×
27.07.2013
216.012.5a87

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПРИРОСТА ПОДЪЕМНОЙ СИЛЫ ЛЕТАТЕЛЬНОГО АППАРАТА ПРИ ВНЕШНЕМ ПОДВОДЕ ЭНЕРГИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области экспериментальной аэродинамики летательных аппаратов, преимущественно к разработке методов воспроизведения в аэродинамических трубах условий обтекания летательных аппаратов и разработке методов повышения аэродинамического качества летательных аппаратов. Способ включает создание модели летательного аппарата и ее весовые испытания в аэродинамической трубе. Для определения прироста подъемной силы натурного летательного аппарата при внешнем подводе энергии по испытаниям его модели в аэродинамической трубе при изготовлении модели соблюдают геометрическое подобие с натурой формы ЛА и места энергоподвода, а в качестве внешнего энергоносителя используют нереагирующий газ с высокой удельной статической энтальпией, например гелий. Измеряют в аэродинамической трубе прирост подъемной силы модели при внешнем подводе энергоносителя и определяют коэффициент подобия, а затем определяют прирост подъемной силы для условий натурного полета. Технический результат заключается в возможности определения прироста подъемной силы натурного летательного аппарата при внешнем подводе энергии путем экспериментов на модели в аэродинамической трубе. 4 ил.
Основные результаты: Способ определения прироста подъемной силы летательного аппарата при внешнем подводе энергии, включающий создание модели летательного аппарата и ее весовые испытания в аэродинамической трубе, отличающийся тем, что создают геометрически подобные модели и места подвода газа-энергоносителя, реализуют в аэродинамической трубе режим полета натурного летательного аппарата, а вместо натурного энергоносителя используют нереагирующий газ с высокой удельной статической энтальпией, например гелий или холодный водород, производят измерение приращения подъемной силы модели и силы аэродинамического сопротивления в зависимости от расхода газа-энергоносителя и параметров набегающего потока, по известным значениям параметров набегающего потока и его энтальпии, а также величинам расхода энергоносителя и его энтальпии определяют коэффициент подобия Р для пересчета трубных измерений на натурный полет, равный: где ΔУ - прирост подъемной силы модели,U - скорость набегающего на модель потока, - расход газа-энергоносителя,Н - энтальпия набегающего потока,H - энтальпия газа-энергоносителя,а затем определяют прирост подъемной силы для условий натурного полета где β - коэффициент подобия, - расход газа энергоносителя,H - энтальпия набегающего потока,H - энтальпия газа энергоносителя,U - скорость набегающего потока,нат - относится к условиям натурного полета.

Изобретение относится к области экспериментальной аэродинамики летательных аппаратов (ЛА), преимущественно к разработке методов воспроизведения в аэродинамических трубах (АДТ) условий обтекания ЛА и разработке методов повышения аэродинамического качества ЛА.

Известны способы и устройства определения аэродинамических нагрузок в АДТ на моделях ЛА [А.Поуп, К.Гойн. Аэродинамические трубы больших скоростей. М., 1968, Мир, с.504], заключающиеся в том, что геометрически подобную модель ЛА устанавливают в АДТ на аэродинамические весы и измеряют подъемную силу, силы аэродинамического сопротивления, моментные характеристики. Такой способ не пригоден при исследованиях влияния внешнего подвода энергии на аэродинамические нагрузки натурного ЛА, так как в аэродинамических трубах практически невозможно воспроизвести из-за существенного отличия размеров ЛА и его модели необходимое соотношение характеристик аэродинамических его времен обтекания и времен воспламенения и сгорания топлив..

Более близким к предлагаемому изобретению относится способ исследования влияния внешнего подвода энергии на нагрузки модели ЛА, изложенный в работе [Е.А.Флетчер, Р.Дж.Дорш, X.Ален. Горение высокореактивных топлив в сверхзвуковых воздушных потоках. ВРТ, ИЛ, М., №4, 1961, с.3]. Способ основан на том, что модель помещают в поток газа в АДТ, через отверстия в модели подают горячий газ-энергоноситель, являющийся продуктом горения борогидрида алюминия, воспламеняемого электрическим разрядом, измеряют распределение статического давления по поверхности модели и по этому распределению рассчитывают влияние впрыска горящего топлива на подъемную силу.

