×
09.06.2019
219.017.7d54

СПОСОБ ПОЛУЧЕНИЯ НАНО- И МИКРОВОЛОКОН КРЕМНИЯ ЭЛЕКТРОЛИЗОМ ДИОКСИДА КРЕМНИЯ ИЗ РАСПЛАВОВ СОЛЕЙ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к производству электролитического кремния в виде нановолокон или микроволокон с использованием сырья - диоксида кремния. Сущность изобретения: способ получения нано- или микрооволокон кремния характеризуется тем, что процесс электролиза SiO ведут в расплаве LiF (0÷3) - KCl (10÷50) - KF (5÷50) - KSiF (5÷45) - SiO (2-5) мас.% при температуре 650÷800°С и катодной плотности тока 0,005-1,5 А/см с последующим отделением осадка кремния от поверхности катода-подложки и электролита. Техническим результатом изобретения является получение нановолокнистого или микроволокнистого кремния высокого качества и с требуемой волокнистой структурой, при относительно простом аппаратурном оформлении процесса. 4 з.п. ф-лы.
Реферат Свернуть Развернуть

Изобретение относится к области металлургии неметаллов, а именно к производству электролитического кремния в виде нановолокон или микроволокон с использованием сырья - диоксида кремния, который подвергается электролизу в хлоридно-фторидном расплаве солей.

Известны способы получения волокнистых наноразмерных (микроразмерных) кремниевых структур из паровой фазы по ПЖК-механизму («пар-жидкость-твердое тело»), когда на поверхности подложки формируются нанокапли сплава кремния с инициирующими металлами (Au, Ag, Cu, Pt, Pd, Ni). При пересыщении сплава по кремнию на поверхности подложки начинает формироваться нановолокно (микроволокно) кремния того же диаметра, что и капля сплава. Наноразмерная (микроразмерная) капля сплава кремния с инициирующим металлом остается на вершине кремниевого нановолокна и поглощает кремний из газовой фазы. [Гиваргизов Е.И. / Рост нитевидных и пластинчатых кристаллов из пара. / Наука, М, 1977, 304 с.].

Известен хлоридный процесс, то есть взаимодействие SiCl4+H2, идущий в температурном диапазоне 900-1050°С [Вагнер Р.С. / в сб. «Монокристаллические волокна и армированные ими материалы», М., «Мир», 1973, с.42].

Известен метод переноса кремния в ампуле с помощью йода (брома), когда источник нагревается до 1100-1200°C, а подложка до 850-1000°C [Сандулова А.В., Богоявленский А.С., Дронюк М.И. / Доклады АН СССР 153, 82 (1963)].

Разработан метод получения нановолокон кремния напылением в вакууме, идущий в интервале температур 500-1000°C [K.Ishiwatari, T.Oka, K.Akiyama / Japan J Apple Phys 6, 1170 (1967)].

Сообщается о получении нановолокон кремния разложением SiH4 в интервале температур 550-900°C [G.A.Bootsma, H.G.Gassen / J. Crystal growth 10, 223 (1971); Majumdar A et al. / Патент США №7569941 от 04.08.2009].

Вышеуказанные методы получения нановолокон (или микроволокон) кремния имеют сложное аппаратурное оформление, для их организации требуются большие капитальные вложения на закупку оборудования и большие эксплуатационные расходы на его эксплуатацию.

Относительно высокие рабочие температуры (за 1000°C) вышеуказанных технологий в сочетании с использованием в процессах химически агрессивных галогенсодержащих газов-носителей кремния, а также необходимость создания в ряде случаев глубокого вакуума предъявляет высокие требования (по качеству и стоимости) к конструкционным материалам, которые можно использовать в установках для эксплуатации вышеуказанных технологий. В конечном итоге это приводит к увеличению себестоимости полученной продукции - нановолокон кремния.

Кроме того, во всех вышеуказанных технологиях получения нановолокон Si используются токсичные кремнийсодержащие газы, которые представляют опасность для окружающей среды. Следовательно, необходимо предусматривать меры (а значит - увеличивать энергозатраты) по предотвращению попадания токсичных веществ в окружающее пространство.

Наконец использование благородных металлов активаторов, в том числе: золота, платины, палладия и др., ведет к неизбежным потерям этих металлов в ходе длительной эксплуатации.

В целом существующие на данный момент технологии получения нановолокон кремния имеют большие удельные энергозатраты на производство одного килограмма элементарного кремния, что, безусловно, увеличивает себестоимость его производства.

