×
27.06.2013
216.012.50d9

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНО- И МИКРОСТРУКТУРНЫХ ПОРОШКОВ И/ИЛИ ВОЛОКОН КРИСТАЛЛИЧЕСКОГО И/ИЛИ РЕНТГЕНОАМОРФНОГО КРЕМНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии неметаллов, а именно к производству электролитического кристаллического и/или рентгеноаморфного кремния в виде нано- и микроструктурных порошков и/или волокон. Способ включает электролитическое растворение по меньшей мере одного выполненного из кремния анода в расплав смеси, содержащей в мас.%: 0÷70 CsCl, 10÷60 KCl, 10÷45 NaCl, в электролизере под инертной атмосферой, в интервале температур от 600 до 700°С при катодной плотности тока от 0,3 мА/см до 100 мА/см с выделением на катоде щелочных металлов и восстановлением соединений кремния в объеме расплава. Технический результат - получение электролитического кристаллического и/или рентгеноаморфного кремния в виде нано- и микроструктурных порошков и/или волокон с высокой удельной поверхностью. 1 табл.
Основные результаты: Способ получения нано- и микроструктурных порошков и/или волокон кристаллического и/или рентгеноаморфного кремния, включающий электролитическое растворение по меньшей мере одного выполненного из кремния анода в расплаве смеси, содержащей, мас.%: 0÷70 CsCl, 10÷60 KCl, 10÷45 NaCl, в электролизере под инертной атмосферой, в интервале температур от 600 до 700°С при катодной плотности тока от 0,3 мА/см до 100 мА/см с выделением на катоде щелочных металлов и восстановлением соединений кремния в объеме расплава.

Изобретение относится к области металлургии неметаллов, а именно к производству электролитического кристаллического и/или рентгеноаморфного кремния в виде нано- и микроструктурных порошков и/или волокон, пригодных для использования в порошковой металлургии, литиевых химических источниках тока, преобразователях солнечной энергии, фотоэлектрических устройствах, тензодатчиках, термоэлектрических преобразователях, датчиках температуры, автоэмиссионной электронике, композиционных материалах и т.д. При этом более развитая по сравнению с электролитическими кристаллическими Si осадками удельная поверхность рентгеноаморфного кремния способствует ускорению кинетики взаимодействия кремния, например, с литием, что предпочтительно при использовании в анодах литиевых химических источников тока и других процессах, требующих снижения кинетических затруднений.

Известен способ получения нано- и микроструктурного кремния (RU №2399698, опубл. 20.09.2010 г., Бюл. №26) [1] путем электролитического рафинирования материала, содержащего кремний. Электролиз ведут в расплаве, содержащем в мас.%: до 65 CsCl, 15-50 KCl, 5-50 KF, 10-60 K2SiF6 при температуре 550-750° с использованием в качестве анода материала, содержащего кремний при плотности тока от 0,005 до 1,5 А/см2 с выделением электролитического кремния на поверхности катода. Известный способ характеризуется использованием хлоридно-фторидного электролита, при этом отмывка электролитического порошка кремния, особенно мелкодисперсного, от хлоридно-фторидных солей затруднена, часть электролитического порошка кремния, как правило наиболее мелкодисперсная, неизбежно теряется. Известным способом получают электролитический кремний в виде порошков кристаллической структуры, удельная поверхность которых, как показали исследования, находится в пределах от 1 до 25 м2/г. Рентгеноаморфные порошки кремния этим способом получить не удалось.

Известно получение пленок аморфного кремния в процессе тлеющего разряда в силане, или в галогенированных формах силана (R.C. Chittick. в Journal of the Electrochemical Society, Vol.116, №.1, p.77-81) [2]. Другой процесс описан в (W.Paul, в Solid State Communications, Vol.20, p.969, 1976) [3], где слой аморфного кремния получают распылением в присутствии водорода. Процессы [2, 3] значительно дороже электролиза, т.к. требуют значительных затрат на оборудование и использование сложных технологий вакуумного метода осаждения тонких пленок. Полученный электролизом неводного раствора соединений кремния в жидких апротонных растворителях (E.R.Bucker Pat. US №4192720, 1980 г.) [4] аморфный кремний всегда насыщен водородом, что отражается на его физико-химических свойствах.