Однако такой способ чреват ошибками. Во-первых, это ошибки в определении количества подведенной энергии, так как время реакций горения при большой скорости потока соизмеримо с временем перемещения массы газа, то есть полностью энергия горения выделится за моделью вниз по потоку. Во-вторых, определение подъемной силы по распределению давления менее надежно, чем прямые измерения с помощью весов, а в горящем потоке использование, например, тензовесов затруднено.

Задачей и техническим результатом заявляемого изобретения является, прямое измерение прироста подъемной силы при подводе энергии к модели летательного аппарата с помощью нереагирующего энергоносителя, определение критерия подобия β связывающего результаты измерения прироста подъемной силы на модели в АДТ с приростом ее в натурном полете ЛА при внешнем подводе энергии.

Решение поставленной задачи и технический результат достигаются тем, что в способе определения подъемной силы летательного аппарата при внешнем подводе энергии включающем создание модели летательного аппарата и ее весовые испытания в аэродинамической трубе, создают геометрически подобные модели и места подвода газа-энергоносителя, реализуют в аэродинамической трубе режим полета натурного летательного аппарата, а вместо натурного энергоносителя используют нереагирующий газ с высокой удельной статической энтальпией, например, гелий или холодный водород, производят измерение приращения подъемной силы модели и силы аэродинамического сопротивления в зависимости от расхода газа-энергоносителя и параметров набегающего потока, по известным значениям параметров набегающего потока и его энтальпии, а также величины расхода энергоносителя и его энтальпии определяют коэффициент подобия β для пересчета трубных измерений на натурный полет равный:

,

где ΔУ - прирост подъемной силы модели,

U - скорость набегающего на модель потока,

- расход газа-энергоносителя,

H - энтальпия набегающего потока,

Hm - энтальпия газа-энергоносителя,

а затем определяют прирост подъемной силы для условий натурного полета

где β - коэффициент подобия,

- расход газа-энергоносителя,

H∞нат - энтальпия набегающего потока,

Hmнат - энтальпия газа-энергоносителя,

U∞нат - скорость набегающего потока,

нат - относится к условиям натурного полета.

Схемы и графики, поясняющие способ, приведены на фигурах 1, 2, 3, 4.

На фигуре 1 представлена схема трубного эксперимента.

На фигуре 2 - фотография модели, имеющей вид пластины.

На фигуре 3 показана зависимость приращения подъемной силы и лобового сопротивления на модели сверхзвукового пассажирского самолета (СПС) от расхода газа - энергоносителя.

На фигуре 4 показано приращение подъемной силы от параметра t (обобщающие результаты для разных моделей: пластина, треугольное крыло, сверхзвуковой пассажирский самолет (СПС).

На фигуре 1:

1 - сопло;

2 - рабочая часть (камера Эйфеля);

3 - диффузор;

4 - державка с моделью;

5 - холодильник;

6 - вакуумный затвор;

7 - баллон с газом-энергоносителем.

На фигуре 2:

4 - модель (пластина);

8 - отверстия для выхода газа - энергоносителя;

9 - элемент аэродинамических весов; 10 - державка;

11- трубки для подвода газа-энергоносителя.

Способ реализуется следующим образом. Поток воздуха подается в тракт АДТ из атмосферы и двигается за счет перепада давления между атмосферой и вакуумной емкостью. Поток (фиг.1) разгоняется в сопле 1, проходит через камеру Эйфеля 2, диффузор 3, холодильник 5, затвор 6. В камере Эйфеля размещена испытуемая модель 4. При достижении заданного режима работы АДТ из баллонов 7 к модели 4 через отверстия в модели 8, (фиг.2) по трассам 11 (фиг.2) подается газ-энергоноситель. Проводят весовые измерения с помощью внутримодельных весов 9 (фиг.2). Измеряют приращение подъемной силы и лобового сопротивления.

