×
20.06.2015
216.013.571c

СПОСОБ МОДИФИКАЦИИ ПОЛУПРОВОДНИКОВОЙ ПЛЕНКИ ЛАЗЕРНЫМ ИЗЛУЧЕНИЕМ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области нанотехнологий, в частности к получению наноструктур на поверхности полупроводника. Способ модификации полупроводниковой пленки согласно изобретению заключается в том, что воздействуют на полупроводниковую пленку непрерывным лазерным излучением с энергией кванта превосходящей ширину запрещенной зоны в диапазоне мощности от 5 до 10 Вт, при диаметре лазерного пучка на поверхности пленки от 30 до 100 мкм, так чтобы интенсивность воздействия не превышала 10 Вт/см, при сканировании поверхности пленки со скоростью от 40 до 160 мкм/с. Изобретение упрощает технический процесс, не требуется специального оборудования и позволяет охватывать устройства с характерным периодом расположения элементов на поверхности от 100 нм до 1 мкм.8 ил.
Основные результаты: Способ модификации полупроводниковой пленки лазерным излучением, отличающийся тем, что воздействуют на полупроводниковую пленку непрерывным лазерным излучением с энергией кванта, превосходящей ширину запрещенной зоны в диапазоне мощности от 5 до 10 Вт, при диаметре лазерного пучка на поверхности пленки от 30 до 100 мкм, так, чтобы интенсивность воздействия не превышала 10 Вт/см, при сканировании поверхности пленки со скоростью от 40 до 160 мкм/с.
Реферат Свернуть Развернуть

Изобретение относится к области нанотехнологий, в частности к получению наноструктур на поверхности полупроводника при воздействии лазерного излучения. Полученные модифицированные полупроводниковые поверхности можно использовать при получении новых устройств для наноэлектроники в полупроводниковых приборах, в солнечных элементах, в приборах, работающих на квантовых эффектах.

Известен способ формирования нанорельефа на поверхностях деталей двухпереходным выглаживанием (патент №2458778, МПК B24B 39/00, B82B 3/00). Способ реализуется посредством выглаживания, которое проводят за два перехода инструментами с инденторами, имеющими полуцилиндрическую или сферическую форму рабочей части, на первом, сглаживающем переходе обработку поверхности осуществляют до Ra=(0,4-0,1) мкм, причем индентор с полуцилиндрической формой рабочей части устанавливают так, чтобы ось рабочей части индентора была расположена под углом φ=(5-30°) к оси обрабатываемой детали, а на втором переходе индентор устанавливают так, чтобы ось полуцилиндрической рабочей части индентора была расположена под углом φ=(70-85)° к оси обрабатываемой детали, обработку поверхности осуществляют до Ra≤10 нм.

Недостатками данного метода является то, что формирование нанорельефа производят инструментами инденторами в два этапа. Изготовление данных инструментов является нетривиальной задачей. К тому же произвести формирование нанорельефа на изгибах и впадинах практически не возможно.

Известен способ формирования нанорельефа на теплообменных поверхностях изделий (патент №2433949, МПК B82B 3/00, B82Y 40/00). Способ формирования нанорельефа на теплообменной поверхности изделия путем осуществления на ней кипения наножидкости заключается в том, что выбирают материал наночастиц с температурой плавления, равной 0.8-0.9 от температуры плавления изделия, получают при кипении наножидкости сплошной слой наночастиц на поверхности изделий с минимальным термическим сопротивлением, выдерживают изделие вместе со слоем наночастиц на нем в инертной атмосфере при температуре 0,7-0,8 от температуры плавления наночастиц в течение 30 мин.

