×
10.09.2013
216.012.67f6

Результат интеллектуальной деятельности: ЛИТОЙ КОМПОЗИЦИОННЫЙ СПЛАВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии, в частности к получению литых композиционных сплавов для отливок ответственного назначения. Литой композиционный сплав на основе алюминиевой матрицы содержит включения интерметаллидных фаз состава AlX, AlX, AlX, где Х - Ti, Zr, V, Fe, Ni размером <10 мкм в количестве 5-20 об.%, высокопрочные эндогенные керамические наноразмерные частицы TiB, TiC, AlO размером <50 нм, полученные при введенные их в расплав в количестве 0,1-2,0% от его массы и армирующие дискретные керамические частицы со средним размером 14 мкм, полученные при введении их в расплав в количестве 1-5% от его массы. Способ включает смешивание порошков исходных компонентов, образующих при взаимодействии друг с другом и матричным алюминиевым расплавом эндогенные интерметаллидные и керамические наноразмерные частицы, с армирующими дискретными керамическими частицами и технологическими добавками, в качестве которых используют криолит NaAlF в количестве 0,1-0,2% и алюминиевый порошок в количестве до 30% от массы смеси, брикетирование полученной композиционной смеси, подогрев брикетов до температуры 300±10°С, ввод их в матричный расплав при температуре 850-900°С, выдержку расплава до разливки в течение 15-20 мин. Изобретение позволяет повысить трибологические свойства сплава при повышенных температурах. 2 н. и 1 з.п. ф-лы, 2 табл.

Изобретение относится к области металлургии и машиностроения и может быть использовано для получения антифрикционных композиционных сплавов, предназначенных для изготовления литых изделий, работающих в условиях сухого и абразивного изнашивания при повышенных температурах.

Известны составы и способы получения композиционных сплавов с алюминиевой матрицей, упрочненных дисперсными частицами. К числу таких способов относятся способы, основанные на методах порошковой металлургии, например способ, предусматривающий высокоэнергетическую обработку исходных порошков и их последующее горячее компактирование в пресс-форме (H.J. Brinkman, J. Duszczyk, L. Katgerman, Journal of Materials Research, V.I 4, N.11, 1999, pp.4246-4250). Однако такой способ имеет ограниченное применение, поскольку полученные изделия имеют высокую пористость и низкую макроплотность.

Известен состав и способ получения литого композиционного сплава механическим замешиванием дискретных тугоплавких частиц в расплав (Патент РФ №2186867, Канк Сук Бонг, А.В. Панфилов и др., приоритет 09.01.2001). Этот способ не исключает окисления и газонасыщения матричного сплава, что в конечном итоге не позволяет достичь стабильного уровня механических и триботехнических свойств. Кроме того, указанный способ требует применения сложного специализированного оборудования.

Известен способ синтеза литого композиционного сплава при продувке матричного расплава активными газами (N2, CH4, NH3), предусматривающий пропускание газовой смеси через расплав алюминия с помощью керамической трубки (US Patent No. 6343640, R.G. Reddy, B. Wu, Feb. 5, 2002). Недостатком метода синтеза композиционных сплавов при продувке расплава активными газами являются трудности, связанные с контролем заданного количества армирующей фазы и обеспечением ее высокого содержания в готовой композиции.

Известен способ получения литых композиционных сплавов замешиванием в расплав алюминиевого сплава солевых смесей, содержащих реакционно-активные компоненты (D. Zhao, X. Liu, Y. Liu, X. Bian, Journal of Materials Science, 2005, V. 40, N.16, pp.4365-4368). Сущность способа состоит в том, что при замешивании в расплав смеси солей KBF4, K2ZrF6 и K2TiF6 происходит взаимодействие алюминиевого расплава с солями с образованием армирующих частиц ZrB2 и TiB2. К недостаткам этого способа можно отнести сравнительно низкое количество образующейся эндогенной дисперсной фазы, неуправляемость процесса и экологическую небезопасность.

