×
27.07.2013
216.012.5b0b

СПОСОБ АДАПТИВНОГО ПОДАВЛЕНИЯ ПРОСТРАНСТВЕННЫХ ПОМЕХ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области радиоэлектроники. а именно к многоэлементным апертурным антеннам. Техническим результатом является обеспечение подавления помех при отсутствии априорной информации о направлениях их прихода без нарушения режима бесперебойного приема антенной системой рабочей информации. Способ адаптивного подавления пространственных помех состоит в том, что создают антенную систему, состоящую из плоской многоэлементной антенной решетки, антенных элементов, управляемых фазовращателей, сумматора сигналов и блока измерений, вычислений и управления, в зоне обзора ДH формируют массив контрольных угловых направлений, для каждого из которых определяют режекторное фазовое распределение поля в апертуре антенны, при котором обеспечивается формирование провала в ДП в этом направлении, не прерывая режима приема антенной системой рабочей информации, определяют угловые направления, в которых необходимо подавить помехи, для чего последовательно устанавливают в антенной решетке для каждого контрольного углового направления соответствующее режекторное фазовое распределение и выявляют направления, в которых формирование режекторного фазового распределения приводит к подавлению помехи, формируют массив контрольных угловых направлений, в которых выявлено подавление помех, и устанавливают в антенной решетке результирующее режекторное фазовое распределение, которое обеспечивает подавление помех во всех выявленных направлениях. 4 ил.
Основные результаты: Способ адаптивного подавления пространственных помех, включающий создание антенной системы, состоящей из плоской многоэлементной антенной решетки, антенных элементов, управляемых фазовращателей, сумматора сигналов и блока измерений, вычислений и управления, для которых известны Ω(x, y) - область апертуры плоской многоэлементной антенной решетки;N - общее число антенных элементов;x, y - координаты фазовых центров антенных элементов под номерами r, где r=1, …, N;Ф(x, y) - исходное распределение фазы напряженности поля в апертуре; - исходная энергетическая диаграмма направленности (ДН) с фиксированным направлением главного лепестка, где θ, φ - сферические координаты точки наблюдения;P(x, y) - множество ортонормированных гармоник, где (n, m) - номера гармоник;δ - пороговое значение индикатора помех,отличающийся тем, что для подавления пространственных помех в отсутствии информации о направлениях их прихода без нарушения режима приема антенной системой рабочей информации, минимизации реального времени, затрачиваемого на подавление помех, и автономной оценки направлений на источники помех единовременно формируют массив вспомогательных данных, формируют массив контрольных угловых направлений (θ, φ), для чего выделяют в боковых лепестках энергетической ДН смежные по углу φ сектора, а в качестве контрольных направлений берут значения (θ, φ), соответствующие максимумам боковых лепестков в этих секторах, где i - номер бокового лепестка ДН, j - номер сектора в боковом лепестке, для контрольных угловых направлений (θ, φ) формируют массивы режекторных наборов фаз для управляемых фазовращателей, разлагают Ф(x, y) в ряд Фурье по функциям P(x, y), который представляют в виде Ф(x, y)=Ф(x, y)+Ф(x, y), где , - коэффициенты Фурье разложения функции Ф(x, y);1 - максимальный линейный размер плоской многоэлементной антенной решетки;k - волновое число свободного пространства,для каждого контрольного углового направления (θ, φ) путем минимизации функционала где λ - множители Лагранжа;n, m - номера гармоник P(x, y), находят значения - коэффициентов Фурье и рассчитывают функцию по формуле ,рассчитывают режекторное фазовое распределения поля в апертуре антенны Ф(x, y) по формуле , из значений Ф(x, y) в точках x, y формируют режекторный набор фаз , где r=1, …, N, массивы (θ, φ), , составляющие массив вспомогательных данных, заносят в память блока измерений, вычислений и управления, процедуру выявления и подавления помех проводят с периодичностью, задаваемой внешними командами или программой блока измерений, вычислений и управления, каждую процедуру выявления и подавления помех проводят следующим образом, измеряют величину Q - характеристику качества суммарного сигнала на выходе сумматора сигналов, соответствующую текущему распределению фазы напряженности поля в плоской многоэлементной антенной решетке, тестируют каждое контрольное угловое направление (θ, φ) на наличие помех с этого направления, используя содержащийся в памяти блока измерений, вычислений и управления массив вспомогательных данных, по командам блока измерений, вычислений и управления устанавливают в управляемых фазовращателях плоской многоэлементной антенной решетки значения фаз, соответствующие режекторному набору фаз , и измеряют величину Q - характеристику качества суммарного сигнала на выходе сумматора сигналов при установке режекторного набора фаз , по значениям Q и Q вычисляют соответствующую им величину индикатора помех δ, если δ>δ, делают вывод, что в направлении (θ, φ) действует помеха, которую надо подавить, и присваивают этому контрольному угловому направлению обозначение соответствующее режекторному набору фаз - обозначение где r=1, …, N, по завершении тестирования всех контрольных угловых направлений формируют массив контрольных угловых направлений в которых выявлено воздействие помех, и соответствующий этим направлениям массив режекторных наборов фаз - по командам блока измерений, вычислений и управления устанавливают в управляемых фазовращателях плоской многоэлементной антенной решетки значения фаз, соответствующие результирующему режекторному набору фаз где суммирование ведется по всем i, j, a r=1, …, N, установка в плоской многоэлементной антенной решетке 1-1 обеспечивает подавление всех выявленных помех, выявленные контрольные угловые направления используют как оценку направлений на источники помех, если условие δ>δ, не выполняется ни для одного направления (θ, φ), текущее фазовое распределение сохраняют в антенне без изменений.
Реферат Свернуть Развернуть
δ, делают вывод, что в направлении (θ, φ) действует помеха, которую надо подавить, и присваивают этому контрольному угловому направлению обозначение соответствующее режекторному набору фаз - обозначение где r=1, …, N, по завершении тестирования всех контрольных угловых направлений формируют массив контрольных угловых направлений в которых выявлено воздействие помех, и соответствующий этим направлениям массив режекторных наборов фаз - по командам блока измерений, вычислений и управления устанавливают в управляемых фазовращателях плоской многоэлементной антенной решетки значения фаз, соответствующие результирующему режекторному набору фаз где суммирование ведется по всем i, j, a r=1, …, N, установка в плоской многоэлементной антенной решетке 1-1 обеспечивает подавление всех выявленных помех, выявленные контрольные угловые направления используют как оценку направлений на источники помех, если условие δ>δ, не выполняется ни для одного направления (θ, φ), текущее фазовое распределение сохраняют в антенне без изменений. " class = "blcSndTextValline">