Недостатками данного метода является то, что при кипении жидкости не возможно осаждение равномерного слоя наночастиц на поверхности изделия. К тому же не понятно, какого размера наночастицы и как выбирают наночастицы с температурой плавления, равной 0.8-0.9 от температуры плавления изделия (например, усадка наночастиц никеля, размерами от 70 нм до 80 нм, происходит при температуре от 100 до 200°C. Статья Степанов Ю.Н. Закономерности объединения наночастиц при их флуктуационном плавлении на начальной стадии спекания // Российские нонотехнологии. 2007. Т.2, №1-2, стр.133-135).

Известен способ формирования нанорельефа на поверхности пленок (патент №2204179, МПК H01L 21/265). Формирование нанорельефа на поверхности пленок заключается в том, что наносят на пленку слой кремния толщиной от полутора до трех глубин формирования наноструктуры в слое кремния; распыляют поверхность кремния потоком ионов молекул азота в вакууме с выбором энергии ионов азота, угла потока ионов азота по отношению к поверхности кремния, глубины формирования наноструктуры и высоты наноструктуры на основании значения длины волны наноструктуры в диапазоне от 30 до 180 нм до формирования наноструктуры, отстоящей от пленки на расстояние в одну треть длины волны по впадинам волн наноструктуры и с ориентацией гребней волн перпендикулярно направлению проекции потока ионов на поверхность кремния; переносят рельеф наноструктуры на поверхность пленки, удаляя материалы наноструктуры и пленки ионно-лучевым или плазменным травлением.

Недостатками данного метода является то, что процесс формирования требует использования большого количества операций по напылению и удалению структур кремния. Облучение поверхности потоком ионов азота требует высокого и чистого вакуума, что означает использование дорогостоящего и низкоэффеквтиного по производительности обоурдования.

Известен способ модифицирования поверхности неорганического волокна, модифицированное волокно и композиционный материал (патент №2475463, МПК C04B 35/8, D01F 9/12, В82В 3/00). Способ модифицирования поверхности неорганического волокна включает следующие стадии: (а) пропитку неорганического волокна раствором из фракции пека в органических растворителях; (б) последующую сушку пропитанного волокна; (в) термообработку пропитанного неорганического волокна при 300-600°C; (г) нанесение на поверхность термообработанного в соответствии со стадией (в) волокна соли переходного металла; (д) восстановление соли переходного металла с получением наночастиц переходного металла; (е) осаждение углерода на наночастицы переходного металла с получением углеродных наноструктур на поверхности волокна. Композиционный материал содержит модифицированное волокно, изготовленное вышеизложенным способом, и матрицу из полимера или углерода.

Недостатком данного метода является то, что данный способ модифицирования содержит много технологических этапов, что требует специального оборудования. Необходимость проведения последовательных окислительных и восстановительных операций с солями металлов должна приводить к их остаточному присутствию в получаемых структурах.

Известен способ формирования эпитаксиальных пленок кобальта на поверхности полупроводниковых подложек (патент №2465670, МПК H01F 10/16, H01F 41/30, B82B 3/00). Способ формирования эпитаксиальных пленок кобальта на поверхности полупроводниковых подложек включает нанесение буферного подслоя меди на атомарно чистой поверхности Si (111)7×7 в условиях сверхвысокого вакуума при комнатной температуре, последующее формирование в режиме послойного роста при тех же условиях ультратонких эпитаксиальных пленок Co(111)/Cu(111)/Si(111)7×7 толщиной от 1 до 6 монослоев (МС) в том случае, когда толщина буферного подслоя меди составляет 3,5 МС. При толщине медного буферного слоя от 4,5 и до 11,5 МС формируют массивы эпитаксиальных наноостровков кобальта моноатомной и биатомной высоты до величины покрытия кобальта 3 монослоя.

Недостатками данного способа является то, что для формирования эпитаксиальных пленок необходимо использовать специальное, дорогое оборудование для создания сверхвысокого вакуума, при этом скорости роста структур будут составлять порядка одного атомного слоя в час, что не позволяет применять данный метод в промышленных масштабах.