Наиболее близким к предлагаемому составу сплава и способу его получения, т.е. прототипом, является способ получения литого композиционного материала на основе алюминиевого сплава (например, АК12), упрочненного эндогенными включениями интерметаллидных фаз состава Al3X (где Х - легирующие добавки Ti, Zr, V, Fe, Ni) и экзогенными дискретными керамическими микро- и наноразмерными частицами (TiC, ZrC, B4C, SiC, Al2O3, ZrO2, BN, TiN), включающий смешивание порошка легирующего элемента с дискретными керамическими частицами, брикетирование полученной смеси и введение ее в расплав алюминия, выдержку расплава для образования упрочняющих интерметаллидных фаз, перемешивание и разливку (Патент РФ №2323991, А.В. Панфилов, Д.Н. Бранчуков, А.А. Панфилов, А.В. Петрунин и др., приоритет от 22.09.2006, дата выдачи 10.05.2008 г.).

Недостатком такого композиционного материала является то, что в качестве армирующих наполнителей используются в основном экзогенные частицы, а комплекс эндогенных наполнителей ограничен только интерметаллидными фазами состава Al3X. Такой подход зачастую не обеспечивает существенного повышения уровня эксплуатационных свойств по сравнению с базовым сплавом. Известно, что армирование осуществляется наиболее эффективно и, как следствие, наиболее полно реализуется необходимый комплекс свойств, при использовании широкого спектра именно эндогенных упрочняющих соединений, формирующихся в ходе экзотермических реакций между предварительно введенными исходными реакционно-активными компонентами непосредственно в расплаве, поскольку такие процессы обеспечивают достижение хорошей адгезионной связи между наполнителем и матрицей, обусловленной близким решеточным соответствием матрицы и синтезированных фаз.

Кроме того, с точки зрения оптимального взаимодействия фаз и формирования заданной структуры и свойств литых алюминиевых композиционных сплавов в идеале следует отдавать предпочтение тем дисперсным наполнителям (в первую очередь, эндогенным), которые способны одновременно выполнять как армирующую, так и модифицирующую функции. Для такого подхода есть все основания, так как в литературе по литейным композициям многократно отмечалась активная зародышеобразующая функция ряда дисперсных частиц при кристаллизации матрицы того или иного композита. Известно (Чернышева Т.А., Кобелева Л.И., Шебо П., Панфилов А.В. Взаимодействие металлических расплавов с армирующими наполнителями. - М.: Наука, 1993, 272 с.), что при кристаллизации композиций, армированных только экзогенными дисперсными частицами карбида кремния, первичные кристаллы α-алюминия не могут зарождаться на поверхности частиц, что обусловлено плохой смачиваемостью и теплофизическими характеристиками наполнителей. В композиционных сплавах, содержащих экзогенные и эндогенные частицы металлоподобных карбидов и боридов, зарождение дендритов α-алюминия происходит на поверхности частиц. То же наблюдается и в случаях, когда матричный расплав легирован элементами, образующими при кристаллизации тугоплавкие интерметаллидные фазы.

Частицы металлоподобных карбидов, боридов и интерметаллидов оказывают модифицирующее действие на литую структуру композитов, так как характеризуются меньшим несоответствием решеток, высоким химическим сродством к матрице и более высокой теплопроводностью. В результате они являются активными центрами кристаллизации. Следует также отметить, что введение в расплав керамических наполнителей способствует уменьшению дендритного параметра. Одной из причин этого уменьшения является эффект ограничения кристаллизующихся объемов из-за наличия на границах растущих зерен армирующих частиц.

Таким образом, целесообразным представляется развивать такие подходы к синтезу литых композиционных сплавов, которые основываются именно на комплексном армировании базовых сплавов наполнителями различной природы и размеров, в первую очередь, эндогенными и способными выполнять модифицирующую функцию (TiB2, TiC, Al2O3, Al3Ti, AlTi и др.).

Техническим эффектом настоящего изобретения является получение литого композиционного сплава на базе стандартных алюминиевых сплавов, обладающего повышенными механическими и триботехническими свойствами и обеспечивающего стабильную эксплуатацию изделий при повышенных температурах.

Технический эффект достигается тем, что в литом композиционном сплаве на базе стандартных алюминиевых сплавов, содержащем включения интерметаллидных фаз размером <10 мкм в количестве 5-20 об.%, высокопрочные керамические наноразмерные частицы размером <50 нм в количестве 0,1-2,0% от массы расплава и армирующие дискретные керамические частицы со средним размером 14 мкм, введенные в расплав алюминиевого сплава в количестве 1-5% от его массы, в качестве интерметаллидных включений содержатся включения интерметаллидных фаз состава Al3X, AlX, AlX3, где Х - Ti, Zr, V, Fe, Ni, в качестве армирующих дискретных керамических частиц содержатся экзогенные частицы ZrC, B4C, SiC, ZrO2, BN, TiN и эндогенные частицы TiB2, TiC, Al2O3, формируемые в объеме расплава в ходе экзотермических реакций между предварительно введенными исходными реакционно-активными компонентами, в качестве высокопрочных керамических наноразмерных частиц содержатся эндогенные частицы TiB2, TiC, Al2O3.

