1/12,5-И1. Далее проводят восстановление и карбидизацию в токе аргона со скоростью подачи 4,5 л/ч при температуре 1150ºC в течение одного часа. По данным рентгенофазового анализа получают ультрадисперсную смесь карбида вольфрама гексагональной модификации и металлического кобальта кубической модификации, с размером частиц в диапазоне 300-500 нм. На фиг.1 приведены электронные изображения морфологии и размеров частиц смеси карбида вольфрама и кобальта, полученного в токе аргона: а) общий вид ×2000; б) ×2500.

Пример 2.

Берут 600 мл раствора вольфрамата натрия с концентрацией 38 г/л (W) и 200 мл азотнокислого водного раствора кобальта с концентрацией 12,5 г/л (Со) в пересчете на кобальт металлический 8% от общей массы. Рассчитывают необходимое количество сажи на оксид вольфрама и кобальта, в соотношении WO3:C=1÷4 (5,95 г сажи) и Co3O4:С=1÷4 (0,50 г сажи). Далее проводят нейтрализацию: в раствор вольфрамата натрия при постоянном перемешивании постепенно вводят раствор азотнокислого кобальта и доводят рН до 7 раствором соляной кислоты. В результате получают смесь осадков вольфрамовой кислоты и гидроксида кобальта на инертном носителе (саже), которые оставляют на 4 часа для закрепления сформировавшихся кристаллов, далее несколько раз декантируют и промывают дистиллированной водой до нейтральной среды (рН 6). Свежеосажденные осадки фильтруют и сушат в сушильном шкафу при температуре 110ºC. 5 г полученного порошка с размером частиц 50-200 нм, помещают в кварцевую лодочку, которую в свою очередь помещают в кварцевую трубу (⌀ 40 мм) лабораторной трубчатой электропечи сопротивления СУОЛ-0,25.1/12,5-И1. Далее проводят восстановление в токе азота со скоростью подачи 5,0 л/ч при температуре 1250ºC в течение одного часа. По данным рентгенофазового анализа получают ультрадисперсную смесь карбида вольфрама гексагональной модификации и металлического кобальта кубической модификации, с размером частиц в диапазоне 200-400 нм. На фиг.2 приведены электронные изображения морфологии и размеров частиц смеси карбида вольфрама и кобальта, полученного в токе азота: а) общий вид ×3500; б) ×27000.

Таким образом, авторами предлагается простой и надежный способ получения ультрадисперсного порошка смеси карбида вольфрама и кобальта, который в дальнейшем может быть использован в качестве прекурсора для получения твердых сплавов без дополнительного введения кобальта в качестве металлической связки.


СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНОГО ПОРОШКА КАРБИДА ВОЛЬФРАМА
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНОГО ПОРОШКА КАРБИДА ВОЛЬФРАМА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 10.
10.09.2013
№216.012.678e

Способ получения нанодисперсного порошка оксида циркония, стабилизированного оксидом иттрия и/или скандия

Изобретение относится к химической промышленности, в частности к способам получения тонкодисперсных порошков на основе оксида циркония, который может быть использован для производства плотной износостойкой керамики, материалов для имплантологии, твердых электролитов. Предлагается способ...
Тип: Изобретение
Номер охранного документа: 0002492157
Дата охранного документа: 10.09.2013
10.12.2014
№216.013.0ce6

Способ диагностики реальной структуры кристаллов

Использование: для диагностики реальной структуры кристаллов. Сущность изобретения заключается в том, что выполняют электронно-микроскопическое и микродифракционное исследования кристалла, при этом в случае присутствия на электронно-микроскопическом изображении исследуемого нанотонкого...
Тип: Изобретение
Номер охранного документа: 0002534719
Дата охранного документа: 10.12.2014
27.08.2015
№216.013.7557

Способ получения ультрадисперсного порошка карбида титана

Изобретение относится к области порошковой металлургии и может быть использовано при изготовлении твердых сплавов, режущего инструмента и износостойких покрытий. Водный раствор сульфата титанила нейтрализуют до pH 10-12 раствором гидроксида аммиака/натрия в присутствии сажи с получением...
Тип: Изобретение
Номер охранного документа: 0002561614
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.77f3

