×
20.08.2013
216.012.6194

Результат интеллектуальной деятельности: СПОСОБ ОЦЕНКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ КОНУСОВ И УСТОЕВ ЖЕЛЕЗНОДОРОЖНЫХ МОСТОВ В СЛОЖНЫХ ГИДРОГЕОЛОГИЧЕСКИХ УСЛОВИЯХ (ВАРИАНТЫ)

Вид РИД

Изобретение

№ охранного документа
0002490612
Дата охранного документа
20.08.2013
Аннотация: Изобретение относится к способам неразрушающего контроля технического состояния конусов и устоев железнодорожных мостов и может быть использовано для контроля и диагностики конусов и устоев мостов. Проводят анализ проектной и нормативной документации моста, устанавливают критерии устойчивости, долговечности и их допустимые величины. Выбирают сеть связанных базовых точек конструкции конусов и устоев, выверяют точность определения их координат относительно геодезического обоснования. Далее с помощью трех GPS-приемников и лазерного сканера выполняют координатно-пространственное обоснование конусов и устоев, определяют горизонтальные и вертикальные углы и расстояния до каждой заданной точки конструктивных элементов, определяющих общий контур конструкции и особенности геометрии составляющих ее частей. С использованием георадара проводят детальное инструментальное обследование насыпи, сопряженной с устоями моста на предмет внутренних размывов грунта в ее объеме. Определяют фактические параметры и характеристики материалов элементов конструкции и фактические параметры состояния и характеристики грунтового основания, определяют фактические значения параметров повреждений, дефектов и связей отдельных составляющих конструктивных элементов. На основании этих данных проводят построение многопараметрической цифровой модели конусов и устоев и схем их нагружения пролетными строениями и проходящим по мосту подвижным составом. После этого расчетным путем определяют техническое состояние и показатели устойчивости конусов, устоев и опирающихся на них пролетных строений и сравнивают полученные значения с допустимыми величинами. На основе этого сравнения устанавливают пригодность конусов, устоев и опирающихся на них пролетных строений моста для дальнейшего безопасного пропуска поездов, возможные новые повреждения и недостаточность несущей способности. обосновывают необходимые виды и объемы ремонта. 2 н. и 1 з.п. ф-лы.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Изобретение относится к измерительной технике и эксплуатации железнодорожных мостов и может быть использовано при диагностике и оценке фактического и прогнозируемого технического состояния конусов, устоев и опирающихся на них пролетных строений (далее по тексту элементов конструкции).

Наиболее близким техническим решением является способ построения многопараметрических цифровых моделей строительных объектов, анализа и моделирования их состояния (варианты) патент №RU 2177144, включающий анализ проектной и нормативной документации на строительные конструкции, определение параметров сечений для инструментального обследования, установление критериев пригодности и их допустимые величины, проведение замеров и другого инструментального обследования, построение многопараметрических цифровых моделей строительных объектов, моделирование состояния конструкций путем варьирования параметрами и характеристиками материалов элементов объекта, сравнение полученных значений с допустимыми величинами и установка пригодности конструкции для дальнейшей безопасной эксплуатации. Однако в данном способе не достигается достаточной точности измерений при наименьшей трудоемкости построения многопараметрической цифровой модели элементов мостовой конструкции и отсутствует возможность обоснования оптимальных, по условиям сохранения устойчивости и обеспечения требований к долговечности, объемов и сроков ремонта ее элементов.

Технической задачей данного изобретения является повышение качества и точности проведения измерений и обследований и диагностики технического состояния элементов конструкции железнодорожных мостов.