Известен способ модификации металлических поверхностей и устройство (патент №2425907, МПК C23C 4/1, C23C 16/48, C23C 16/513). Способ модификации включает формирование потока рабочего газа, содержащего несущий газ, а также химически активные реагенты и/или легирующие добавки, и направление потока рабочего газа на модифицируемую поверхность. При этом на поверхность воздействуют лазерным импульсно-периодическим излучением с образованием на поверхности и/или в ее приповерхностной области лазерной плазмы. Устройство для реализации способа содержит реакционную камеру, снабженную средством позиционирования обрабатываемого объекта, входом для потока рабочего газа и входом для лазерного излучения, источник рабочего газа, средство формирования потока рабочего газа в реакционной камере, импульсно-периодический лазер и средство доставки лазерного излучения в реакционную камеру и фокусировки луча, выполненное с возможностью направления лазерного луча на модифицируемую поверхность объекта.

Недостатками данного способа является то, что необходимо использовать химически активные реагенты в газовой фазе и/или легирующие добавки, требующие надлежащего хранения и последующей утилизации. Также требуется постоянный контроль над размерами распыляемых фракций.

Известен способ модификации поверхности материала плазменной обработкой (патент №2478141, МПК C23C 14/22, C22F 1/02). Способ включает загрузку материала в камеру, вакуумную откачку камеры, плазменную обработку поверхности материала и его выгрузку. Плазменную обработку осуществляют катодными пятнами возбуждаемого в камере вакуумного дугового разряда с обеспечением переплавления поверхностного слоя материала. Давление в камере поддерживают не более 1 Па, напряжение вакуумного дугового разряда - не менее 10 В, а ток вакуумного дугового разряда - не менее 1 А. Возбуждение и поддержание вакуумного дугового разряда осуществляют при приложении между катодом и анодом постоянного или импульсно-периодического напряжения, а локализацию катодных пятен на поверхности и управление их перемещением по осуществляют магнитным полем. Повышается эффективность и качество модификации поверхности материалов и изготовленных изделий.

Недостатками данного метода является то, что происходит переплавление материала на неизвестную и плохо контролируемую глубину от поверхности.

В качестве прототипа выбран способ формирования упорядоченных волнообразных наноструктур (варианты) (патент №2240280, МПК B82B 3/00).

Способ формирования упорядоченной волнообразной наноструктуры предусматривает облучение GaAs потоком ионов молекулярного азота до формирования периодической волнообразной наноструктуры на поверхности GaAs с ориентацией гребней волн наноструктуры, перпендикулярной плоскости падения ионов, с последующим дополнительным распылением GaAs потоком ионов в плоскости бомбардировки, совпадающей с плоскостью бомбардировки ионами . Энергию и угол бомбардировки ионами устанавливают так, чтобы длины волн формирующихся волнообразных наноструктур при однократном облучении ионами и арсенида галлия совпадали. Второй вариант способа формирования упорядоченной волнообразной наноструктуры предусматривает облучение поверхности кремния потоком ионов до формирования малоамплитудной волнообразной наноструктуры на глубине распыления, отвечающей началу роста амплитуды наноструктуры с последующим облучением поверхности кремния потоком ионов в плоскости бомбардировки, совпадающей с плоскостью бомбардировки ионами , до насыщения амплитуды волнообразной наноструктуры. Энергию и угол бомбардировки ионов устанавливают так, чтобы длины волн формирующихся волнообразных наноструктур при однократном облучении ионами и кремния совпадали. Третий и четвертый варианты способа формирования упорядоченной волнообразной наноструктуры предусматривает предварительное направленное полирование поверхности арсенида галлия и кремния с последующим формированием волнообразной наноструктуры с ориентацией гребней волн, совпадающей с направлением.

Недостатками данного способа является то, что необходимо использовать специальное оборудование для облучения поверхности ионами и . К тому же кислород является взрывоопасным газом. Такие операции требуют выполнения в высоком вакууме с постоянной откачкой газов и распыляемого материала, что требует использования дорогостоящего оборудования. В процессе воздействия ионами возможно их глубокое проникновение в массив материала и образование сторонних фракций, что является негативным для свойств наноструктур GaAs.