Изобретение относится к области радиоэлектроники и может быть использовано в многоэлементных апертурных антеннах радиокомплексов наземного или космического базирования для адаптивного подавления приходящих на антенну внешних радиопомех (далее - помеха).

Известен способ адаптивного подавления помех в многоэлементной апертурной антенне. (Р.А.Монзинго, Т.У.Миллер, Адаптивные антенные решетки. М.: "Радио и связь", 1986 г., стр.78-89). При данном способе заданными величинами являются: диаграммы направленности (ДН) антенных элементов многоэлементной апертурной антенны, геометрические параметры взаимного расположения антенных элементов и значения комплексных коэффициентов передачи каждого антенного элемента. Априорные данные о величине и направлении прихода помехи не используются. Многоэлементную апертурную антенну переводят из режима приема рабочей информации в режим тестирования и осуществляют обзор пространства, дискретно изменяя направление главного лепестка ДН антенны, с общим числом реализуемых тестовых направлений, равным числу антенных элементов N. Для каждого направления ДН с номером направления - n на выходе многоэлементной антенны измеряют комплексную величину принимаемого сигнала , являющегося смесью суммарного полезного сигнала и помехи. По измеренным данным строят корреляционную матрицу , где - величина, комплексно сопряженная , а n, m=1, …, N. Путем математических вычислений по измеренной корреляционной матрице U определяют и устанавливают в антенных элементах под номерами i комплексные коэффициенты передачи k(U)i, где i=1,…, N, что обеспечивает подавление помехи при максимальном отношении сигнала к помехе.

К недостаткам данного способа относятся;

- необходимость перевода антенны из режима приема рабочей информации в режим тестирования на время подготовки к проведению процедуры подавления помех;

- необходимость проведения большого объема сложных и высокоточных измерений величин и рост числа измерений и вычислений с ростом числа антенных элементов;

- необходимость полного повторения процедур измерений и вычислений при изменении энергетических и пространственных характеристик помехи.

Признаки настоящего изобретения, совпадающие с признаками первого аналога:

- использование данных о параметрах многоэлементной антенной системы;

- определение и установка в антенных элементах величин комплексных коэффициентов передачи, обеспечивающих подавление помех.

Известен способ подавления помех (патент RU 2311708, 2006 г.) - наиболее близкий по технической сущности к патентуемому изобретению, который принят за прототип изобретения. В известном изобретении по заданной функции нормированного амплитудного распределения поля в плоской апертуре антенны ρ0(x, y) строится последовательность двумерных ортонормированных полиномов Pnm(x, y). По известным углам прихода помех (θq, φq), где q=1, 2, …, M, минимизируют функционал , где - исходная энергетическая ДН антенны, λq - множители Лагранжа, находят значения Cnm - коэффициентов Фурье разложения функции фазового распределения поля в плоской апертуре антенны Ф(x, y) и определяют Ф(x, y) по формуле , где k - волновое число свободного пространства, 1 - максимальный линейный размер апертуры антенны. Реализуют Ф(x, y) в апертуре антенны, что обеспечивает формирование провалов в ДН в направлениях прихода помех.

К недостаткам известного изобретения относятся:

- необходимость получения данных о направлениях прихода помех от внешних источников информации;

- необходимость при изменении углов прихода помех (θq, φq) повторения вычислений в полном объеме.

Признаки настоящего изобретения, совпадающие с признаками прототипа:

- использование данных о геометрических параметрах плоской апертуры антенны и параметрах антенных элементов;

- использование массива двумерных ортонормированных полиномов Pnm(x, y);

- определение и установка в плоской апертуре антенны фазового распределения поля, обеспечивающего формирование провала в ДН в нужных направлениях.

Настоящее изобретение - способ адаптивного подавления пространственных помех решает задачи эффективного подавления внешней помехи и автономной оценки направлений на источники помех путем управления распределением фазы поля в апертуре многоэлементной антенной системы.

Технический результат настоящего изобретения - обеспечение подавления помех при отсутствии априорной информации о направлениях их прихода без нарушения режима бесперебойного приема антенной системой рабочей информации, внесение при подавлении помех минимальных потерь в главном направлении ДН, обеспечение адаптации процедуры подавления помех к изменению направления прихода помех, минимизации реального времени, затрачиваемого на подавление помех, и обеспечение автономной оценки направлений на источники помех.