Данный технический результат достигается тем, что по первому варианту способа оценки технического состояния конусов и устоев железнодорожных мостов в сложных гидрогеологических условиях, предварительно проводят анализ проектной и нормативной документации моста, устанавливают критерии устойчивости и их допустимые величины, выбирают сеть связанных базовых точек элементов конструкции, выверяют точность определения их координат относительно геодезического обоснования. Далее с помощью трех GPS-приемников и лазерного сканера, выполняют координатно-пространственное обоснование конусов и устоев, определяют горизонтальные и вертикальные углы и расстояния до каждой заданной точки конструктивных элементов, определяющих общий контур конструкции и. особенности геометрии составляющих ее частей. С использованием георадара проводят детальное инструментальное обследование насыпи, сопряженной с устоями моста на предмет внутренних размывов грунта в ее объеме, наличия пустот, определяют фактические параметры и характеристики материалов элементов конструкции и фактические параметры состояния и характеристики грунтового основания, определяют фактические значения параметров повреждений, дефектов и связей отдельных составляющих конструктивных элементов. На основании этих данных проводят построение многопараметрической цифровой модели конусов, устоев и схем их нагружения пролетными строениями и проходящим по мосту подвижным составом. После этого расчетным путем определяют техническое состояние и показатели устойчивости элементов конструкции и сравнивают их с допустимыми величинами. На основе этого сравнения устанавливают пригодность элементов конструкции моста для дальнейшей безопасной эксплуатации, возможные новые повреждения и недостаточность несущей способности, необходимые виды ремонта. В способе по второму варианту оценки технического состояния конусов и устоев железнодорожных мостов в сложных гидрогеологических условиях предварительно проводят анализ проектной и нормативной документации моста, устанавливают критерии устойчивости и их допустимые величины, выбирают сеть связанных базовых точек элементов конструкции, выверяют точность определения их координат относительно геодезического обоснования. Далее с помощью трех GPS-приемников и лазерного сканера, выполняют координатно-пространственное, определяют горизонтальные и вертикальные углы и расстояния до каждой заданной точки конструктивных элементов, определяющих общий контур конструкции и особенности геометрии составляющих ее частей. С использованием георадара проводят детальное инструментальное обследование насыпи, сопряженной с устоями моста на предмет внутренних размывов грунта в ее объеме, определяют фактические параметры и характеристики материалов элементов конструкции и фактические параметры состояния и характеристики грунтового основания, определяют фактические значения параметров повреждений, дефектов и связей отдельных составляющих конструктивных элементов. На основании этих данных проводят построение многопараметрической цифровой модели конусов, устоев и схем их нагружения пролетными строениями и проходящим по мосту подвижным составом. После этого расчетным путем определяют техническое состояние и конкретные критерии устойчивости элементов конструкции и сравнивают их с допустимыми величинами, моделируют их состояние путем варьирования значений параметров и характеристик материалов этих элементов моста и параметров и характеристик грунтового основания, вносят поправки в указанные значения параметров исходя из объемов предполагаемых восстановительных и ремонтных работ, на основании этих данных вводят поправки в многопараметрическую цифровую модель несущих элементов конструкции моста в соответствии с принятым кодированным описанием элементов, после чего проводят анализ состояния и поведения элементов конструкции на основе сравнения результатов расчета при фактических и моделируемых значениях параметров и характеристик и на основе этого сравнения устанавливают пригодность элементов конструкции моста для дальнейшей безопасной эксплуатации, возможные новые повреждения и недостаточность несущей способности, уточняют необходимые виды и объемы ремонта. Возможно, при проведении моделирования состояния перечисленных элементов конструкции, значения параметров и характеристик их состояния принимать в виде функциональных зависимостей и проводить оценку фактического и прогнозируемого состояния по критериям устойчивости и долговечности. При проведении обмерных работ с помощью лазерного сканера и трех GPS-приемников производится построение пространственной цифровой модели элементов конструкции, что позволяет получать более точные чертежи объектов без использования известного метода диагоналей и автоматически получать геометрические параметры элементов конструкции, выявлять их геометрические особенности и отклонения от заданной формы или, например, имеющейся технической документации; позволяет получать с заданной точностью толщины конструктивных элементов неразрушающим методом; предоставляется возможным получать срезы обмеряемых элементов под любым углом и их построение в качестве чертежной документации, вычислять линейные расстояния между элементами, не имеющими между собой прямой видимости, и определять площади поверхностей объекта и его объемов, как в целом, так и отдельных его частей. Кодированное описание элементов объектов и хранение данных натурных обмеров в виде цифровой пространственной модели позволяет автоматизировать процессы измерений и построений. Способ осуществляют следующим образом.