Техническим результатом является модификация поверхности полупроводниковой пленки на основе халькогенидов свинца с бимодальным распределением наночастиц при воздействии непрерывного лазерного излучения. Таким образом, что размеры частиц изменяются от центра лазерного облучения к границе пучка. Это приводит к образованию наночастиц с двумя максимумами в функции распределения по размеру, что позволяет использовать данные материалы в различных областях фотоники, наноэлектроники и энергосберегающих технологиях в случае, когда требуется создание устройств с перестраиваемыми параметрами. Такой подход упрощает технический процесс, не требуется специального оборудования и позволяет охватывать устройства с характерным периодом расположения элементов на поверхности от 100 нм до 1 мкм.

Технический результат достигается тем, что воздействуют на полупроводниковую пленку непрерывным лазерным излучением с энергией кванта, превосходящей ширину запрещенной зоны в диапазоне мощности от 5 до 10 Вт, при диаметре лазерного пучка на поверхности пленки от 30 до 100 мкм, так, чтобы интенсивность воздействия не превышала 106 Вт/см2, при сканировании поверхности пленки со скоростью от 40 до 160 мкм/с.

Воздействуя непрерывным лазерным излучением мощности 5 Вт с диаметром пучка 30 мкм на полупроводниковую пленку PbTe при скорости сканирования 40 мкм/с, приводит к возникновению температурных градиентов, приводящих к тепловым напряжениям внутри материала без плавления. В результате на поверхности полупроводниковой пленки PbTe происходит формирование наночастиц бимодального распределения с размерами от 100 до 500 нм, изменяющимися от расстояния до центра лазерного воздействия (фиг.2, 3).

Воздействие непрерывного лазерного излучения мощности 8 Вт с диаметром пучка 60 мкм на полупроводниковую пленку PbTe при скорости сканирования 80 мкм/с приводит к возникновению температурных градиентов, приводящих к тепловым напряжениям внутри материала без плавления. В результате на поверхности полупроводниковой пленки PbTe происходит формирование наночастиц бимодального распределения с размерами от 100 до 500 нм, изменяющимися от расстояния до центра лазерного воздействия (фиг.4, 5). Количество сформированных наночастиц в области лазерного воздействия и на его периферии увеличилось.

Воздействие непрерывного лазерного излучения мощности 10 Вт с диаметром пучка 100 мкм на полупроводниковую пленку PbTe при скорости сканирования 120 мкм/с приводит к возникновению температурных градиентов, приводящих к тепловым напряжениям внутри материала без плавления. В результате на поверхности полупроводниковой пленки PbTe происходит формирование наночастиц бимодального распределения с размерами от 300 до 1000 нм, изменяющимися от расстояния до центра лазерного воздействия (фиг.6-8).

Изобретение поясняется представленными фиг.1, 2, 3: фиг.1 - принципиальная схема модификации полупроводниковой пленки лазерным излучением (1 - лазерный луч, 2 - полупроводниковая пленка, 3 - модифицированная область); фиг.2 - АСМ изображение модифицированной области полупроводниковой пленки, облученная непрерывным лазерным излучением мощностью 5 Вт, скорость сканирования 40 мкм/с; фиг.3 - гистограмма бимодального распределения наночастиц модифицированной области, облученная непрерывным лазерным излучением мощностью 5 Вт, скорость сканирования 40 мкм/с; фиг.4 - АСМ изображение модифицированной области полупроводниковой пленки, облученная непрерывным лазерным излучением мощностью 8 Вт, скорость сканирования 80 мкм/с; фиг.5 - гистограмма бимодального распределения наночастиц модифицированной области, облученная непрерывным лазерным излучением мощностью 8 Вт, скорость сканирования 80 мкм/с; фиг.6 - РЭМ изображение модифицированной области полупроводниковой пленки, облученная непрерывным лазерным излучением мощностью 10 Вт, скорость сканирования 120 мкм/с; фиг.7 - гистограмма бимодального распределения наночастиц модифицированной области, облученная непрерывным лазерным излучением мощностью 10 Вт, скорость сканирования 120 мкм/с; фиг.8 - АСМ изображение модифицированной области полупроводниковой пленки, облученная непрерывным лазерным излучением мощностью 10 Вт, скорость сканирования 120 мкм/с.