Сущность патентуемого способа адаптивного подавления пространственных помех поясняется описанием примера его реализации и чертежами, на которых представлены:

Фиг.1. Схема многоэлементной апертурной антенны с избирательным управлением уровнями боковых лепестков ДН.

Фиг.2. ДН с подавленным первым боковым лепестком.

Фиг.3. ДН с подавленным вторым боковым лепестком.

Фиг.4. ДН с подавленным пятым боковым лепестком.

На фиг.1 введены следующие обозначения:

1 - антенная система, 1-1 - плоская многоэлементная антенная решетка; 1-1-1r - антенный элемент под номером r; 1-1-2r - управляемый фазовращатель антенного элемента под номером r; 1-2 - сумматор сигналов; 1-3 - блок измерений, вычислений и управления, UΣ - суммарный сигнал на выходе сумматора сигналов 1-2; К - внешняя команда на проведение процедуры подавления помех; Kr - команда блока измерений, вычислений и управления на установку в управляемом фазовращателе антенного элемента под номером r фазы Фr(xr,yr); Фr(xr, yr) - величина фазы управляемого фазовращателя 1-1-2r.

Способ адаптивного подавления пространственных помех в отсутствии априорной информации о направлении прихода помех включает создание антенной системы 1, в которую входят плоская многоэлементная антенная решетка 1-1, состоящая из антенных элементов 1-1-1r и управляемых фазовращателей 1-1-2r, сумматора сигналов 1-2 и блока измерений, вычислений и управления 1-3. Полезный сигнал и сигнал помехи поступают на антенные элементы 1-1-1r, с выхода которых их направляют через управляемые фазовращатели 1-1-2r в сумматор сигналов 1-2, на выходе которого получают UΣ - суммарный сигнал на выходе сумматора сигналов 1-2. UΣ направляют в блок измерений, вычислений и управления 1-3. По внешней команде К или периодически по программе блока измерений, вычислений и управления 1-3 в блоке измерений, вычислений и управления 1-3 автоматически проводят анализ характеристик UΣ, выявляют наличие или отсутствие в нем помех, вырабатывают и подают команды Kr на установку в управляемых фазовращателях 1-1-2r значений фаз Фr(xr,yr), обеспечивающих подавление помех. Суммарный сигнал UΣ через блок измерений, вычислений и управления 1-3 непрерывно транслируют в радиокомплекс.

Для антенной системы 1 известными являются: Ω(x, y) - область апертуры плоской многоэлементной антенной решетки 1-1, которая может быть различной (круг, эллипс, прямоугольная вырезка или несколько компланарных раскрывов, представляющих плоскую многосвязную область); N - общее число антенных элементов; xr, yr -координаты фазовых центров антенных элементов под номерами r, где r=1,…,N, Ф0(x, y) - функция исходного фазового распределения основой поляризационной составляющей напряженности поля в апертуре; Pnm(x, y) - множество ортонормированных гармоник, где (n, m) - номера гармоник; - исходная энергетическая диаграмма направленности (ДН) с фиксированным направлением главного лепестка, где θ, φ - сферические координаты точки наблюдения; δп - пороговое значение индикатора помех δ.

Задачей настоящего изобретения является обеспечение при любом фиксированном направлении главного лепестка ДН подавления пространственных помех при отсутствии информации о направлениях их прихода без нарушения режима приема антенной системой рабочей информации, минимизации реального времени, затрачиваемого на подавление помех, и автономной оценки направлений на источники помех.

Множество Pnm(x, y) - это гармоники разложения по известной методике (Суетин П.К., Ортогональные многочлены по двум переменным. М.: Наука, 1976 г., стр. xxx) функции ρ0(x, y) на области Ω(x, y), где ρ0(x,y) - нормированное относительно своего максимального значения в области Ω(x, y) известное для многоэлементной антенной решетки 1-1 амплитудное распределение основой поляризационной составляющей напряженности поля в апертуре Е0(x, y).

Индикатор помех δ характеризует влияние помех на качество UΣ. При конкретной реализации настоящего изобретения физический смысл индикатора помех δ определяется физическим содержанием параметра Q - характеристики качества сигнала UΣ, используемой в конкретном радиокомплексе. Например, в качестве Q могут использовать либо PΣ - мощность суммарного сигнала UΣ, либо pΣ - вероятность ошибок в UΣ, а в качестве индикатора помех δ могут использовать, соответственно, величину равную величине изменения PΣ, или величину , равную величине изменения pΣ, которые регистрируют в ходе реализации патентуемого способа подавления помех, где , без подавления помех, при подавлении помех, без подавления помех, при подавлении помех. При наличии помехи ее подавление приводит к снижению PΣ или к уменьшению pΣ, что приводит к росту величин δM и δв. Превышение величиной δ порогового значения - δп означает, что в UΣ присутствует помеха. Пороговое значение δп определяют из тактико-технических требований к конкретному радиокомплексу.

Реализация способ адаптивного подавления пространственных помех делится на два этапа. На первом этапе единовременно создают и заносят в память блока измерений, вычислений и управления 1-3 массив вспомогательных данных. На втором этапе по внешним командам или по программе блока измерений, вычислений и управления 1-3 проводят необходимое число раз типовую процедуру выявления и подавления помех с использованием массива вспомогательных данных.

Работы первого этапа можно проводить предварительно. В реальном времени необходимо проводить только процедуру выявления и подавления помех, причем при ее повторении используют уже существующий массив вспомогательных данных. Такая структура реализации патентуемого изобретения обеспечивает минимизацию реального времени, затрачиваемого на подавление помех.