Сначала изучается и анализируется проектная и исполнительная документация обследуемого железнодорожного моста с целью определения его конструктивных особенностей при построении предварительной пространственной расчетной схемы и схемы нагружения элементов конструкции, и их идентификацией на соответствие имеющейся типовой электронной базе, а также планирования необходимого состава намечаемых работ, сбора необходимых исходных данных и характеристик. Нагрузки определяются в соответствии с действующим СНиПами СНиП 3.06.04-91, СНиП 2.03.01-84, СНиП 3.06.07-86 СНиП 3.03.01-87 и т.д.). Затем проводится визуально-аналитическое обследование моста с целью определения общего технического и физического состояния сооружения, определения фактических условий его эксплуатации, дополнительных внешних воздействий и нагрузок, возникших в результате отклонения от проекта, естественного старения и износа, воздействия опасных гидрологических факторов (подмыв, размыв, изменение русла реки, неудовлетворительная работа регуляционных сооружений) на элементы конструкции. В результате таких работ определяются: наличие и характеристики трещин, отколов и разрушений, состояние защитных покрытий, нарушения сцепления арматуры с бетоном, наличие разрыва арматуры, состояние анкеровки арматуры и т.д., т.е. дефекты, характерные для бетонных и железобетонных конструкций; состояние швов (качество, ширину, глубину) и наличие трещин (степень развития, наличие дополнительных деформаций), отклонение или выпучивание стен и т.п. для каменных и армокаменных конструкций; разрывы, потеря устойчивости, трещины, расшатывание соединений, вмятины, прогибы, деформации, искривления, изменения геометрических размеров и сечений, состояние антикоррозионного покрытия, состояние сварных, болтовых, заклепочных соединений, степени и характера коррозии элементов и соединений, отклонения элементов от проектного положения и т.д. для стальных конструкций; прогибы, деформации, прочностные показатели, влажностное состояние, биоповреждения (грибками, жуками), коррозия древесины и т.п.для деревянных конструкций.

Полученные таким образом характеристики фактического состояния (вышеперечисленные дефекты, отклонения от проекта, возникшие как в результате строительства, так и в результате естественного старения и эксплуатации) элементов конструкции моста обрабатываются и вносятся в базу данных его электронной модели в виде поправок, корректируя ее и максимально приближая к реальному объекту.

После проведения предварительного анализа проектной и исполнительной документации моста выполняются электронные обмеры элементов конструкции с использованием георадара. Модель и контуры элементов конструкции могут быть напрямую перенесены в среду AutoCAD (Autodesk, Inc., США), MicroStation (Bentley Systems, Inc., США), 3D StudioMax и других системах автоматизированного проектирования и. геоинформационных системах.

Создается геодезическое обоснование объекта относительно, по крайней мере для трех базовых точек, с одновременным уравниванием погрешностей с помощью лазерного сканера (тахеометра), например Leica Smart Station с уже встроенным GPS-приемником. После этого выбирается сеть связанных базовых точек внутри объекта, с выверкой точности определения их координат относительно геодезического обоснования (реперов моста), на основании которой создается координатно-пространственное обоснование. Инструментально (автоматически) определяются горизонтальные и вертикальные углы и расстояния до каждой заданной точки отдельных элементов конструкции моста и точек, определяются линейные размеры элементов конструкции и расстояния между точками контуров этих элементов конструкции относительно координатно-пространственного обоснования с одновременным кодированием описания и идентификацией элементов конструкции. На основании этих данных проводится построение пространственной цифровой модели элементов конструкции, определяется их пространственная расчетная схема и схема нагружения. Далее в результате проведения детального инструментального обследования рассматриваемых элементов конструкции моста устанавливаются фактические характеристики повреждений, дефектов и связей его отдельных составляющих элементов конструкции, определяются дополнительные нагрузки, фактические параметры коррозионного износа, прочности, модулей упругости и коэффициентов Пуассона, плотности, твердости, влажности, пористости, водопроницаемости, морозостойкости, трещиностойкости, известными методами контроля и измерений конструктивных элементов строительного объекта с внесением изменений и поправок в цифровую модель в соответствии с принятым кодированным описанием элементов конструкции.