Способ модификации полупроводниковой пленки лазерным излучением, отличающийся тем, что воздействуют на полупроводниковую пленку непрерывным лазерным излучением с энергией кванта, превосходящей ширину запрещенной зоны в диапазоне мощности от 5 до 10 Вт, при диаметре лазерного пучка на поверхности пленки от 30 до 100 мкм, так, чтобы интенсивность воздействия не превышала 10 Вт/см, при сканировании поверхности пленки со скоростью от 40 до 160 мкм/с.
СПОСОБ МОДИФИКАЦИИ ПОЛУПРОВОДНИКОВОЙ ПЛЕНКИ ЛАЗЕРНЫМ ИЗЛУЧЕНИЕМ
СПОСОБ МОДИФИКАЦИИ ПОЛУПРОВОДНИКОВОЙ ПЛЕНКИ ЛАЗЕРНЫМ ИЗЛУЧЕНИЕМ
СПОСОБ МОДИФИКАЦИИ ПОЛУПРОВОДНИКОВОЙ ПЛЕНКИ ЛАЗЕРНЫМ ИЗЛУЧЕНИЕМ
СПОСОБ МОДИФИКАЦИИ ПОЛУПРОВОДНИКОВОЙ ПЛЕНКИ ЛАЗЕРНЫМ ИЗЛУЧЕНИЕМ
СПОСОБ МОДИФИКАЦИИ ПОЛУПРОВОДНИКОВОЙ ПЛЕНКИ ЛАЗЕРНЫМ ИЗЛУЧЕНИЕМ
СПОСОБ МОДИФИКАЦИИ ПОЛУПРОВОДНИКОВОЙ ПЛЕНКИ ЛАЗЕРНЫМ ИЗЛУЧЕНИЕМ
СПОСОБ МОДИФИКАЦИИ ПОЛУПРОВОДНИКОВОЙ ПЛЕНКИ ЛАЗЕРНЫМ ИЗЛУЧЕНИЕМ
СПОСОБ МОДИФИКАЦИИ ПОЛУПРОВОДНИКОВОЙ ПЛЕНКИ ЛАЗЕРНЫМ ИЗЛУЧЕНИЕМ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 76.
10.04.2013
№216.012.32db

Способ получения волокон в электрическом однородном поле

Изобретение относится к области нанотехнологии, в частности, может быть использовано в химической промышленности, электронике, медицине, машиностроении для изготовления пластмасс, компонентов топливных ячеек, аккумуляторов, суперконденсаторов, дисплеев, источников электронов, материалов для...
Тип: Изобретение
Номер охранного документа: 0002478562
Дата охранного документа: 10.04.2013
27.05.2013
№216.012.43e6

Режущий инструмент

Изобретение относится к машиностроению и может быть использовано в металлорежущих инструментах при обработке различных деталей. Режущий инструмент содержит режущие элементы, расположенные с осевым смещением на цилиндрической поверхности дисков. По меньшей мере, два диска выполнены V-образной...
Тип: Изобретение
Номер охранного документа: 0002482959
Дата охранного документа: 27.05.2013
27.07.2013
№216.012.593a