На этапе единовременного создания и занесения в память блока измерений, вычислений и управления 1-3 массива вспомогательных данных выполняют следующие операции.

Выделяют в боковых лепестках энергетической ДН смежные по углу φ сектора и выбирают контрольные направления (θij, φij), соответствующие максимумам боковых лепестков в этих секторах, где i - номер бокового лепестка ДН, j - номер сектора в боковом лепестке. Из полученных (θij, φij) формируют массив контрольных угловых направлений, в которых будут выявлять наличие помех.

При конкретной реализации настоящего изобретения массив контрольных угловых направлений формируют исходя из конфигурации ДН антенной решетки 1-1 и целевого назначения радиокомплексов, в которых используется антенная система. Например, если ДН не имеет особых зон, логично делить боковые лепестки ДН по углу φ равномерно на J смежных угловых секторов с угловыми размерами секторов, приблизительно равными ширине боковых лепестков, а в качестве φij брать направления координатных лучей

где j=0, 1, 2,…, J, где Δθл - усредненная ширина бокового лепестка ДН, а в качестве θij брать значения θ, соответствующие максимуму бокового лепестка ДН под номером i в направлении φij, где i=1, 2,…, I, I - число боковых лепестков, учитываемых при анализе. Максимальный номер бокового лепестка i=I, учитываемого при анализе, выбирают, как правило, из энергетических соображений, например, из условия , где - величина энергетической ДН в главном направлении, а величина ε определяется тактико-техническими требованиями к радиокомплексу.

Для контрольных угловых направлений (θij, φij) формируют массивы режекторных наборов фаз для управляемых фазовращателей 1-1-2r, установка которых в фазовращателях обеспечивает формирование провалов в боковых лепестках ДН, т.е. подавление помех, в этих контрольных угловых направлениях.

Разлагают Ф0(x, y) в ряд Фурье по функциям Pnm(x, y), который представляют в виде Ф0(x, у)=Ф01(x, у)+Ф02(x, у), где , - коэффициенты Фурье разложения функции Ф0(x, y), l - максимальный линейный размер плоской многоэлементной антенной решетки 1-1, k - волновое число свободного пространства.

Составляющие ряда Фурье - Ф01(x, y), Ф02(x, y) в силу взаимной ортогональности являются независимыми друг от друга аддитивными фазовыми распределениями, т.е. изменения в одной составляющей не влияет на вид другой.

Составляющая Ф01(x, y) задает направление главного лепестка ДН. Поэтому для любого фиксированного направления главного лепестка ДН функцию Ф01(x, y) не меняют на всех этапах реализации патентуемого способа подавления помех.

Составляющая Ф02(x, y) определяет вид боковых лепестков. Поэтому для формирования провалов в боковых лепестках ДН в заданных направлениях управляют только составляющей Ф02(x, y).

Для каждого контрольного углового направления (θij, φij) путем минимизации функционала где λij - множители Лагранжа, n, m - номера гармоник Pnm(x,y), находят значения - коэффициентов Фурье и рассчитывают функцию по формуле . Рассчитывают режекторное фазовое распределения поля в апертуре антенны по формуле . Из значений в точках xr, yr формируют режекторный набор фаз , где r=1, …, N.

Установка в плоской многоэлементной антенной решетке 1-1 режекторного набора фаз Фij(xr, yr) обеспечивает формирование провала в ДН в направлении (θij, φij), не изменяя направления главного лепестка ДН и не внося значительных потерь в главном направлении ДН.

Массивы (θij, φij), , составляющие массив вспомогательных данных, заносят в память блока измерений, вычислений и управления 3.

Процедуру выявления и подавления помех проводят с периодичностью задаваемой внешними командами или программой блока измерений, вычислений и управления 1-3.

Каждую процедуру выявления и подавления помех проводят следующим образом.

Измеряют величину Q1 - характеристику качества суммарного сигнала на выходе сумматора сигналов 1-2, соответствующую текущему распределению фазы напряженности поля в плоской многоэлементной антенной решетки 1-1.

Используя содержащийся в памяти блока измерений, вычислений и управления 1-3 массив вспомогательных данных, тестируют каждое контрольное угловое направление (θij, φij) на наличие помех с этого направления. По командам блока измерений, вычислений и управления 1-3 устанавливают в управляемых фазовращателях 1-1-2ij плоской многоэлементной антенной решетки 1-1 значения фаз, соответствующие режекторному набору фаз для этого направления, и измеряют величину Qij - характеристику качества суммарного сигнала на выходе сумматора сигналов 1-2 при установке режекторного набора фаз . По значениям Q1 и Qij вычисляют соответствующую им величину индикатора помех δij. Если δijп, делают вывод, что в направлении (θij, φj) действует помеха, которую надо подавить, и присваивают этому контрольному угловому направлению обозначение , а соответствующему режекторному набору фаз - обозначение , где r=1,…, N.

По завершению тестирования всех контрольных угловых направлений формируют массив контрольных угловых направлений , в которых выявлено воздействие помех, и соответствующий этим направлениям массив режекторных наборов фаз - .

Текущим распределением фазы напряженности поля в апертуре может быть исходное фазовое распределение Ф0(x,y) или фазовое распределение, установленное в результате реализации предыдущей процедуры выявления и подавления помех. Патентуемый порядок выявления контрольных угловых направлений, в которых необходимо подавить помехи, обеспечивает выявления контрольных угловых направлений в обоих случаях.