Затем, в соответствии с кодированным описанием. элементов конструкции определяются характеристики имеющихся дефектов и повреждений, уточняется пространственная схема, проводится оценка общей устойчивости и жесткости.

С использованием георадара (например, георадарная система Professional Explorer) определяют степень подмыва, размыва конусов, объемы, в том числе и скрытых разрушений, пустот и повреждений грунтовых оснований. Определяются прочностные характеристики элементов конструкций при помощи неразрушающих методов. Так на основании методов упругого отскока, отрыва со скалыванием и отрыва, скалывания ребра и т.д. (ГОСТ 22690-88, ГОСТ 21243-75) определяются прочностные характеристики бетона и раствора (приборы SCHMIDT); на основании метода ультразвукового сканирования (ГОСТ 17624-87) определяются параметры трещин, а также прочностные показатели вышеназванных материалов (приборы БЕТОН - 22М, TICO, DMV DL); на основании метода электромагнитного зондирования (ГОСТ 22904-93) определяются толщины защитного слоя, состав и диаметры арматуры, взаимное ее расположение, (приборы PROFOMETER, ВОСН DMO 10); при помощи электромагнитных методов определяется степень коррозионного износа (CANIN, RESI). Использование эхо-импульсного метода позволяет определять толщины стенок конструкций из различных материалов неразрушающим методом (прибор А 1209). В соответствии с ГОСТ 9012-59, ГОСТ 9013-59 определяется твердость металлических элементов конструкций объекта (приборы К5-Д, ТЭМП 2, EQUOTIP). Определяется также проницаемость бетона, определяющая его долговечность (прибор TORRENT). Определяются характеристики дефектов (трещин, сколов и т.д.) бетона, кирпичных кладок (деформометры, мерные рейки).

Результаты обследований, данные электронных обмеров, свойства и характеристики материалов, полученные неразрушающими методами испытаний и в лабораторных условиях, обрабатываются и вносятся в базу данных электронной модели объекта, т.е. на основании полученной совокупности данных проводят построение многопараметрической цифровой. модели элементов конструкции моста. При проведении прогнозирования состояния значения параметров, характеристик свойств материалов элементов конструкции и их связей корректируют в соответствии с изменениями, возникающими при осуществлении ремонтных, восстановительных работ и реконструкции. Кроме того, при проведении прогнозирования изменения технического состояния в результате естественного старения и износа значения параметров, характеристики свойств материалов элементов конструкции и их связей принимают в виде функциональных зависимостей. На основании полученных данных проводят построение пространственных многопараметрических цифровых моделей элементов конструкции моста и схем их нагружения.

После этого расчетным путем определяют конкретные значения критериев устойчивости и долговечности элементов конструкции моста и сравнивают их с допустимыми величинами установленными ранее и нормативными. По первому варианту способа далее определяют фактические параметры и характеристики материалов элементов конструкции и фактические параметры состояния и характеристики грунтового основания, определяют фактические значения параметров повреждений, дефектов и связей отдельных составляющих конструктивных элементов. На основании этих данных проводят построение многопараметрической цифровой модели конусов, устоев и схем их нагружения пролетными строениями и проходящим по мосту подвижным составом. После этого расчетным путем определяют техническое состояние и показатели устойчивости и долговечности элементов конструкции моста и сравнивают их с допустимыми величинами. На основе этого сравнения устанавливают пригодность элементов конструкции для дальнейшей безопасной эксплуатации, возможные новые повреждения и недостаточность несущей способности, необходимые виды ремонта.