Для весовых измерений использованы быстродействующие 3-компонентные тензовесы с диапазоном измерений до 1 кг и быстродействием ~7·10-3 с. Тензовесы градуированы вместе с моделями и пневмотрассами. Влияние динамических составляющих сил проверяют на динамическом стенде.

Пример условий эксперимента:

число M потока М=5, давление Р0=1 атм, температура T0≈298 K, статическое давление в камере Эйфеля Рст≈2·102 Па, рабочий газ-воздух, газы-энергоносители - гелий, азот, кислород.

Измерялась подъемная сила У0 без подвода энергии к внешней поверхности модели, У - с подводом энергии, сила реакции при подводе газа-энергоносителя Fp. Тогда приращение подъемной силы ΔУ при подводе энергии равно:

ΔУ=У-У0-Fp

Расход подводимого к модели газа-энергоносителя m определялся по величине полного давления перед мерным соплом в трассе подвода газа. Величина скорости набегающего потока определялась по числу М потока для выбранного сопла (M=5).

Из приближенного интегрального анализа процессов массо и теплоотвода к гиперзвуковому потоку следует, что величина приращения подъемной силы ΔУ при подводе энергии к внешней поверхности модели зависит от расхода энергоносителя , энтальпии набегающего потока H, энтальпии энергоносителя Hm скорости набегающего потока U, и определяется из следующего соотношения:

Для удобства обозначим:

, т.е.

ΔУ=f(t)

Эта величина имеет размерность силы и является функцией прироста подъемной силы. Но, кроме того, прирост подъемной силы зависит от условий подвода энергоносителя: места подвода, расположения зоны реакции, направления потока газа - энергоносителя.

Как сказано выше, эту зависимость в заявляемом способе предложено определять в трубном эксперименте как коэффициент подобия β. Экспериментами с варьированием газов-энергоносителей с разными удельными энтальпиями (гелий, кислород, азот), с варьированием расходов энергоносителей была показана универсальность этого коэффициента при соблюдении геометрического подобия схем энергоподвода. Это является предпосылкой для использования этого коэффициента, определенного в АДТ, в условиях натурного полета (в дальнейшем это будет проверено в натурном полете).

Тогда приращение подъемной силы при внешнем подводе энергии в натурном полете определится:

На фигуре 3 приведены измеренные значения прироста подъемной силы ΔУ при подводе энергоносителя на модели СПС, прирост лобового сопротивления ΔX незначителен. Это относится только к малым углам атаки (α≈1°). На фигуре 4 представлена зависимость коэффициента β от параметра t для разных моделей. Согласно фигуре 4, в экспериментах максимальное увеличение подъемной силы при внешнем подводе энергии получено на модели треугольного крыла при значениях параметра t≤0,2 Ньютона.

Приведем пример использования измеренного по предлагаемому способу коэффициента β для оценки эффективности влияния на подъемную силу внешнего подвода энергии на натурном ЛА. В соответствии с вышеизложенным, при внешнем подводе энергии

В то же время при увеличении тяги двигателя за счет дополнительного расхода топлива рост подъемной силы составляет

где I - удельный импульс двигателя,

K - аэродинамическое качество,

g - ускорение силы тяжести.

Тогда

Это отношение больше единицы при значениях: I=2800 с (для ГПВРД на водороде, для которого Нmнат=1,22·105 кДж/(кг), β=1,45, U∞нат=1500 м/с, K≤4,2.

Для ЛА с ПВРД на керосине I≈1700 с. Тогда вплоть до значений качества К=7.

Таким образом, при использовании способа решена важная задача: в результате ряда методических экспериментов в АДТ с разными газами-энергоносителями и разными массовыми расходами их найден и предложен критерий подобия β связывающий результаты измерения прироста подъемной силы на модели в АДТ с приростом ее в натурном полете ЛА при внешнем подводе энергии. Это открывает возможность поиска путей повышения аэродинамического качества ЛА за счет подвода внешней энергии к его модели в трубном эксперименте с последующим пересчетом полученных результатов на условия натурного полета. Проведенные эксперименты с использованием других газов: азота, кислорода и др. подтвердили универсальность предложенной зависимости.