По командам блока измерений, вычислений и управления 3 устанавливают в управляемых фазовращателях 1-1-2ij плоской многоэлементной антенной решетки 1-1 значения фаз, соответствующие результирующему режекторному набору фаз , где суммирование ведется по всем iп, jп, а r=1, …, N. Установка в плоской многоэлементной антенной решетке 1-1 обеспечивает подавление всех выявленных помех.

Выявленные контрольные угловые направления используют как оценку направлений на источники помех.

Если условие δijп, не выполняется ни для одного направления (θij, φij), текущее фазовое распределение сохраняют в антенне без изменений.

Патентуемая процедура выявления и подавления помех адаптивна к изменениям состава и направлениям прихода помех, поскольку предусматривает автоматическое выявление контрольных угловых направлений, в которых действуют помехи, при любых направлениях прихода и состава помех, а установка в управляемых фазовращателях 1-1-2i,j плоской многоэлементной антенной решетки 1-1 соответствующего результирующего режекторного набора фаз автоматически обеспечивает подавление помех.

Отличительные признаки изобретения

Единовременно формируют массив вспомогательных данных

Выделяют в боковых лепестках энергетической ДН смежные по углу φ сектора и выбирают контрольные направления (θij, φij), соответствующие максимумам боковых лепестков в этих секторах, где i - номер бокового лепестка ДН, j - номер сектора в боковом лепестке. Из полученных (θij, φij) формируют массив контрольных угловых направлений, в которых будут выявлять наличие помех.

Для контрольных угловых направлений (θij, φij) формируют массивы режекторных наборов фаз для управляемых фазовращателей 1-1-2r.

Разлагают Ф0(x, y) в ряд Фурье по функциям Pnm(x, y), который представляют в виде Ф0(x,y)=Ф01(x,y)+Ф02(x,y), где , - коэффициенты Фурье разложения функции Ф0(x, y), 1 - максимальный линейный размер плоской многоэлементной антенной решетки 1-1, k - волновое число свободного пространства.

Для каждого контрольного углового направления (θij, φij) путем минимизации функционала где λij - множители Лагранжа, n, m - номера гармоник Pnm(x,y), находят значения - коэффициентов Фурье и рассчитывают функцию по формуле . Рассчитывают режекторное фазовое распределения поля в апертуре антенны по формуле . Из значений в точках xr, yr формируют режекторный набор фаз , где r=1, …, N.

Массивы (θij, φij), , составляющие массив вспомогательных данных, заносят в память блока измерений, вычислений и управления 3.

Процедуру выявления и подавления помех проводят с периодичностью, задаваемой внешними командами или программой блока измерений, вычислений и управления 1-3.

Каждую процедуру выявления и подавления помех проводят следующим образом.

Измеряют величину Q1 - характеристику качества суммарного сигнала на выходе сумматора сигналов 1-2, соответствующую текущему распределению фазы напряженности поля в плоской многоэлементной антенной решетки 1-1.

Используя содержащийся в памяти блока измерений, вычислений и управления 1-3 массив вспомогательных данных, тестируют каждое контрольное угловое направление (θij, φij) на наличие помех с этого направления. По командам блока измерений, вычислений и управления 1-3 устанавливают в управляемых фазовращателях 1-1-2ij плоской многоэлементной антенной решетки 1-1 значения фаз, соответствующие режекторному набору фаз для этого направления, и измеряют величину Qij - характеристику качества суммарного сигнала на выходе сумматора сигналов 1-2 при установке режекторного набора фаз . По значениям Q1 и Qij вычисляют соответствующую им величину индикатора помех δij. Если δijп, делают вывод, что в направлении (θij, φij) действует помеха, которую надо подавить, и присваивают этому контрольному угловому направлению обозначение , а соответствующему режекторному набору фаз - обозначение где r=1, …, N.

По завершении тестирования всех контрольных угловых направлений формируют массив контрольных угловых направлений , в которых выявлено воздействие помех, и соответствующий этим направлениям массив режекторных наборов фаз - .

По командам блока измерений, вычислений и управления 3 устанавливают в управляемых фазовращателях 1-1-2i,j плоской многоэлементной антенной решетки 1-1 значения фаз, соответствующие результирующему режекторному набору фаз , где суммирование ведется по всем iп, jп, а r=1, …, N. Установка в плоской многоэлементной антенной решетке 1-1 обеспечивает подавление всех выявленных помех.

Выявленные контрольные угловые направления используют как оценку направлений на источники помех.

Если условие δijп, не выполняется ни для одного направления (θij, φij), текущее фазовое распределение сохраняют в антенне без изменений.

Реализация способа адаптивного подавления пространственных помех

Измерительная система, реализующая патентуемый способ, может быть построена на основе широко используемых в разработках и хорошо освоенных в производстве СВЧ приборов: антенных элементов, управляемых аналоговых или цифровых фазовращателей и сумматоров сигналов. Для создания электронных блоков измерений, вычислений и управления существует развитая элементная база.

Для подтверждения работоспособности и эффективности патентуемого способа адаптивного подавления пространственных помех было проведено компьютерное моделирование процедуры подавления пространственных помех, результаты которых иллюстрируются на фиг.2, фиг.3, фиг.4.

Моделирование проводилось для линейной антенной решетки с размером kl=30π и с направлением главного лепестка ДН θ0=0. В качестве направлений прихода помех были выбраны середина первого бокового лепестка ДН, середина второго бокового лепестка ДН и середина пятого бокового лепестка ДН.