Задача настоящего изобретения заключается в создании технологичного электролитического способа, позволяющего получать как кристаллические, так и рентгеноаморфные нано- и микроструктурные порошки и/или волокна кремния высокой чистоты. Для решения этой задачи наиболее близким к заявляемому изобретению является известный электролитический способ получения нано- и микроструктурных порошков кремния по RU №2399698 [1].

Для решения поставленной задачи способ получения нано- и микроструктурных порошков и/или волокон кристаллического и/или рентгеноаморфного кремния характеризуется электролитическим растворением по меньшей мере одного выполненного из кремния анода в расплаве смеси, содержащей в масс.%: (0÷70) CsCl, (10÷60) KCl, (10÷45) NaCl, под инертной атмосферой, в интервале температур от 600 до 700°С при катодной плотности тока от 0,3 мА/см2 до 100 мА/см2 с выделением на катоде щелочных металлов и восстановлением соединений кремния в объеме электролита.

В предлагаемом способе щелочной металл растворяется в расплаве солей и взаимодействует с соединениями кремния, находящимися в объеме электролита, восстанавливая их до элементарного кремния. Электролитическое выделение кремния происходит не за счет разряда ионов на поверхности электрода, как в способе по RU №2399698, а за счет восстановления растворенным щелочным металлом кремнийсодержащих ионов в объеме электролита. На поверхности электрода число центров кристаллизации ограничено, поэтому порошки получаются более крупными, чем в объеме электролита. Для предотвращения выделения кремния на поверхности катода в начальный момент электролиза исходную концентрацию кремнийсодержащих ионов в расплаве не задают.

Микроструктурные осадки рентгеноаморфного кремния, получаемые по этому способу, имеют развитую удельную поверхность от 30 до 136 м2/г, которая позволяет значительно облегчить кинетику взаимодействия кремния с различными химическими элементами и соединениями, а значит, расширяет диапазон возможных применений электролитического кремния.

Использование хлоридного электролита значительно облегчает отмывку электролитического порошка кремния от остатков электролита, снижая потери электролитического кремния на стадии отмывки, особенно его мелкодисперсной фракции. Кроме того, используемые в способе хлориды щелочных металлов малогигроскопичны, и их сушка перед электролизом требует меньше энергозатрат по сравнению с фторидами щелочных металлов.

Новый технический результат, достигаемый заявленным способом, заключается в получении электролитического кристаллического и/или рентгеноаморфного кремния в виде нано- и микроструктурных порошков и/или волокон с высокой удельной поверхностью.

Для реализации заявленного способа осуществляют электрохимическое растворение по меньшей мере одного анода, выполненного из кремния, процесс ведут в расплаве смеси, содержащей в масс.%: (0÷70) CsCl, (10÷60) KCl, (10÷45) NaCl в интервале температур от 600 до 700°С, при катодной плотности тока от 0,3 мА/см2 до 100 мА/см2 с выделением на катоде щелочных металлов и восстановлением соединений кремния в объеме электролита. Происходит восстановление соединений кремния в объеме электролита, выделение щелочных металлов или их смесей на катоде из железа (никеля или нержавеющей стали) и отделение полученного порошка кремния, диспергированного в расплаве, от электролита с последующей сепарацией его на фракции. В качестве анодного материала можно использовать металлургический кремний, отходы кремния марок «солнечный» и «полупроводниковый». В электролизер загружают предварительно осушенные соли. Ванну медленно нагревают под слабым вакуумом до 200°С, затем заполняют газовое пространство аргоном высокой чистоты и доводят ванну до плавления. Процесс ведут в интервале температур от 600 до 700°С. Катодом может служить стакан - контейнер для соли. В качестве материала катода можно использовать стенку электролизера из нержавеющей стали или никеля, или железа, или другого металла, слабо взаимодействующего с щелочным металлом в рабочем диапазоне температур. Анод в виде бруска или пластины из кремния помещают по центру ванны. Анод может быть выполнен в виде корзины из высокочистого углеродного материала с кусками кремния, помещенными в ней. Анодный материал (Si различных марок) может быть помещен в корзину из чистого углеродного материала или никеля. Для растворения анодного материала и выделения щелочного металла на катоде через ванну пропускают постоянный ток. Изначально концентрацию растворенного в расплаве кремния не задают. Образующийся на поверхности катода щелочной металл растворяется в электролите, вступая во взаимодействие с кремнийсодержащими ионами не на поверхности электрода, а в объеме электролита. Кремнийсодержащие ионы образуются на аноде при прохождении постоянного тока и растворяются в электролите. Восстановление соединений кремния происходит в объеме электролита. Элементарный кремний в виде мелкодисперсного порошка диспергируется в объеме расплава соли. После окончания процесса остаток анода извлекают из ванны. Электролизер охлаждают и извлекают тигель с застывшим электролитом и диспергированным в нем порошком кремния.