При получении тугоплавких металлов и неметаллов существенный выигрыш в затратах энергии на единицу массы при сохранении требуемой чистоты и качества по сравнению с другими металлургическими технологиями дает электролиз из расплавов солей, содержащих растворенный оксид получаемого металла или неметалла. Однако электролитический способ получения нановолокон (или микроволокон) кремния с использованием в качестве сырья оксида кремния не известен. Высокочистый оксид кремния встречается как в природных месторождениях, так и является побочным продуктом переработки ряда видов минерального сырья и его (SiO2) себестоимость относительно низка.

Задача настоящего изобретения заключается в разработке электролитического метода получения кремния нановолокнистой или микроволокнистой структуры с более низкими затратами на оборудование, материалы, электрическую и тепловую энергию.

Поставленная задача решена тем, что в заявляемом способе получения нано- или микрооволокон кремния электролизом диоксида кремния из расплавов солей процесс электролиза SiO2 ведут в расплаве LiF (0÷3) - KCl (10÷50) - KF (5÷50) - K2SiF6 (5÷45) - SiO2 (2÷5). мас.% при температуре 650÷800°C и катодной плотности тока 0,005-1,5 А/см2 с последующим отделением осадка кремния от поверхности катода-подложки и электролита.

При этом способ характеризуется тем, в качестве катода-подложки используют графит, серебро или другие инертные по отношению к кремнию (при условиях электролиза) материалы. В качестве материала, содержащего кремний, используют диоксид кремния, полученный при переработке серпентинита или из отходов кварцевого стекла.

Заявляемый способ можно охарактеризовать как электролитический способ получения нановолокнистых (или микроволокнистых) осадков кремния, в котором в качестве электролита используется оксидно-фторидно-хлоридный расплав солей. Температурный интервал, а также интервал катодных плотностей тока, при которых ведут процесс, является оптимальным для электролитического выделения кристаллических нановолокнистых (или микроволокнистых) электролитических осадков элементарного Si. Нижние и верхние пределы технических параметров заявляемого способа были получены экспериментальным путем на основе опытных исследований и анализа результатов экспериментов.

Предлагаемый способ предполагает извлечение из ванны катодного осадка вместе с катодом, что обеспечивает возможность электролитического получения наноструктурных (или микроструктурных) волокон кремния при отсутствии непосредственного контакта поверхности фазы элементарного кремния с газовой фазой над расплавом при повышенной температуре в ходе процесса электролиза. Как результат окисление поверхности кремния при температуре электролиза остаточными окислителями из атмосферы затрудняется, что способствует получению нановолокон (или микроволокон) кремния высокого качества. Предлагаемый способ электролиза не требует организации инертной атмосферы над расплавом, что упрощает и удешевляет конструкцию и эксплуатацию электролизера для получения нановолокон (микроволокон) кремния из оксидно-хлоридно-фторидного расплава. Необходимость в вакуумной системе в конструкции электролизера отпадает.

Техническим результатом заявленного способа является получение нановолокнистого (или микроволокнистого) кремния высокого качества и с требуемой волокнистой структурой, при относительно простом аппаратурном оформлении процесса.

Пример 1. Электролиз проводили в расплаве, состоящем из 37,8 мас.% хлорида калия, 30,9 мас.% фторида калия и 31,3 мас.% гексафторсиликата калия с добавлением 3 мас.% SiO2 (тонкодисперсный осажденный кремнезем производства ОАО «Асбестовский магниевый завод») на графитовых катодах-подложках, с катодной плотностью тока 0,025÷0,25 А/см2 при температурах 700÷750°C. Осадок механически отделяли от поверхности катода-подложки и отмывали от электролита. Выделившийся на катоде осадок имеет вид прямолинейных цилиндрических волокон диаметром от 100 до 300 нм и длиной до 40 мкм.

Пример 2. Электролиз проводили в расплаве, состоящем из 38,7 мас.% хлорида калия, 24,6 мас.% фторида калия и 35,7 мас.% гексафторсиликата калия с добавлением 3 мас.% SiO2 (тонкодисперсный осажденный кремнезем производства ОАО «Асбестовский магниевый завод») на графитовых электродах-подложках. Катодную плотностью тока варьировали от 0,02 до 0,03 А/см2. Температуру процесса поддерживали 750÷800°C. Осадок механически отделяли от поверхности катода-подложки и отмывали от электролита. Выделившийся на катоде осадок состоял из волокон кремния диаметром от 300 до 1000 нм и длиной до 1 мкм в зависимости от условий процесса.