Рассчитывались: ηi(дБ) - величина подавления бокового лепестка ДН под номером i; σ0i(дБ)- величина снижения главного лепестка ДН, возникающая при подавлении бокового лепестка под номером i; γi(дБ)=ηi0i - выигрыш в соотношении сигнал/помеха при подавлении бокового лепестка под номером i.

На фиг.2, фиг.3, фиг.4 сравниваются исходная энергетическая ДН (линия 1 на фигурах) и ДН, для которых подавление боковых лепестков применено в соответствии с патентуемым способом (линия 2 на фигурах). На фигурах вертикальной стрелкой обозначаются подавляемые боковые лепестки.

При подавлении помехи с направления первого бокового лепестка ДН (см. Фиг.2) было полечено: η1=24.3 дБ, σ01=1,7 дБ, γ1=22,6 дБ.

При подавлении помехи с направления второго бокового лепестка ДН (см. Фиг.3) было полечено: η2=31.68 дБ, σ02=0.32 дБ, γ2=31,36 дБ.

При подавлении помехи с направления пятого бокового лепестка ДН (см. Фиг.4) было полечено: η5=41.93 дБ, σ05=0.07 дБ, γ5=41.86 дБ.

Полученные с помощью математического моделирования результаты показывают большую эффективность подавления помех при использовании патентуемого способа адаптивного подавления пространственных помех (выигрыш в соотношении сигнал/помеха при подавлении помехи составляет (22÷42) дБ при незначительном, на (0.07÷1,7)дБ, снижении уровня главного лепестка ДН.

Таким образом, патентуемый способ адаптивного подавления пространственных помех практически реализуем и обеспечивает объявленный технический результат -обеспечивает подавление помех при отсутствии априорной информации о направлениях их прихода без нарушения рабочего режима работы антенны; вносит при подавлении помех минимальные потери в главном направлении ДН; обеспечивает адаптацию процедуры подавления помех к изменению направления прихода помех; обеспечивает минимизацию реального времени, затрачиваемого на подавление помех, и автономную оценку направлений на источники помех.