Твердый электролит с порошком кремния отмывают от электролита раствором соляной кислоты и дистиллированной водой. Раствор солей отправляют на очистку, регенерацию, и полученные соли возвращают в голову процесса. Во время отмывки порошков Si от электролита проводят седиментационную фракционную классификацию порошка кремния. Получен кремний с высокой удельной поверхностью от 30 до 140 м2/г в виде волокон диаметром от 100 до 500 нм, в виде чешуек, дендритов и т.п. В таблице 1 приведены условия получения мелкодисперсных осадков кремния с высокой удельной поверхностью в расплаве, мас.%: NaCl(16.4)-KCl(15.6)-CsCl(68), а также характеристики осадков.

Из данных таблицы видно, что заявленный способ позволяет получать фракции как электролитического кристаллического кремния, так и электролитического рентгеноаморфного кремния, причем как совместно, так и раздельно. При этом обеспечиваются низкие удельные энергозатраты на производство единицы массы порошка и безотходное производство кремния высокой чистоты.

Способ получения нано- и микроструктурных порошков и/или волокон кристаллического и/или рентгеноаморфного кремния, включающий электролитическое растворение по меньшей мере одного выполненного из кремния анода в расплаве смеси, содержащей, мас.%: 0÷70 CsCl, 10÷60 KCl, 10÷45 NaCl, в электролизере под инертной атмосферой, в интервале температур от 600 до 700°С при катодной плотности тока от 0,3 мА/см до 100 мА/см с выделением на катоде щелочных металлов и восстановлением соединений кремния в объеме расплава.
Источник поступления информации: Роспатент

Показаны записи 71-80 из 99.
01.11.2018
№218.016.9938

Способ получения керамики для извлечения гелия из газовых смесей

Изобретение относится к способам получения функциональной керамики, которая может использоваться для извлечения гелия из газовых смесей, включая природный газ, и разделения его изотопов. Способ включает прессование и обжиг тонкодисперсных порошков прекурсоров, в качестве которых используют...
Тип: Изобретение
Номер охранного документа: 0002671379
Дата охранного документа: 30.10.2018
24.01.2019
№219.016.b305

Потенциометрический датчик концентрации кислорода

Изобретение может быть использовано в электрохимии, металлургии, энергетике, автомобилестроении и других отраслях для определения содержания кислорода. Датчик содержит несущий элемент, выполненный в виде трубки из оксида алюминия. Несущий элемент с помощью стеклогерметика герметично соединен с...
Тип: Изобретение
Номер охранного документа: 0002677927
Дата охранного документа: 22.01.2019
14.03.2019
№219.016.df88

Способ получения газоплотного твердооксидного трубчатого электролита для несущей основы тотэ

Изобретение относится к получению газоплотного твердооксидного трубчатого электролита с ионной проводимостью, который может быть использован при изготовлении различных электрохимических устройств, например твердооксидных топливных элементов (ТОТЭ), электролизеров и т.п. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002681771
Дата охранного документа: 12.03.2019
16.03.2019
№219.016.e1d6