Пример 3. Электролиз проводили в расплаве, состоящем из 2,5 мас.% фторида лития, 42,4 мас.% хлорида калия, 36,6 мас.% фторида калия и 18,5 мас.% гексафторсиликата калия с добавлением 3 мас.% SiO2 (тонкодисперсный осажденный кремнезем производства ОАО «Асбестовский магниевый завод») на графитовых электродах-подложках. Катодная плотность тока 0,015 А/см2. Температуру процесса поддерживали 650÷700°C. Осадок механически отделяли от поверхности катода-подложки и отмывали от электролита. Выделившийся на катоде осадок состоял из волокон кремния диаметром от 50 до 500 нм и длиной до 100 мкм в зависимости от условий процесса.

Пример 4. Электролиз проводили в расплаве, состоящем из 44,8 мас.% хлорида калия, 28,5 мас.% фторида калия и 26,7 мас.% гексафторсиликата калия с добавлением 2 мас.% SiO2 (тонкодисперсный осажденный кремнезем производства ОАО «Асбестовский магниевый завод») на серебряных электродах-подложках. Катодная плотность тока 0,020 А/см2. Температуру процесса поддерживали 650÷700°C. Осадок механически отделяли от поверхности катода-подложки и отмывали от электролита. Выделившийся на катоде осадок состоял из волокон кремния диаметром от 300 до 500 нм и длиной до 10 мкм в зависимости от условий процесса.

Пример 5. Электролиз проводили в расплаве, состоящем из 47,4 мас.% хлорида калия, 35.1 мас.% фторида калия и 17.5 мас.% гексафторсиликата калия с добавлением 3.5 мас.% SiO2 (лом кварцевого стекла) на графитовых электродах-подложках. Катодная плотность тока 1,5 А/см2. Температуру процесса поддерживали 650÷750°C. Осадок механически отделяли от поверхности катода-подложки и отмывали от электролита. Выделившийся на катоде осадок состоял из волокон кремния диаметром от 300 до 500 нм и длиной до 10 мкм в зависимости от условий процесса.

Таким образом, приведенные данные подтверждают, что совокупность заявленных признаков способа позволяет получать электролитические микро- или нановолокна кремния, которые характеризуются содержанием основного компонента (кремния) >99,9 мас.%.

Источник поступления информации: Роспатент

Показаны записи 1-9 из 9.
10.02.2013
№216.012.24d3

Электрохимический генератор на твердооксидных топливных элементах

Изобретение относится к устройствам для прямого преобразования химической энергии топлива в электрическую с использованием твердооксидных топливных элементов (ТОТЭ). Электрохимический генератор на твердооксидных топливных элементах содержит корпус, камеру смешения метана и воздуха, камеру...
Тип: Изобретение
Номер охранного документа: 0002474929
Дата охранного документа: 10.02.2013
27.05.2013
№216.012.4539

Твердоэлектролитный датчик для амперометрического измерения концентрации водорода и кислорода в газовых смесях

Изобретение относится к аналитической технике, в частности к твердо-электролитным датчикам для анализа газовых сред. Твердоэлектролитный датчик для амперометрического измерения концентрации водорода и кислорода в газовых смесях содержит диск из твердого электролита с кислородной проводимостью,...
Тип: Изобретение
Номер охранного документа: 0002483298
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.453a

Твердоэлектролитный датчик для амперометрического измерения концентрации водорода в газовых смесях

Изобретение относится к аналитической технике, в частности к твердоэлектролитным датчикам для анализа газовых сред. Твердоэлектролитный датчик для амперометрического измерения концентрации водорода в газовых смесях содержит два электрода, нанесенные на противоположные поверхности одного из...
Тип: Изобретение
Номер охранного документа: 0002483299
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.453b

Твердоэлектролитный датчик для амперометрического измерения влажности газовых смесей

Изобретение относится к аналитической технике, в частности к датчикам для анализа газовых сред. Твердоэлектролитный датчик для амперометрического измерения влажности газовых смесей содержит диск из твердого электролита с кислородной проводимостью с двумя электродами - наружным и внутренним,...
Тип: Изобретение
Номер охранного документа: 0002483300
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.459d

Твердый электролит с литий-ионной проводимостью

Изобретение относится к области электротехники, а именно к твердым электролитам с проводимостью по катионам лития. Технический результат заключается в снижении температуры и времени обработки литийсодержащего материала при достижении высокой ионной проводимости твердого электролита при...
Тип: Изобретение
Номер охранного документа: 0002483398
Дата охранного документа: 27.05.2013
10.07.2013
№216.012.545c