Способ получения ультрадисперсного порошка сложного карбида вольфрама и титана

Изобретение относится к области порошковой металлургии. Способ получения ультрадисперсного порошка сложного карбида вольфрама и титана, включающий смешение вольфрам- и титансодержащих компонентов с источником углерода, прессование полученного порошка и последующую карбидизацию. Осуществляют...
Тип: Изобретение
Номер охранного документа: 0002562296
Дата охранного документа: 10.09.2015
10.12.2015
№216.013.9656

Способ визуализации ротационного искривления решетки нанотонких кристаллов

Способ визуализации ротационного искривления решетки нанотонких кристаллов включает получение электронно-микроскопического изображения нанотонкого кристалла в светлом и темном поле, получение электронограммы от кристалла, микродифракционное исследование, анализ картины изгибных экстинкционных...
Тип: Изобретение
Номер охранного документа: 0002570106
Дата охранного документа: 10.12.2015
27.03.2016
№216.014.c71f

Способ нанесения износостойкого покрытия

Изобретение относится к области нанесения газотермических покрытий, а именно к способам нанесения плазменных покрытий на детали, работающие в экстремальных условиях. Способ нанесения износостойкого покрытия на стальную поверхность включает очистку поверхности, получение дисперсной порошковой...
Тип: Изобретение
Номер охранного документа: 0002578872
Дата охранного документа: 27.03.2016
20.08.2016
№216.015.4bfc

Способ нанесения износостойкого покрытия на стальные детали.

Изобретение относится к области газотермических покрытий, более конкретно к плазменному напылению на детали, эксплуатируемые в экстремальных условиях. Способ нанесения износостойкого покрытия на стальные детали, включающий ввод дисперсного порошка самофлюсующегося сплава на основе никеля через...
Тип: Изобретение
Номер охранного документа: 0002594998
Дата охранного документа: 20.08.2016
12.01.2017
№217.015.57ce

Способ получения ультрадисперсного порошка карбида ванадия

Изобретение относится к области порошковой металлургии, в частности к способам получения ультрадисперсных порошков карбида ванадия, которые используют при изготовлении твердых сплавов, быстрорежущей стали, ее заменителей, малолегированных инструментальных и некоторых конструкционных сталей и...
Тип: Изобретение
Номер охранного документа: 0002588512
Дата охранного документа: 27.06.2016
25.08.2017
№217.015.bf59

Способ диагностики римановой кривизны решетки нанотонких кристаллов

Использование: для диагностики римановой кривизны решетки нанотонких кристаллов. Сущность изобретения заключается в том, что способ диагностики римановой кривизны решетки нанотонких кристаллов включает получение электронно-микроскопического изображения нанотонкого кристалла в светлом поле,...
Тип: Изобретение
Номер охранного документа: 0002617151
Дата охранного документа: 21.04.2017
29.12.2017
№217.015.f410

Способ получения диссипативных структур

Использование: для получения диссипативных структур. Сущность изобретения заключается в том, что способ получения диссипативной структуры в аморфной пленке в виде нанотонких кристаллов с упругим ротационным искривлением решетки включает нагревание и последующее охлаждение, где предварительно на...
Тип: Изобретение
Номер охранного документа: 0002637396
Дата охранного документа: 04.12.2017
Показаны записи 1-10 из 14.
10.09.2013
№216.012.678e

Способ получения нанодисперсного порошка оксида циркония, стабилизированного оксидом иттрия и/или скандия

Изобретение относится к химической промышленности, в частности к способам получения тонкодисперсных порошков на основе оксида циркония, который может быть использован для производства плотной износостойкой керамики, материалов для имплантологии, твердых электролитов. Предлагается способ...
Тип: Изобретение
Номер охранного документа: 0002492157
Дата охранного документа: 10.09.2013
10.12.2014
№216.013.0ce6