Для формирования в объеме матричного сплава эндогенных упрочняющих фаз в качестве исходных компонентов используются такие порошковые частицы, при взаимодействии которых друг с другом и с матричным алюминиевым расплавом проходят интенсивные экзотермические реакции, приводящие к образованию новых эндогенных армирующих и модифицирующих фаз TiB2, TiC, Al2O3, Al3X, AlX, AlX3 (где Х - Ti, Zr, V, Fe, Ni). Дополнительное регулирование физико-механических и эксплуатационных свойств композиционного сплава в широких пределах может осуществляться за счет добавления в состав исходного порошкового брикета экзогенных керамических частиц. Следует отметить, что одним из важнейших условий при получении предлагаемых литых композиционных сплавов является высокая экзотермичность реакций химического взаимодействия исходных компонентов порошкового брикета, поскольку для обеспечения смачивания и усвоения экзогенных частиц необходимо создание градиента температур.

Предлагаемый способ приготовления литого композиционного сплава осуществляется следующим образом. Порошки исходных компонентов подвергают термической обработке (порошки керамических частиц прокаливают при 650-700°С в течение 1-1,5 часов в печной атмосфере, металлические порошки просушивают при 100-150°С в течение 1-1,5 часов) для удаления адсорбированной влаги и активации поверхности частиц. Затем порошки исходных реакционно-активных компонентов, армирующие дискретные керамические частицы и технологические добавки, в качестве которых используют криолит Na3AlF6 в количестве 0,1-0,2% и алюминиевый порошок в количестве до 30% от массы порошковой смеси, подвергают смешиванию в шаровой мельнице в течение 30-40 мин и прессуют в брикеты. Брикеты подогревают до 300±10°С и вводят в матричный расплав, перегретый до 850-900°С. После ввода брикетов расплав выдерживают в течение 15-20 мин для завершения протекания реакций синтеза эндогенных армирующих фаз с последующим перемешиванием для устранения структурной неоднородности и разливают. Экспериментально установлено, что ввод брикетов при температуре ниже 850°С не обеспечивает полного протекания реакций синтеза эндогенных упрочняющих фаз и, как следствие, необходимого уровня смачивания экзогенных керамических частиц. При температурах расплава свыше 900°С происходит интенсификация экзотермических реакций, приводящая к деградации экзогенной керамической фазы за счет взаимодействия с жидким алюминием. Таким образом, оптимальная температура для ввода брикетов в расплав должна находиться в интервале 850-900°С. Минимальное время выдержки, необходимое для ввода в алюминиевый расплав брикета и достаточное для завершения экзотермических реакций, составляет 15-20 минут. Разливка сплава до истечения этого времени нежелательна, поскольку при этом в структуре сплава могут присутствовать не прореагировавшие компоненты брикетов.

Для интенсификации и ускорения распада порошковых композиционных брикетов в матричном расплаве в состав исходной смеси добавляется алюминиевый порошок в количестве до 30% от массы смеси. Увеличение поверхности контакта порошковых наполнителей с алюминием и возрастание количества жидкой фазы, участвующей в реакциях in-situ, облегчает усвоение брикета расплавом и тем самым уменьшает время выдержки композиции до разливки.

Для активизации реакций синтеза эндогенных фаз предусмотрено добавление в состав исходной порошковой композиционной смеси криолита Na3AlF6 в количестве 0,1-0,2 масс.%, который растворяет оксидные пленки, присутствующие в расплаве и на поверхности частиц алюминиевого порошка.