Твердооксидный протонпроводящий материал

Изобретение относится к высокоплотным твердооксидным протонпроводящим материалам на основе иттрата лантана, которые могут быть использованы в качестве электролитов для среднетемпературных электрохимических устройств, включая твердооксидные топливные элементы, сенсоры и электролизеры. Материал...
Тип: Изобретение
Номер охранного документа: 0002681947
Дата охранного документа: 14.03.2019
29.03.2019
№219.016.ed71

Твердоэлектролитный потенциометрический датчик для анализа влажности воздуха и малых концентраций водорода

Изобретение относится к аналитической технике и может быть использовано для измерения влажности воздуха и малых концентраций водорода в газовых смесях. Датчик содержит три диска из протонпроводящего твердого электролита, герметично соединенные между собой с образованием двух полостей между...
Тип: Изобретение
Номер охранного документа: 0002683134
Дата охранного документа: 26.03.2019
10.04.2019
№219.016.feea

Способ создания билатеральной костной модели для исследования интеграции остеотропных материалов в эксперименте

Изобретение относится к экспериментальной медицине, а именно к оперативной травматологии и имплантологии, и может быть использовано для изучения интеграции остеотропных материалов, их участия в репаративных процессах костной ткани. Производят разрез в области коленного сустава....
Тип: Изобретение
Номер охранного документа: 0002684356
Дата охранного документа: 08.04.2019
19.04.2019
№219.017.321d

Способ электролиза расплавленных солей с кислородсодержащими добавками с использованием инертного анода

Изобретение относится к способам получения металлов, в частности алюминия, или сплавов электролизом расплавленных солей с кислородсодержащими добавками с использованием металлического и оксидно-металлического керметного инертного анода. В способе в процессе электролиза измеряют потенциал анода...
Тип: Изобретение
Номер охранного документа: 0002457286
Дата охранного документа: 27.07.2012
27.04.2019
№219.017.3d05

Способ электролитического получения алюминия

Изобретение относится к получению алюминия электролизом криолит-глиноземного расплава. Способ включает загрузку на этапе пуска электролизера в качестве электролита смеси криолита со фторидом алюминия с содержанием фторида алюминия от 25 до 35 мас.%. Обеспечивается сокращение времени пуска...
Тип: Изобретение
Номер охранного документа: 0002686408
Дата охранного документа: 25.04.2019
09.05.2019
№219.017.507b

Электрохимический способ получения нанопорошков диборида титана

Изобретение относится к электрохимическому способу получения нанопорошков диборида титана, может быть использовано в получении неоксидной керамики для высокотемпературных агрегатов типа электролизера для производства алюминия. Нанопорошки диборида титана получают импульсной анодно-катодной...
Тип: Изобретение
Номер охранного документа: 0002465096
Дата охранного документа: 27.10.2012
24.05.2019
№219.017.5dcc

Способ подготовки образцов костной ткани человека для исследования методом растровой электронной микроскопии

Изобретение относится к способу подготовки образцов поствитальной или пострезекционной костной ткани человека для исследования методом растровой электронной микроскопии. Способ характеризуется тем, что образцы вырезают абразивным кругом из костной заготовки, охлажденной жидким азотом, на 5 мин...
Тип: Изобретение
Номер охранного документа: 0002688944
Дата охранного документа: 23.05.2019
Показаны записи 71-80 из 96.
27.04.2019
№219.017.3d05

Способ электролитического получения алюминия

Изобретение относится к получению алюминия электролизом криолит-глиноземного расплава. Способ включает загрузку на этапе пуска электролизера в качестве электролита смеси криолита со фторидом алюминия с содержанием фторида алюминия от 25 до 35 мас.%. Обеспечивается сокращение времени пуска...
Тип: Изобретение
Номер охранного документа: 0002686408
Дата охранного документа: 25.04.2019
09.06.2019
№219.017.7d54

Способ получения нано- и микроволокон кремния электролизом диоксида кремния из расплавов солей