Способ диагностики реальной структуры кристаллов

Использование: для диагностики реальной структуры кристаллов. Сущность изобретения заключается в том, что выполняют электронно-микроскопическое и микродифракционное исследования кристалла, при этом в случае присутствия на электронно-микроскопическом изображении исследуемого нанотонкого...
Тип: Изобретение
Номер охранного документа: 0002534719
Дата охранного документа: 10.12.2014
27.08.2015
№216.013.7557

Способ получения ультрадисперсного порошка карбида титана

Изобретение относится к области порошковой металлургии и может быть использовано при изготовлении твердых сплавов, режущего инструмента и износостойких покрытий. Водный раствор сульфата титанила нейтрализуют до pH 10-12 раствором гидроксида аммиака/натрия в присутствии сажи с получением...
Тип: Изобретение
Номер охранного документа: 0002561614
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.77f3

Способ получения ультрадисперсного порошка сложного карбида вольфрама и титана

Изобретение относится к области порошковой металлургии. Способ получения ультрадисперсного порошка сложного карбида вольфрама и титана, включающий смешение вольфрам- и титансодержащих компонентов с источником углерода, прессование полученного порошка и последующую карбидизацию. Осуществляют...
Тип: Изобретение
Номер охранного документа: 0002562296
Дата охранного документа: 10.09.2015
10.12.2015
№216.013.9656

Способ визуализации ротационного искривления решетки нанотонких кристаллов

Способ визуализации ротационного искривления решетки нанотонких кристаллов включает получение электронно-микроскопического изображения нанотонкого кристалла в светлом и темном поле, получение электронограммы от кристалла, микродифракционное исследование, анализ картины изгибных экстинкционных...
Тип: Изобретение
Номер охранного документа: 0002570106
Дата охранного документа: 10.12.2015
27.03.2016
№216.014.c71f

Способ нанесения износостойкого покрытия

Изобретение относится к области нанесения газотермических покрытий, а именно к способам нанесения плазменных покрытий на детали, работающие в экстремальных условиях. Способ нанесения износостойкого покрытия на стальную поверхность включает очистку поверхности, получение дисперсной порошковой...
Тип: Изобретение
Номер охранного документа: 0002578872
Дата охранного документа: 27.03.2016
20.08.2016
№216.015.4bfc

Способ нанесения износостойкого покрытия на стальные детали.

Изобретение относится к области газотермических покрытий, более конкретно к плазменному напылению на детали, эксплуатируемые в экстремальных условиях. Способ нанесения износостойкого покрытия на стальные детали, включающий ввод дисперсного порошка самофлюсующегося сплава на основе никеля через...
Тип: Изобретение
Номер охранного документа: 0002594998
Дата охранного документа: 20.08.2016
12.01.2017
№217.015.57ce

Способ получения ультрадисперсного порошка карбида ванадия

Изобретение относится к области порошковой металлургии, в частности к способам получения ультрадисперсных порошков карбида ванадия, которые используют при изготовлении твердых сплавов, быстрорежущей стали, ее заменителей, малолегированных инструментальных и некоторых конструкционных сталей и...
Тип: Изобретение
Номер охранного документа: 0002588512
Дата охранного документа: 27.06.2016
25.08.2017
№217.015.bf59

Способ диагностики римановой кривизны решетки нанотонких кристаллов

Использование: для диагностики римановой кривизны решетки нанотонких кристаллов. Сущность изобретения заключается в том, что способ диагностики римановой кривизны решетки нанотонких кристаллов включает получение электронно-микроскопического изображения нанотонкого кристалла в светлом поле,...
Тип: Изобретение
Номер охранного документа: 0002617151
Дата охранного документа: 21.04.2017
29.12.2017
№217.015.f410

Способ получения диссипативных структур

Использование: для получения диссипативных структур. Сущность изобретения заключается в том, что способ получения диссипативной структуры в аморфной пленке в виде нанотонких кристаллов с упругим ротационным искривлением решетки включает нагревание и последующее охлаждение, где предварительно на...
Тип: Изобретение
Номер охранного документа: 0002637396
Дата охранного документа: 04.12.2017
+ добавить свой РИД