Способ адаптивного подавления пространственных помех, включающий создание антенной системы, состоящей из плоской многоэлементной антенной решетки, антенных элементов, управляемых фазовращателей, сумматора сигналов и блока измерений, вычислений и управления, для которых известны Ω(x, y) - область апертуры плоской многоэлементной антенной решетки;N - общее число антенных элементов;x, y - координаты фазовых центров антенных элементов под номерами r, где r=1, …, N;Ф(x, y) - исходное распределение фазы напряженности поля в апертуре; - исходная энергетическая диаграмма направленности (ДН) с фиксированным направлением главного лепестка, где θ, φ - сферические координаты точки наблюдения;P(x, y) - множество ортонормированных гармоник, где (n, m) - номера гармоник;δ - пороговое значение индикатора помех,отличающийся тем, что для подавления пространственных помех в отсутствии информации о направлениях их прихода без нарушения режима приема антенной системой рабочей информации, минимизации реального времени, затрачиваемого на подавление помех, и автономной оценки направлений на источники помех единовременно формируют массив вспомогательных данных, формируют массив контрольных угловых направлений (θ, φ), для чего выделяют в боковых лепестках энергетической ДН смежные по углу φ сектора, а в качестве контрольных направлений берут значения (θ, φ), соответствующие максимумам боковых лепестков в этих секторах, где i - номер бокового лепестка ДН, j - номер сектора в боковом лепестке, для контрольных угловых направлений (θ, φ) формируют массивы режекторных наборов фаз для управляемых фазовращателей, разлагают Ф(x, y) в ряд Фурье по функциям P(x, y), который представляют в виде Ф(x, y)=Ф(x, y)+Ф(x, y), где , - коэффициенты Фурье разложения функции Ф(x, y);1 - максимальный линейный размер плоской многоэлементной антенной решетки;k - волновое число свободного пространства,для каждого контрольного углового направления (θ, φ) путем минимизации функционала где λ - множители Лагранжа;n, m - номера гармоник P(x, y), находят значения - коэффициентов Фурье и рассчитывают функцию по формуле ,рассчитывают режекторное фазовое распределения поля в апертуре антенны Ф(x, y) по формуле , из значений Ф(x, y) в точках x, y формируют режекторный набор фаз , где r=1, …, N, массивы (θ, φ), , составляющие массив вспомогательных данных, заносят в память блока измерений, вычислений и управления, процедуру выявления и подавления помех проводят с периодичностью, задаваемой внешними командами или программой блока измерений, вычислений и управления, каждую процедуру выявления и подавления помех проводят следующим образом, измеряют величину Q - характеристику качества суммарного сигнала на выходе сумматора сигналов, соответствующую текущему распределению фазы напряженности поля в плоской многоэлементной антенной решетке, тестируют каждое контрольное угловое направление (θ, φ) на наличие помех с этого направления, используя содержащийся в памяти блока измерений, вычислений и управления массив вспомогательных данных, по командам блока измерений, вычислений и управления устанавливают в управляемых фазовращателях плоской многоэлементной антенной решетки значения фаз, соответствующие режекторному набору фаз , и измеряют величину Q - характеристику качества суммарного сигнала на выходе сумматора сигналов при установке режекторного набора фаз , по значениям Q и Q вычисляют соответствующую им величину индикатора помех δ, если δ>δ, делают вывод, что в направлении (θ, φ) действует помеха, которую надо подавить, и присваивают этому контрольному угловому направлению обозначение соответствующее режекторному набору фаз - обозначение где r=1, …, N, по завершении тестирования всех контрольных угловых направлений формируют массив контрольных угловых направлений в которых выявлено воздействие помех, и соответствующий этим направлениям массив режекторных наборов фаз - по командам блока измерений, вычислений и управления устанавливают в управляемых фазовращателях плоской многоэлементной антенной решетки значения фаз, соответствующие результирующему режекторному набору фаз где суммирование ведется по всем i, j, a r=1, …, N, установка в плоской многоэлементной антенной решетке 1-1 обеспечивает подавление всех выявленных помех, выявленные контрольные угловые направления используют как оценку направлений на источники помех, если условие δ>δ, не выполняется ни для одного направления (θ, φ), текущее фазовое распределение сохраняют в антенне без изменений.
СПОСОБ АДАПТИВНОГО ПОДАВЛЕНИЯ ПРОСТРАНСТВЕННЫХ ПОМЕХ
СПОСОБ АДАПТИВНОГО ПОДАВЛЕНИЯ ПРОСТРАНСТВЕННЫХ ПОМЕХ
СПОСОБ АДАПТИВНОГО ПОДАВЛЕНИЯ ПРОСТРАНСТВЕННЫХ ПОМЕХ
СПОСОБ АДАПТИВНОГО ПОДАВЛЕНИЯ ПРОСТРАНСТВЕННЫХ ПОМЕХ
СПОСОБ АДАПТИВНОГО ПОДАВЛЕНИЯ ПРОСТРАНСТВЕННЫХ ПОМЕХ
СПОСОБ АДАПТИВНОГО ПОДАВЛЕНИЯ ПРОСТРАНСТВЕННЫХ ПОМЕХ
СПОСОБ АДАПТИВНОГО ПОДАВЛЕНИЯ ПРОСТРАНСТВЕННЫХ ПОМЕХ
СПОСОБ АДАПТИВНОГО ПОДАВЛЕНИЯ ПРОСТРАНСТВЕННЫХ ПОМЕХ
СПОСОБ АДАПТИВНОГО ПОДАВЛЕНИЯ ПРОСТРАНСТВЕННЫХ ПОМЕХ
СПОСОБ АДАПТИВНОГО ПОДАВЛЕНИЯ ПРОСТРАНСТВЕННЫХ ПОМЕХ
СПОСОБ АДАПТИВНОГО ПОДАВЛЕНИЯ ПРОСТРАНСТВЕННЫХ ПОМЕХ
СПОСОБ АДАПТИВНОГО ПОДАВЛЕНИЯ ПРОСТРАНСТВЕННЫХ ПОМЕХ
СПОСОБ АДАПТИВНОГО ПОДАВЛЕНИЯ ПРОСТРАНСТВЕННЫХ ПОМЕХ
СПОСОБ АДАПТИВНОГО ПОДАВЛЕНИЯ ПРОСТРАНСТВЕННЫХ ПОМЕХ
СПОСОБ АДАПТИВНОГО ПОДАВЛЕНИЯ ПРОСТРАНСТВЕННЫХ ПОМЕХ
СПОСОБ АДАПТИВНОГО ПОДАВЛЕНИЯ ПРОСТРАНСТВЕННЫХ ПОМЕХ
СПОСОБ АДАПТИВНОГО ПОДАВЛЕНИЯ ПРОСТРАНСТВЕННЫХ ПОМЕХ
СПОСОБ АДАПТИВНОГО ПОДАВЛЕНИЯ ПРОСТРАНСТВЕННЫХ ПОМЕХ
СПОСОБ АДАПТИВНОГО ПОДАВЛЕНИЯ ПРОСТРАНСТВЕННЫХ ПОМЕХ
СПОСОБ АДАПТИВНОГО ПОДАВЛЕНИЯ ПРОСТРАНСТВЕННЫХ ПОМЕХ
СПОСОБ АДАПТИВНОГО ПОДАВЛЕНИЯ ПРОСТРАНСТВЕННЫХ ПОМЕХ
СПОСОБ АДАПТИВНОГО ПОДАВЛЕНИЯ ПРОСТРАНСТВЕННЫХ ПОМЕХ
Источник поступления информации: Роспатент

Показаны записи 11-18 из 18.
10.07.2015
№216.013.5bed

Велосипед рикамбент

Изобретение относится к велосипеду рикамбенту. Велосипед рикамбент состоит из рамы с сиденьем, имеющим спинку, установленной на заднем колесе и на переднем поворотном приводном колесе, вилка которого закреплена в подшипниках рамы и снабжена рулем. Рама снабжена выносами по бокам переднего...
Тип: Изобретение
Номер охранного документа: 0002555074
Дата охранного документа: 10.07.2015
27.03.2016
№216.014.c7ab

Рычажная инвалидная коляска

Рычажная инвалидная коляска относится к колесным транспортным средствам для перемещения в помещении и по улице. Рычажная инвалидная коляска содержит раму с сиденьем и подножкой, установленную на двух ведомых самоориентирующихся колесах и двух ведущих колесах, вилки которых закреплены в...
Тип: Изобретение
Номер охранного документа: 0002578800
Дата охранного документа: 27.03.2016
20.03.2016
№216.014.cd3b

Велосипед рикамбент

Изобретение относится к велосипеду рикамбенту. Велосипед рикамбент включает раму, состоящую из передней и задней частей, соединенных шарниром и амортизатором. Задняя часть снабжена сиденьем и установлена на заднем приводном колесе с втулкой, с блоком звездочек и храповиком и переключателем...
Тип: Изобретение
Номер охранного документа: 0002577813
Дата охранного документа: 20.03.2016
26.08.2017
№217.015.d4c8