Способ сверления отверстий в заготовках

Изобретение относится к машиностроению и может быть использовано при сверлении заготовок. Способ включает одновременное вращение и осевую подачу сверла и перемещение заготовки. Заготовке сообщают вращение в направлении, противоположном направлению вращения сверла. Вращение сверла осуществляют с...
Тип: Изобретение
Номер охранного документа: 0002488463
Дата охранного документа: 27.07.2013
10.09.2013
№216.012.67f4

Комплексный модификатор для заэвтектических силуминов

Изобретение относится области цветной металлургии, в частности к модифицированию заэвтектических силуминов. Модификатор для обработки расплава заэвтектических силуминов содержит, мас.%: фосфористая медь - 0,5-2,0, интерметаллид титана АlТi - 0,5-2,0, алюминий - остальное. Применение данного...
Тип: Изобретение
Номер охранного документа: 0002492259
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.67f6

Литой композиционный сплав и способ его получения

Изобретение относится к металлургии, в частности к получению литых композиционных сплавов для отливок ответственного назначения. Литой композиционный сплав на основе алюминиевой матрицы содержит включения интерметаллидных фаз состава AlX, AlX, AlX, где Х - Ti, Zr, V, Fe, Ni размером <10 мкм в...
Тип: Изобретение
Номер охранного документа: 0002492261
Дата охранного документа: 10.09.2013
27.12.2013
№216.012.90d5

Композиция для защитных покрытий

Изобретение относится к композиции для защитных покрытий и может применяться для антикоррозионной, термической и антисептической защиты металлических, бетонных и деревянных поверхностей и для их ремонта, а также для увеличения прочности на удар поверхности, повышения ее гидрофобности и...
Тип: Изобретение
Номер охранного документа: 0002502770
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.91ef

Способ генерации перепутанных поляритонов

Способ относится к генерации перепутанных поляритонов. Способ генерации перепутанных поляритонов заключается в том, что выбираются параметры схемы атомно-оптического взаимодействия в допированной среде и за счет внешнего оптического управления происходит генерации перепутанных поляритонов....
Тип: Изобретение
Номер охранного документа: 0002503052
Дата охранного документа: 27.12.2013
20.01.2014
№216.012.97ea

Способ переработки шламов гальванических производств

Изобретение относится к переработке промышленных отходов предприятий металлургии и машиностроения. Способ переработки шламов гальванических производств включает выщелачивание тяжелых цветных металлов раствором серной кислоты с последующим отделением твердой фазы из раствора выщелачивания...
Тип: Изобретение
Номер охранного документа: 0002504589
Дата охранного документа: 20.01.2014
10.02.2014
№216.012.9eb3

Металломатричный композит

Изобретение относится к композиционным материалам, в частности к металломатричным композитам, и может быть использовано при производстве подшипников скольжения. Металломатричный композит содержит, мас.%: сурьма - 10,0-12,0; медь - 0,5-1,5; карбид кремния - 1,0-15,0; углеродные нанотрубки -...
Тип: Изобретение
Номер охранного документа: 0002506335
Дата охранного документа: 10.02.2014
10.04.2014
№216.012.b343

Способ электрошумовой диагностики высоковольтного оборудования

Использование: изобретение относится к технике высоких напряжений, в частности к диагностике высоковольтных аппаратов по параметрам электрических шумов, вызванных частичными разрядами. Сущность: электромагнитное поле частичных разрядов в изоляции воспринимают индуктивным и емкостным датчиками,...
Тип: Изобретение
Номер охранного документа: 0002511607
Дата охранного документа: 10.04.2014
Показаны записи 1-10 из 80.
10.04.2013
№216.012.32db

Способ получения волокон в электрическом однородном поле

Изобретение относится к области нанотехнологии, в частности, может быть использовано в химической промышленности, электронике, медицине, машиностроении для изготовления пластмасс, компонентов топливных ячеек, аккумуляторов, суперконденсаторов, дисплеев, источников электронов, материалов для...
Тип: Изобретение
Номер охранного документа: 0002478562
Дата охранного документа: 10.04.2013
27.04.2013
№216.012.3b71