Сопоставительный анализ заявляемого решения с прототипом показывает, что предлагаемый литой композиционный сплав и способ его получения отличаются от известного тем, что:

- исключается ввод экзогенных наноразмерных частиц, использование которых увеличивает себестоимость композиционных сплавов и осложняет процесс; кроме того, по литературным данным, ввод готовых наночастиц в расплав вызывает трудности технологического характера. Более предпочтительным является формирование эндогенных наноразмерных фаз непосредственно в расплаве в ходе реакций между предварительно введенными исходными компонентами, которые будут выполнять также роль модификаторов, причем как для матрицы, так и для образующихся интерметаллидных соединений;

- новый сплав дополнительно содержит эндогенные армирующие и модифицирующие фазы, при этом номенклатура используемых эндогенных фаз расширяется, включая не только интерметаллидные соединения типа Al3X: TiB2, TiC, Al2O3, Al3X, AlX, AlX3 (где Х - Ti, Zr, V, Fe, Ni);

- расширяется номенклатура базовых матричных сплавов; в качестве матричных сплавов взамен АК12 (система Al-Si) предлагается использовать литейные алюминиевые сплавы, содержащие магний (системы Al-Mg, Al-Si-Mg, Al-Si-Cu-Mg и др.), которые более технологичны с точки зрения получения литых композиционных сплавов, поскольку присутствие магния в расплаве облегчает ввод в расплав и улучшает смачивание и усвоение экзогенной дисперсной фазы;

- для интенсификации распада порошковых брикетов в расплаве и уменьшения времени выдержки композиции до разливки в исходную порошковую смесь дополнительно добавляется алюминиевый порошок, а для активизации реакций синтеза эндогенных фаз предусмотрено использование криолита Na3AlF6.

Подогрев брикетов до 300±10°С перед вводом и добавление алюминиевого порошка позволяют интенсифицировать взаимодействие компонентов с расплавом и за счет этого сократить время выдержки композиции перед разливкой до 15-20 мин.

Изобретение может быть проиллюстрировано следующими примерами.

По вышеизложенной технологии были приготовлены литые композиционные сплавы (табл.1) на базе стандартного сплава АК12М2МгН системы Al-Si-Cu-Mg-Ni.

В табл.1 также представлены численные значения твердости НВ образцов алюмоматричных композиционных сплавов (АКС) в литом состоянии и результаты испытаний образцов АКС на трение и износ в сравнении с матричным сплавом. Результаты испытаний свидетельствуют о повышении твердости АКС на 35-40% при нормальной температуре и до 30% при температуре 200°С. Твердость образцов возрастает с увеличением суммарной объемной доли армирующей фазы с 2,5 до 5%.

Трибологические свойства образцов АКС оценивали по величине коэффициента трения и интенсивности изнашивания. Установлено, что образцы из АКС при температуре 20°С имеют коэффициент трения в 5-7 раз ниже, а износостойкость в 10-12 раз выше по сравнению с базовым сплавом. Достигнутые показатели твердости превосходят аналогичные показатели прототипа на 40-45%, а износостойкость новых сплавов в сравнении с прототипом выше в 2-2,5 раза.

В табл.2 приведен сравнительный анализ степени усвоения исходного порошкового брикета при различном составе композиции и времени выдержки композиции до разливки. Видно, что наибольшую степень усвоения армирующих компонентов, а следовательно, и меньший расход армирующего наполнителя обеспечивает предлагаемый способ получения литого композиционного сплава, основанный на использовании в составе брикета криолита в качестве технологической добавки.

Высокий уровень трибологических свойств АКС позволяет рекомендовать их для широкого применения в трибосопряжениях различного технологического оборудования, автомобильной, дорожно-строительной технике и других областях взамен традиционных антифрикционных сплавов на медной, цинковой и алюминиевой основе.

Таблица 2
Степень усвоения исходного брикета в зависимости от состава композиции и времени выдержки до разливки
Состав композиции Содержание криолита в брикете, % Время выдержки, мин Степень усвоения, %
Состав-прототип AK12 + 3% Ti + 0,2% SiC(нано) + 5% SiC(14 мкм) 0 30 80-85
Предлагаемый состав (без криолита) АК12М2МгН + 1,0% [TiO2+В] + 2,0% Ti + 1,5% SiC 0 15 55-60
0 30 60-65
Предлагаемый состав (с криолитом) АК12М2МгН + 1,0% [TiO2+В] + 2,0% Ti + 1,5% SiC 0,05 15 70-75
0,1 15 92-95
0,2 15 92-95
0,3 15 92-95