Изобретение позволяет определить прирост подъемной силы натурного летательного аппарата при внешнем подводе энергии путем экспериментов на модели в аэродинамической трубе, что дает значительные преимущества по сравнению со способом получения такой информации методом исследований в натурном полете.

Способ определения прироста подъемной силы летательного аппарата при внешнем подводе энергии, включающий создание модели летательного аппарата и ее весовые испытания в аэродинамической трубе, отличающийся тем, что создают геометрически подобные модели и места подвода газа-энергоносителя, реализуют в аэродинамической трубе режим полета натурного летательного аппарата, а вместо натурного энергоносителя используют нереагирующий газ с высокой удельной статической энтальпией, например гелий или холодный водород, производят измерение приращения подъемной силы модели и силы аэродинамического сопротивления в зависимости от расхода газа-энергоносителя и параметров набегающего потока, по известным значениям параметров набегающего потока и его энтальпии, а также величинам расхода энергоносителя и его энтальпии определяют коэффициент подобия Р для пересчета трубных измерений на натурный полет, равный: где ΔУ - прирост подъемной силы модели,U - скорость набегающего на модель потока, - расход газа-энергоносителя,Н - энтальпия набегающего потока,H - энтальпия газа-энергоносителя,а затем определяют прирост подъемной силы для условий натурного полета где β - коэффициент подобия, - расход газа энергоносителя,H - энтальпия набегающего потока,H - энтальпия газа энергоносителя,U - скорость набегающего потока,нат - относится к условиям натурного полета.
СПОСОБ ОПРЕДЕЛЕНИЯ ПРИРОСТА ПОДЪЕМНОЙ СИЛЫ ЛЕТАТЕЛЬНОГО АППАРАТА ПРИ ВНЕШНЕМ ПОДВОДЕ ЭНЕРГИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРИРОСТА ПОДЪЕМНОЙ СИЛЫ ЛЕТАТЕЛЬНОГО АППАРАТА ПРИ ВНЕШНЕМ ПОДВОДЕ ЭНЕРГИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРИРОСТА ПОДЪЕМНОЙ СИЛЫ ЛЕТАТЕЛЬНОГО АППАРАТА ПРИ ВНЕШНЕМ ПОДВОДЕ ЭНЕРГИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРИРОСТА ПОДЪЕМНОЙ СИЛЫ ЛЕТАТЕЛЬНОГО АППАРАТА ПРИ ВНЕШНЕМ ПОДВОДЕ ЭНЕРГИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРИРОСТА ПОДЪЕМНОЙ СИЛЫ ЛЕТАТЕЛЬНОГО АППАРАТА ПРИ ВНЕШНЕМ ПОДВОДЕ ЭНЕРГИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРИРОСТА ПОДЪЕМНОЙ СИЛЫ ЛЕТАТЕЛЬНОГО АППАРАТА ПРИ ВНЕШНЕМ ПОДВОДЕ ЭНЕРГИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРИРОСТА ПОДЪЕМНОЙ СИЛЫ ЛЕТАТЕЛЬНОГО АППАРАТА ПРИ ВНЕШНЕМ ПОДВОДЕ ЭНЕРГИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРИРОСТА ПОДЪЕМНОЙ СИЛЫ ЛЕТАТЕЛЬНОГО АППАРАТА ПРИ ВНЕШНЕМ ПОДВОДЕ ЭНЕРГИИ
Источник поступления информации: Роспатент

Показаны записи 91-100 из 258.
27.03.2016
№216.014.c8c0

Динамически подобная аэродинамическая модель несущей поверхности летательного аппарата

Изобретение относится к области экспериментальных исследований динамических явлений аэроупругости летательных аппаратов в аэродинамических трубах. Динамически подобная аэродинамическая модель несущей поверхности содержит силовую упругую балку-лонжерон, дренированные блоки, установленные по...
Тип: Изобретение
Номер охранного документа: 0002578915
Дата охранного документа: 27.03.2016
20.06.2016
№217.015.0363

Регулятор давления воздуха в форкамере аэродинамической трубы с форсированным выходом на заданный режим