Способ испытания электрических машин постоянного тока

Изобретение относится к электротехнике и предназначено для испытания электрических машин постоянного тока. Способ испытания электрических машин постоянного тока методом взаимного нагружения, при котором якорные обмотки двигателей соединяются параллельно и подключаются к регулируемому источнику...
Тип: Изобретение
Номер охранного документа: 0002480778
Дата охранного документа: 27.04.2013
27.05.2013
№216.012.43e6

Режущий инструмент

Изобретение относится к машиностроению и может быть использовано в металлорежущих инструментах при обработке различных деталей. Режущий инструмент содержит режущие элементы, расположенные с осевым смещением на цилиндрической поверхности дисков. По меньшей мере, два диска выполнены V-образной...
Тип: Изобретение
Номер охранного документа: 0002482959
Дата охранного документа: 27.05.2013
27.07.2013
№216.012.593a

Способ сверления отверстий в заготовках

Изобретение относится к машиностроению и может быть использовано при сверлении заготовок. Способ включает одновременное вращение и осевую подачу сверла и перемещение заготовки. Заготовке сообщают вращение в направлении, противоположном направлению вращения сверла. Вращение сверла осуществляют с...
Тип: Изобретение
Номер охранного документа: 0002488463
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a7b

Устройство для взвешивания массы в невесомости

Изобретение относится к измерительной технике и может найти применение для взвешивания массы в невесомости. Технический результат - упрощение и повышение точности. Для этого использованы функциональные особенности колебательной системы, которая образована упругим элементом - мембраной и...
Тип: Изобретение
Номер охранного документа: 0002488784
Дата охранного документа: 27.07.2013
27.08.2013
№216.012.65d4

Электрический привод

Изобретение относится к области электротехники и может быть использовано в электроприводах различных механизмов, исполнительных устройствах автоматических систем. Техническим результатом является повышение энергетической эффективности и надежности работы электрического привода постоянного тока....
Тип: Изобретение
Номер охранного документа: 0002491705
Дата охранного документа: 27.08.2013
10.09.2013
№216.012.6705

Изложница для получения литых протекторов

Изобретение относится к металлургии. Изложница содержит основание, боковые стенки, водоохлаждаемый поддон и кожух. Кожух установлен относительно боковых стенок изложницы с теплоизоляционным зазором. Зазор увеличивается по высоте изложницы в соответствии с выражением δ=(0,3-0,4)·h, где δ -...
Тип: Изобретение
Номер охранного документа: 0002492020
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.6715

Способ пробивки микроотверстий лазерным импульсным излучением

Изобретение относится к области лазерной обработки материалов и может быть использовано для пробивки отверстий малого диаметра для оптических диафрагм, пространственных фильтров и растров. Техническим результатом данного изобретения является получение микроотверстий малого диаметра (10-30 мкм)...
Тип: Изобретение
Номер охранного документа: 0002492036
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.67f4

Комплексный модификатор для заэвтектических силуминов

Изобретение относится области цветной металлургии, в частности к модифицированию заэвтектических силуминов. Модификатор для обработки расплава заэвтектических силуминов содержит, мас.%: фосфористая медь - 0,5-2,0, интерметаллид титана АlТi - 0,5-2,0, алюминий - остальное. Применение данного...
Тип: Изобретение
Номер охранного документа: 0002492259
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.67f6

Литой композиционный сплав и способ его получения

Изобретение относится к металлургии, в частности к получению литых композиционных сплавов для отливок ответственного назначения. Литой композиционный сплав на основе алюминиевой матрицы содержит включения интерметаллидных фаз состава AlX, AlX, AlX, где Х - Ti, Zr, V, Fe, Ni размером <10 мкм в...
Тип: Изобретение
Номер охранного документа: 0002492261
Дата охранного документа: 10.09.2013
+ добавить свой РИД