Велосипед рикамбент с изменяемой посадкой

Изобретение относится к области транспорта, в частности к велосипедам. Велосипед рикамбент с изменяемой посадкой содержит раму, установленную на заднем приводном колесе с блоком звездочек и переключателем скоростей и переднем поворотном колесе, вилка которого установлена в рулевой колонке рамы...
Тип: Изобретение
Номер охранного документа: 0002622315
Дата охранного документа: 14.06.2017
10.05.2018
№218.016.4a82

Устройство для засолки грибов в стеклянных банках лукьянова

Изобретение относится к устройствам для консервирования пищевых продуктов и может быть использовано в процессе домашней засолки грибов в стеклянных банках. Устройство содержит банку 1 с кружком 2 и пригрузом. Кружок 1 выполнен цилиндрическим и с резьбовым отверстием 4 по оси, в которое ввинчен...
Тип: Изобретение
Номер охранного документа: 0002651588
Дата охранного документа: 23.04.2018
09.06.2018
№218.016.5e88

Электрорикамбент

Изобретение относится к транспортным средствам с мускульным и электрическим приводом, а именно к электрорикамбентам. Электрорикамбент состоит из рамы, установленной на заднем и переднем поворотном колесах. Вилка переднего колеса закреплена в подшипниках рамы и снабжена рулем. Рама снабжена...
Тип: Изобретение
Номер охранного документа: 0002656678
Дата охранного документа: 06.06.2018
24.07.2018
№218.016.7457

Маневренное велокресло лукьянова

Изобретение относится к сверхманевренным транспортным средствам с мускульным приводом и может использоваться инвалидами для передвижения и как тренажер и аттракцион в помещениях. Маневренное велокресло состоит из рамы 1 с сиденьем 2, двух приводных поворотных колес 3 и 4, вращение которых...
Тип: Изобретение
Номер охранного документа: 0002662127
Дата охранного документа: 23.07.2018
09.06.2019
№219.017.7fd3

Способ определения взаимного положения объектов

Способ определения взаимного положения объектов относится к оптическим способам определения взаимного положения и взаимной ориентации объектов и может быть использован при контроле и управлении стыковкой и разделением космических аппаратов, а также в иных областях техники, в которых необходим...
Тип: Изобретение
Номер охранного документа: 0002468383
Дата охранного документа: 27.11.2012
Показаны записи 21-27 из 27.
29.04.2019
№219.017.4120

Автономная система защиты станций с зеркально-параболическими антеннами от воздействия помеховых сигналов и способ ее построения

Изобретение относится к устройствам радиоэлектронной техники. Техническим результатом является повышение помехозащищенности различных радиосистем. Автономная система защиты станции с зеркально-параболической антенной от воздействия помеховых сигналов при известных стабильных направлениях...
Тип: Изобретение
Номер охранного документа: 0002311708
Дата охранного документа: 27.11.2007
09.06.2019
№219.017.7fd3

Способ определения взаимного положения объектов

Способ определения взаимного положения объектов относится к оптическим способам определения взаимного положения и взаимной ориентации объектов и может быть использован при контроле и управлении стыковкой и разделением космических аппаратов, а также в иных областях техники, в которых необходим...
Тип: Изобретение
Номер охранного документа: 0002468383
Дата охранного документа: 27.11.2012
13.06.2019
№219.017.80da

Способ определения точек падения боеприпасов

Изобретение относится к области проведения испытаний огневых комплексов и может быть использовано для определения априорной точности их стрельбы с использованием морской мишенной позиции (ММП). Для определения точек падения боеприпасов используют пеленгаторы для измерения углов пеленга на...
Тип: Изобретение
Номер охранного документа: 0002691274
Дата охранного документа: 11.06.2019
19.06.2019
№219.017.83d2

Способ построения антенной решетки со ступенчатой апертурой

Изобретение относится к области радиотехники, а именно к приемопередающим апертурным антенным устройствам СВЧ диапазона, предназначенным для использования в ограниченных по объему радиопрозрачных укрытиях (антенных обтекателях). Представлен способ построения антенной решетки со ступенчатой...
Тип: Изобретение
Номер охранного документа: 0002691663
Дата охранного документа: 17.06.2019
04.03.2020
№220.018.0866

Фазовый способ пеленгации двух источников излучения

Изобретение относится к области радиолокации, радионавигации и может быть использовано для определения угловых координат источников излучения сигналов. Достигаемый технический результат изобретения заключается в решении задачи одновременной пеленгации источника постоянного излучения и источника...
Тип: Изобретение
Номер охранного документа: 0002715562
Дата охранного документа: 02.03.2020
25.04.2020
№220.018.18c2

Кольцевая резонансная малогабаритная антенна круговой поляризации

Изобретение относится к области антенной техники и может быть использовано в качестве приемной/передающей антенны с круговой поляризацией в УКВ-диапазоне, в том числе в качестве антенн космических аппаратов, в качестве элемента антенной решетки, в качестве облучателя зеркально-параболической...
Тип: Изобретение
Номер охранного документа: 0002720048
Дата охранного документа: 23.04.2020
01.07.2020
№220.018.2d91

Способ формирования в зеркальной антенне равносигнального направления

Изобретение относится к антеннам или антенным системам с изменяющейся ориентацией диаграммы направленности и может быть использовано для формирования равносигнального направления в радиосистемах автосопровождения скоростных летательных аппаратов и объектов. Для формирования в зеркальной антенне...
Тип: Изобретение
Номер охранного документа: 0002724976
Дата охранного документа: 29.06.2020
+ добавить свой РИД