Изобретение относится к производству электролитического кремния в виде нановолокон или микроволокон с использованием сырья - диоксида кремния. Сущность изобретения: способ получения нано- или микрооволокон кремния характеризуется тем, что процесс электролиза SiO ведут в расплаве LiF (0÷3) - KCl...
Тип: Изобретение
Номер охранного документа: 0002427526
Дата охранного документа: 27.08.2011
09.06.2019
№219.017.7e1f

Инертный анод для электролитического получения металлов

Изобретение относится к области цветной металлургии и электролитическому получению металлов и может быть использовано при получении алюминия электролизом криолит-глиноземного расплава с применением инертных анодов. Инертный анод содержит металлическую фазу и керамическую фазу, включающую оксид...
Тип: Изобретение
Номер охранного документа: 0002401324
Дата охранного документа: 10.10.2010
09.06.2019
№219.017.7e28

Способ получения алюминиевых сплавов электролизом

Изобретение относится к цветной металлургии, в частности для получения сплавов на основе алюминия электрохимическим способом. Способ включает введение в расплавленный алюминий катода легирующих элементов из малорастворимого анода путем растворения его в калиевом криолит-глиноземном расплаве,...
Тип: Изобретение
Номер охранного документа: 0002401327
Дата охранного документа: 10.10.2010
27.06.2019
№219.017.9894

Электрохимический способ получения микрокристаллов вольфрам-молибденового сплава

Изобретение относится к области высокотемпературной электрохимии, в частности к электролитическому получению микрокристаллического осадка сплава вольфрам-молибден, и может быть использовано для изготовления устройств, применяемых в условиях повышенных температур, а именно: оснащения водородных...
Тип: Изобретение
Номер охранного документа: 0002692543
Дата охранного документа: 25.06.2019
14.07.2019
№219.017.b451

Способ получения алюминия электролизом расплава

Изобретение относится к цветной металлургии и способу электролитического получения алюминия. Способ включает электролиз расплава KF-NaF-AlF с добавками АlО при температуре электролита 700-900°С и поддержание криолитового отношения (KF+NaF)/AlF от 1,1 до 1,9. Электролиз ведут при анодной...
Тип: Изобретение
Номер охранного документа: 0002415973
Дата охранного документа: 10.04.2011
19.07.2019
№219.017.b611

Способ контроля содержания глинозема при электролизе криолит-глиноземного расплава

Изобретение относится к получению алюминия электролизом криолит-глиноземного расплава, в частности к способу контроля содержания глинозема при электролизе криолит-глиноземного расплава. Способ включает определение эмпирической линейной зависимости концентрации глинозема в криолит-глиноземном...
Тип: Изобретение
Номер охранного документа: 0002694860
Дата охранного документа: 17.07.2019
03.08.2019
№219.017.bc0f

Установка для очистки галогенидных солей

Изобретение относится к области химической технологии и может быть использовано для получения особо чистых галогенидных солей методом зонной перекристаллизации, применяемых, в частности, при пирохимической переработке ядерного топлива, химическом и электрохимическом синтезе элементов и...
Тип: Изобретение
Номер охранного документа: 0002696474
Дата охранного документа: 01.08.2019
02.10.2019
№219.017.cfc0

Способ переработки оксидного ядерного топлива

Изобретение относится к ядерной энергетике и может быть использовано преимущественно в замкнутом ядерном топливном цикле (ЗЯТЦ). Способ включает восстановление компонентов оксидного ядерного топлива при электролизе расплава хлорида лития с добавкой оксида лития в количестве не менее 1 мас. % с...
Тип: Изобретение
Номер охранного документа: 0002700934
Дата охранного документа: 24.09.2019
15.11.2019
№219.017.e214

Электрохимический способ формирования кристаллов оксидных вольфрамовых бронз из нановискеров (варианты)

Изобретение относится к вариантам электрохимического способа формирования кристаллов оксидных вольфрамовых бронз из нановискеров. Один из вариантов включает электролиз поливольфраматного расплава с использованием платинового анода, в котором электроосаждение ведут при 700°C в импульсном...
Тип: Изобретение
Номер охранного документа: 0002706006
Дата охранного документа: 13.11.2019
+ добавить свой РИД