Источник поступления информации: Роспатент

Показаны записи 31-40 из 77.
20.06.2015
№216.013.571c

Способ модификации полупроводниковой пленки лазерным излучением

Изобретение относится к области нанотехнологий, в частности к получению наноструктур на поверхности полупроводника. Способ модификации полупроводниковой пленки согласно изобретению заключается в том, что воздействуют на полупроводниковую пленку непрерывным лазерным излучением с энергией кванта...
Тип: Изобретение
Номер охранного документа: 0002553830
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.579c

Инструмент для очистки поверхностей

(57) Инструмент для очистки поверхностей относится к инструментам для зачистки заусенцев, снятия окалины, многослойной старой краски на металлических и неметаллических изделиях; для ремонта (зачистки стен, отопительных батарей и др. предметов интерьера) жилых, общественных и дачных зданий и...
Тип: Изобретение
Номер охранного документа: 0002553958
Дата охранного документа: 20.06.2015
10.07.2015
№216.013.5e81

Способ изготовления армированной клееной деревянной балки

Изобретение относится к строительству, а именно к способам изготовления клееных армированных деревянных балок. Технический результат изобретения заключается в снижении трудоемкости изготовления балки. Способ изготовления заключается в том, что пазы под арматуру фрезеруются по боковым...
Тип: Изобретение
Номер охранного документа: 0002555734
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.6e0b

Дымовой пожарный извещатель

Изобретение относится к области пожарной безопасности. Техническим результатом является повышение метрологической надежности и упрощение конструкции. Имеются излучатель, приемник дымности и приемник запыленности. Оптические каналы дымности и запыленности конструктивно образуют съемную...
Тип: Изобретение
Номер охранного документа: 0002559729
Дата охранного документа: 10.08.2015
20.09.2015
№216.013.7ada

Карусельный ветродвигатель

Изобретение относится к ветроэнергетике повышенной мощности. Устройство содержит лопасти на махах, установленных в головках, закрепленных на вертикальных валах. Махи выполнены каркасными, а лопасти - рамными. Установка содержит также два конических и двухрядный планетарный ускорители, муфты...
Тип: Изобретение
Номер охранного документа: 0002563047
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7c39

Устройство для изготовления поршней двигателя внутреннего сгорания.

Изобретение относится к машиностроению, в частности литейному производству. Устройство содержит подвижную 3 и неподвижную 4 полуформы, выталкивающий 7 и прессующий 8 плунжеры. В неподвижной полуформе установлена втулка 6, соединяющая заливочное отверстие с полостью формы. В подвижной...
Тип: Изобретение
Номер охранного документа: 0002563398
Дата охранного документа: 20.09.2015
10.01.2016
№216.013.9ef0

Способ получения графена

Изобретение может быть использовано для получения материалов и элементов наноэлектроники, нанофотоники, газовых сенсоров и лазерных систем с ультракороткими импульсами излучения. Графен получают путем расслоения графита в жидком азоте. Поверхность графитовой мишени обрабатывают пучком...
Тип: Изобретение
Номер охранного документа: 0002572325
Дата охранного документа: 10.01.2016
27.03.2016
№216.014.c63c

Система подачи топлива в камеру сгорания газодизеля

Изобретение может быть использовано в системах топливоподачи двигателей внутреннего сгорания (ДВС). Предложена система топливоподачи, содержащая источник дизельного топлива 1, источник сжиженного нефтяного газа (пропан-бутан) 2 и источник природного газа (метан) 3. Соотношение жидких фракций...
Тип: Изобретение
Номер охранного документа: 0002578770
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c7ae

Устройство для непрерывной экструзии некомпактных материалов

Изобретение относится к области непрерывной экструзии цельных изделий из некомпактного материала (стружки, гранул, порошка и пр.). Устройство содержит матрицу и колесо с кольцевой канавкой для транспортирования материала. Увеличение усилия прессования, напряжений сжатия в поперечном сечении...
Тип: Изобретение
Номер охранного документа: 0002578871
Дата охранного документа: 27.03.2016
20.06.2016
№217.015.0368

Способ определения реакции восстановления организма человека после снятия физической нагрузки

Изобретение относится к медицине и может быть использовано для определения реакции восстановления организма после снятия физической нагрузки. Предъявляют испытуемому дозированную физическую нагрузку. Проводят задержку дыхания на вдохе - апноэ-1. Предоставляют испытуемому отдых. Повторно...
Тип: Изобретение
Номер охранного документа: 0002587316
Дата охранного документа: 20.06.2016
Показаны записи 31-40 из 80.
10.01.2015
№216.013.19ed