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам. Устройство содержит задающее устройство, исполнительный механизм, датчики температуры, давления, положения, регулятор давления. Регулятор давления выполнен в виде последовательно включенных...
Тип: Изобретение
Номер охранного документа: 0002587518
Дата охранного документа: 20.06.2016
20.06.2016
№217.015.046d

Аэроупругая модель

Изобретение относится к области аэродинамических испытаний и предназначено для использования в аэродинамических трубах (АДТ), где требуется проведение исследований явлений аэроупругости. Сущность изобретения состоит в том, что во внутренней полости аэроупругой модели с лимитированным зазором...
Тип: Изобретение
Номер охранного документа: 0002587525
Дата охранного документа: 20.06.2016
20.06.2016
№217.015.04f5

Регулятор давления воздуха в форкамере аэродинамической трубы

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам. Устройство содержит задающее устройство, исполнительный механизм, датчики температуры, давления, положения, а также регулятор давления. Регулятор давления состоит из сумматора отрицательной...
Тип: Изобретение
Номер охранного документа: 0002587526
Дата охранного документа: 20.06.2016
20.04.2016
№216.015.373a

Аэродинамический профиль крыла

Изобретение относится к авиационной технике. Аэродинамический профиль крыла включает носовую часть круговой формы малого радиуса от передней кромки до сопряжения с контуром нижней поверхности. Носовая часть профиля крыла от передней кромки профиля до сопряжения с контуром верхней поверхности...
Тип: Изобретение
Номер охранного документа: 0002581642
Дата охранного документа: 20.04.2016
10.06.2016
№216.015.46bb

Многоканальный преобразователь приращения сопротивления резистивных датчиков в напряжение

Изобретение относится к электроизмерительной технике и может быть, в частности, использовано для измерения приращения сопротивлений удаленных тензорезисторов или терморезисторов в многоканальных измерительных системах, работающих в условиях действия интенсивных промышленных помех....
Тип: Изобретение
Номер охранного документа: 0002586084
Дата охранного документа: 10.06.2016
20.08.2016
№216.015.4bf0

Вибровозбудитель колебаний механических конструкций

Вибровозбудитель колебаний механических конструкций состоит из корпуса, силового привода, упругих шарниров, штока, соединенного с упругой тягой. При этом шток силового привода соединен упругой тягой с подвижной платформой со сменным грузом, которая установлена на упругом шарнире, состоящем из...
Тип: Изобретение
Номер охранного документа: 0002594462
Дата охранного документа: 20.08.2016
27.08.2016
№216.015.4d2b

Способ подготовки газа для исследований в гиперзвуковой аэродинамической трубе и устройство для его осуществления (варианты)

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при исследовании характеристик летательных аппаратов. В способе подготовки газа для исследований в гиперзвуковой аэродинамической трубе, содержащем операцию разогрева требуемого количества газа до...
Тип: Изобретение
Номер охранного документа: 0002595324
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.4e13

Устройство защиты полых изделий от превышения заданной величины внутреннего избыточного давления газа

Изобретение относится к испытательной технике, в частности, к установкам для ресурсных испытаний фюзеляжей летательных аппаратов нагрузками, создаваемыми внутренним избыточным давлением сжатого воздуха. В устройство, содержащее гидрозатвор, содержащий нижний и верхний баки, соединенные между...
Тип: Изобретение
Номер охранного документа: 0002595319
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.4e70

Пятикомпонентные тензовесы

Изобретение относится к области аэромеханических измерений и может быть использовано для измерения составляющих векторов аэродинамической силы и момента, действующих на модели летательных аппаратов в потоке аэродинамической трубы. Пятикомпонентные тензовесы построены по 3-балочной схеме,...
Тип: Изобретение
Номер охранного документа: 0002595321
Дата охранного документа: 27.08.2016
Показаны записи 91-100 из 140.
27.03.2016
№216.014.c8c0

Динамически подобная аэродинамическая модель несущей поверхности летательного аппарата

Изобретение относится к области экспериментальных исследований динамических явлений аэроупругости летательных аппаратов в аэродинамических трубах. Динамически подобная аэродинамическая модель несущей поверхности содержит силовую упругую балку-лонжерон, дренированные блоки, установленные по...
Тип: Изобретение
Номер охранного документа: 0002578915
Дата охранного документа: 27.03.2016
20.06.2016
№217.015.0363