Для проведения анализа и определения возможных ремонтных, восстановительных работ и вариантов усиления элементов конструкции, а также для оценки потерь их несущей способности в результате полученных дефектов и повреждений, нарушении связей, а также прогнозирования дальнейшего поведения элементов конструкции в многопараметрических цифровых моделях моделируют их техническое состояние путем варьирования значений параметров и характеристик материалов этих элементов моста, параметров и характеристик грунтового основания, вносят поправки в указанные значения параметров исходя из объемов предполагаемых восстановительных и ремонтных работ, на основании этих данных вводят поправки в многопараметрическую цифровую модель несущих элементов конструкции моста в соответствии с принятым кодированным описанием элементов, после чего проводят анализ состояния и поведения элементов конструкции на основе сравнения результатов расчета при фактических и моделируемых значениях параметров и характеристик и на основе этого сравнения устанавливают пригодность элементов конструкции моста для дальнейшей безопасной эксплуатации, возможные новые повреждения и недостаточность несущей способности, уточняют необходимые виды и объемы ремонта.

Такой способ (и его варианты) позволяет провести разработку мероприятий по восстановлению эксплутационных качеств элементов конструкций железнодорожных мостов, а также моделирования поведения, анализа и прогнозирования их технического состояния после осуществления ремонтных и восстановительных операций, реконструкции или в результате естественного износа и старения.

В ходе проведения обследований технического состояния ответственных элементов конструкции мостов мостоиспытательными станциями и специализированными организациями данный способ позволяет повысить точность определения их фактической несущей способности, ускорить и упростить анализ документации и выработку рекомендаций по наиболее эффективным решениям на усиление и ремонт и (или) выдачи заключения по дальнейшей эксплуатации моста в целом. Оценка фактического и прогнозируемого состояния элементов конструкции принимается в виде функциональных зависимостей с использованием критериев устойчивости и долговечности.

Получение возможности моделирования и прогнозирования поведения элементов конструкции в результате естественного старения и износа, а также при осуществлении решений по их ремонту, восстановлению или реконструкции позволяет упростить и удешевить проведение инженерного мониторинга технического состояния с разработкой и поддержкой базы данных компьютерных версий экспертных систем диагностики, оценки состояния и прогнозирования при одновременном снижении трудоемкости производимых работ, в особенности при последующих обследованиях, благодаря уже созданной многопараметрической цифровой компьютерной модели элементов его конструкции. Данный способ предоставляет возможность использования его для моделирования и прогнозирования состояния элементов конструкции в будущем. Кроме того, данный способ позволяет в будущем проводить расчет системы "пролетные строения - фундамент - опоры" и определение технического состояния железнодорожного моста, как единого целого.

Источник поступления информации: Роспатент

Показаны записи 391-400 из 436.
29.06.2019
№219.017.a1b6

Устройство для обработки коллектора электродвигателя

Изобретение относится к технологическому оборудованию для ремонта коллекторов электрических машин. Устройство для обработки коллектора (1) электродвигателя (2) содержит рабочий инструмент на подвижной каретке (3), механизм перемещения подвижной каретки (8). Для закрепления устройства на корпусе...
Тип: Изобретение
Номер охранного документа: 0002461106
Дата охранного документа: 10.09.2012
06.07.2019
№219.017.a708

Полуавтоматический шаровый криогенный кран

Изобретение относится к запорно-регулирующей трубопроводной арматуре. В полуавтоматическом шаровом криогенным кране, содержащем цилиндрический корпус с фланцами для крепления к трубопроводу, с горизонтальными входным и выходным отверстиями, вертикальным отводом с отверстием для прохода штока,...
Тип: Изобретение
Номер охранного документа: 0002693801
Дата охранного документа: 04.07.2019
10.07.2019
№219.017.a977

Устройство для централизованной автоблокировки с бесстыковыми рельсовыми цепями тональной частоты

Изобретение относится к железнодорожной автоматике для регулирования движения поездов. Устройство содержит полукомплекты постовой аппаратуры и бортовую часть. Каждый полукомплект постовой аппаратуры автоблокировки включает блок генераторов сигналов рельсовых цепей тональной частоты, передающие...
Тип: Изобретение
Номер охранного документа: 0002693992
Дата охранного документа: 08.07.2019
10.07.2019
№219.017.a97d