Оловянный сплав для художественного литья

Изобретение относится к металлургии, а именно к сплавам для производства художественного или декоративного литья, и может быть использовано при производстве нательных украшений, декора и кабинетных художественных отливок из оловянных сплавов. Для повышения прочности, твёрдости, коррозионной...
Тип: Изобретение
Номер охранного документа: 0002538065
Дата охранного документа: 10.01.2015
20.02.2015
№216.013.2a04

Протекторный сплав на основе алюминия

Изобретение относится к металлургии протекторных сплавов на основе алюминия и может быть использовано при производстве протекторов для защиты от коррозии различных металлических сооружений и конструкций. Сплав содержит, мас. %: цинк - 4,0-6,0, марганец - 0,1-0,3, магний - 0,5-2,5, титан -...
Тип: Изобретение
Номер охранного документа: 0002542213
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2d23

Роторный подложкодержатель

Изобретение относится к технике для нанесения на изделия нанопокрытий, в частности к роторному подложкодержателю. Роторный подложкодержатель выполнен модульным. Модуль состоит из насадки-ротора, установленной с помощью поворотной державки на опоре и соединенной с приводом поворота, и датчика...
Тип: Изобретение
Номер охранного документа: 0002543023
Дата охранного документа: 27.02.2015
10.06.2015
№216.013.5222

Устройство для очистки потока жидкости от твердых частиц загрязнений

Изобретение предназначено для очистки потока жидкости от твердых частиц загрязнений и может быть использовано в нефтехимической, металлургической, энергетической, автомобильной и других отраслях промышленности. Устройство для очистки потока жидкости от твердых частиц загрязнений содержит...
Тип: Изобретение
Номер охранного документа: 0002552547
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.571c

Способ модификации полупроводниковой пленки лазерным излучением

Изобретение относится к области нанотехнологий, в частности к получению наноструктур на поверхности полупроводника. Способ модификации полупроводниковой пленки согласно изобретению заключается в том, что воздействуют на полупроводниковую пленку непрерывным лазерным излучением с энергией кванта...
Тип: Изобретение
Номер охранного документа: 0002553830
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.579c

Инструмент для очистки поверхностей

(57) Инструмент для очистки поверхностей относится к инструментам для зачистки заусенцев, снятия окалины, многослойной старой краски на металлических и неметаллических изделиях; для ремонта (зачистки стен, отопительных батарей и др. предметов интерьера) жилых, общественных и дачных зданий и...
Тип: Изобретение
Номер охранного документа: 0002553958
Дата охранного документа: 20.06.2015
10.07.2015
№216.013.5e81

Способ изготовления армированной клееной деревянной балки

Изобретение относится к строительству, а именно к способам изготовления клееных армированных деревянных балок. Технический результат изобретения заключается в снижении трудоемкости изготовления балки. Способ изготовления заключается в том, что пазы под арматуру фрезеруются по боковым...
Тип: Изобретение
Номер охранного документа: 0002555734
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.6e0b

Дымовой пожарный извещатель

Изобретение относится к области пожарной безопасности. Техническим результатом является повышение метрологической надежности и упрощение конструкции. Имеются излучатель, приемник дымности и приемник запыленности. Оптические каналы дымности и запыленности конструктивно образуют съемную...
Тип: Изобретение
Номер охранного документа: 0002559729
Дата охранного документа: 10.08.2015
20.09.2015
№216.013.7ada

Карусельный ветродвигатель

Изобретение относится к ветроэнергетике повышенной мощности. Устройство содержит лопасти на махах, установленных в головках, закрепленных на вертикальных валах. Махи выполнены каркасными, а лопасти - рамными. Установка содержит также два конических и двухрядный планетарный ускорители, муфты...
Тип: Изобретение
Номер охранного документа: 0002563047
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7c39

Устройство для изготовления поршней двигателя внутреннего сгорания.

Изобретение относится к машиностроению, в частности литейному производству. Устройство содержит подвижную 3 и неподвижную 4 полуформы, выталкивающий 7 и прессующий 8 плунжеры. В неподвижной полуформе установлена втулка 6, соединяющая заливочное отверстие с полостью формы. В подвижной...
Тип: Изобретение
Номер охранного документа: 0002563398
Дата охранного документа: 20.09.2015
+ добавить свой РИД