Регулятор давления воздуха в форкамере аэродинамической трубы с форсированным выходом на заданный режим

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам. Устройство содержит задающее устройство, исполнительный механизм, датчики температуры, давления, положения, регулятор давления. Регулятор давления выполнен в виде последовательно включенных...
Тип: Изобретение
Номер охранного документа: 0002587518
Дата охранного документа: 20.06.2016
20.06.2016
№217.015.046d

Аэроупругая модель

Изобретение относится к области аэродинамических испытаний и предназначено для использования в аэродинамических трубах (АДТ), где требуется проведение исследований явлений аэроупругости. Сущность изобретения состоит в том, что во внутренней полости аэроупругой модели с лимитированным зазором...
Тип: Изобретение
Номер охранного документа: 0002587525
Дата охранного документа: 20.06.2016
20.06.2016
№217.015.04f5

Регулятор давления воздуха в форкамере аэродинамической трубы

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам. Устройство содержит задающее устройство, исполнительный механизм, датчики температуры, давления, положения, а также регулятор давления. Регулятор давления состоит из сумматора отрицательной...
Тип: Изобретение
Номер охранного документа: 0002587526
Дата охранного документа: 20.06.2016
20.04.2016
№216.015.373a

Аэродинамический профиль крыла

Изобретение относится к авиационной технике. Аэродинамический профиль крыла включает носовую часть круговой формы малого радиуса от передней кромки до сопряжения с контуром нижней поверхности. Носовая часть профиля крыла от передней кромки профиля до сопряжения с контуром верхней поверхности...
Тип: Изобретение
Номер охранного документа: 0002581642
Дата охранного документа: 20.04.2016
10.06.2016
№216.015.46bb

Многоканальный преобразователь приращения сопротивления резистивных датчиков в напряжение

Изобретение относится к электроизмерительной технике и может быть, в частности, использовано для измерения приращения сопротивлений удаленных тензорезисторов или терморезисторов в многоканальных измерительных системах, работающих в условиях действия интенсивных промышленных помех....
Тип: Изобретение
Номер охранного документа: 0002586084
Дата охранного документа: 10.06.2016
20.08.2016
№216.015.4bf0

Вибровозбудитель колебаний механических конструкций

Вибровозбудитель колебаний механических конструкций состоит из корпуса, силового привода, упругих шарниров, штока, соединенного с упругой тягой. При этом шток силового привода соединен упругой тягой с подвижной платформой со сменным грузом, которая установлена на упругом шарнире, состоящем из...
Тип: Изобретение
Номер охранного документа: 0002594462
Дата охранного документа: 20.08.2016
27.08.2016
№216.015.4d2b

Способ подготовки газа для исследований в гиперзвуковой аэродинамической трубе и устройство для его осуществления (варианты)

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при исследовании характеристик летательных аппаратов. В способе подготовки газа для исследований в гиперзвуковой аэродинамической трубе, содержащем операцию разогрева требуемого количества газа до...
Тип: Изобретение
Номер охранного документа: 0002595324
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.4e13

Устройство защиты полых изделий от превышения заданной величины внутреннего избыточного давления газа

Изобретение относится к испытательной технике, в частности, к установкам для ресурсных испытаний фюзеляжей летательных аппаратов нагрузками, создаваемыми внутренним избыточным давлением сжатого воздуха. В устройство, содержащее гидрозатвор, содержащий нижний и верхний баки, соединенные между...
Тип: Изобретение
Номер охранного документа: 0002595319
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.4e70

Пятикомпонентные тензовесы

Изобретение относится к области аэромеханических измерений и может быть использовано для измерения составляющих векторов аэродинамической силы и момента, действующих на модели летательных аппаратов в потоке аэродинамической трубы. Пятикомпонентные тензовесы построены по 3-балочной схеме,...
Тип: Изобретение
Номер охранного документа: 0002595321
Дата охранного документа: 27.08.2016
+ добавить свой РИД