Устройство контроля рельсовых цепей тональной частоты

Изобретение относится к области железнодорожной автоматики, телемеханики и связи для контроля рельсовых цепей в составе системы автоблокировки и аппаратуры рельсовых цепей. Устройство контроля рельсовых цепей тональной частоты содержит последовательно соединенные входной фильтр,...
Тип: Изобретение
Номер охранного документа: 0002693991
Дата охранного документа: 08.07.2019
10.07.2019
№219.017.a9a6

Микропроцессорная система управления маршрутами с использованием интерфейса ответственных команд

Изобретение относится к железнодорожной автоматике и телемеханике и может быть использовано в системах для управления и контроля состояния устройств СЦБ на железнодорожных станциях. Микропроцессорная система управления маршрутами содержит блок формирования ответственных команд, АРМ дежурного по...
Тип: Изобретение
Номер охранного документа: 0002693998
Дата охранного документа: 08.07.2019
10.07.2019
№219.017.a9b5

Локомотивный приемник сигналов тональной частоты

Изобретение относится к области железнодорожной автоматики, телемеханики и связи для приема сигналов контроля рельсовой линии тональной частоты. Локомотивный приемник содержит два входных фильтра, соединенных с входом устройства, выход первого входного фильтра через первый аналого-цифровой...
Тип: Изобретение
Номер охранного документа: 0002694005
Дата охранного документа: 08.07.2019
01.08.2019
№219.017.bae9

Система передачи ответственной информации по защищенным каналам радиосвязи

Изобретение относится к средствам автоматизированного управления движением поездов с передачей ответственной информации по защищенным каналам радиосвязи. Система содержит вычислительное устройство с двумя серверами, АРМ оператора коммуникационного вычислительного комплекса связи, управляемые...
Тип: Изобретение
Номер охранного документа: 0002695971
Дата охранного документа: 29.07.2019
29.08.2019
№219.017.c469

Система для мониторинга искусственных сооружений высокоскоростной магистрали

Изобретение относится к мониторингу на искусственных сооружениях высокоскоростных магистралей. Технический результат - повышение достоверности оценки состояния искусственных сооружений высокоскоростной магистрали. Система содержит блок мониторинга опор, включающий двухосевые датчики наклона...
Тип: Изобретение
Номер охранного документа: 0002698419
Дата охранного документа: 26.08.2019
29.08.2019
№219.017.c4c5

Автоматизированное устройство экспертизы принципиальных и монтажных схем

Изобретение относится к области информационных технологий, в частности к устройствам для экспертизы монтажных схем (МС) и принципиальных схем (ПС), и может быть использовано для проверки железнодорожной технической документации. Технический результат - повышение скорости проверки схем,...
Тип: Изобретение
Номер охранного документа: 0002698418
Дата охранного документа: 26.08.2019
02.10.2019
№219.017.cc19

Система передачи ответственной информации о маршрутах приема/отправления и кодах алс

Изобретение относится к железнодорожной автоматике для передачи ответственной информации о маршрутах приема/отправления и кодах АЛС. Система содержит стационарную и бортовую части. Стационарная часть включает коммутатор связи системы передачи данных, постовые устройства системы автоматического...
Тип: Изобретение
Номер охранного документа: 0002701274
Дата охранного документа: 25.09.2019
Показаны записи 181-181 из 181.
17.02.2018
№218.016.2c7d

Способ замены зажатых уравнительных рельсов и рельсов временного восстановления плети бесстыкового пути (варианты)

Группа изобретений относится к железнодорожному полотну, в частности к способам замены уравнительных рельсов. Способ замены уравнительного рельса бесстыкового пути при торцевом зажатии заключается в том, что освобождают уравнительный рельс от связей с основанием и изымают его. Предварительно...
Тип: Изобретение
Номер охранного документа: 0002643324
Дата охранного документа: 31.01.2018
+ добавить свой РИД