Способ электролитического получения свинца

Изобретение относится к цветной металлургии, в частности к получению свинца электролитическим способом. Способ включает электролитическое рафинирование свинца в расплаве галогенидов солей с использованием жидкометаллических катода и анода. При этом процесс электролиза ведут с применением одного...
Тип: Изобретение
Номер охранного документа: 0002487199
Дата охранного документа: 10.07.2013
10.04.2019
№219.017.068b

Способ получения высоко- и нанодисперсного порошка металлов или сплавов

Изобретение относится к области электрохимического получения металлических порошков из расплавленных солей, в частности для получения высоко- и нанодисперсных порошков металлов и сплавов. Порошки металлов и их сплавов получают путем электрохимического растворения металлических анодов. Осаждение...
Тип: Изобретение
Номер охранного документа: 0002423557
Дата охранного документа: 10.07.2011
09.06.2019
№219.017.7e1f

Инертный анод для электролитического получения металлов

Изобретение относится к области цветной металлургии и электролитическому получению металлов и может быть использовано при получении алюминия электролизом криолит-глиноземного расплава с применением инертных анодов. Инертный анод содержит металлическую фазу и керамическую фазу, включающую оксид...
Тип: Изобретение
Номер охранного документа: 0002401324
Дата охранного документа: 10.10.2010
09.06.2019
№219.017.7e28

Способ получения алюминиевых сплавов электролизом

Изобретение относится к цветной металлургии, в частности для получения сплавов на основе алюминия электрохимическим способом. Способ включает введение в расплавленный алюминий катода легирующих элементов из малорастворимого анода путем растворения его в калиевом криолит-глиноземном расплаве,...
Тип: Изобретение
Номер охранного документа: 0002401327
Дата охранного документа: 10.10.2010
Показаны записи 1-10 из 59.
10.02.2013
№216.012.24d3

Электрохимический генератор на твердооксидных топливных элементах

Изобретение относится к устройствам для прямого преобразования химической энергии топлива в электрическую с использованием твердооксидных топливных элементов (ТОТЭ). Электрохимический генератор на твердооксидных топливных элементах содержит корпус, камеру смешения метана и воздуха, камеру...
Тип: Изобретение
Номер охранного документа: 0002474929
Дата охранного документа: 10.02.2013
27.06.2013
№216.012.50d9

Способ получения нано- и микроструктурных порошков и/или волокон кристаллического и/или рентгеноаморфного кремния

Изобретение относится к области металлургии неметаллов, а именно к производству электролитического кристаллического и/или рентгеноаморфного кремния в виде нано- и микроструктурных порошков и/или волокон. Способ включает электролитическое растворение по меньшей мере одного выполненного из...
Тип: Изобретение
Номер охранного документа: 0002486290
Дата охранного документа: 27.06.2013
10.07.2013
№216.012.545c

Способ электролитического получения свинца

Изобретение относится к цветной металлургии, в частности к получению свинца электролитическим способом. Способ включает электролитическое рафинирование свинца в расплаве галогенидов солей с использованием жидкометаллических катода и анода. При этом процесс электролиза ведут с применением одного...
Тип: Изобретение
Номер охранного документа: 0002487199
Дата охранного документа: 10.07.2013
27.08.2013
№216.012.6489

Электрохимический способ получения сплошных слоев кремния

Способ может быть использован в фотонике, полупроводниковой технике, а также для производства солнечных батарей. Сплошные слои кремния получают электролизом гексафторсиликата калия (KSiF) в расплаве следующего состава, мас.%: КСl (15÷50) - KF (5÷50) - (10÷35) KSiF. Электролиз ведут при...
Тип: Изобретение
Номер охранного документа: 0002491374
Дата охранного документа: 27.08.2013
27.12.2013
№216.012.9256

Нагревательный блок и способ его изготовления

Изобретение относится к области электротехники, а именно к производству монолитных металлокерамических нагревательных элементов электрического, в частности резистивного, нагрева. Нагревательный блок содержит трубу из огнеупорного материала, резистивный металлокерамический нагреватель,...
Тип: Изобретение
Номер охранного документа: 0002503155
Дата охранного документа: 27.12.2013
27.05.2014
№216.012.c87c

Электрохимический способ получения металлов и/или сплавов из малорастворимых и нерастворимых соединений

Изобретение относится к электрохимическому способу получения металлов, за исключением щелочных и щелочно-земельных, и/или сплавов металлов. Способ включает восстановление металлов и/или сплавов в кальцийсодержащем оксидно-галогенидном расплаве из соединений получаемых металлов и/или из смесей...
Тип: Изобретение
Номер охранного документа: 0002517090
Дата охранного документа: 27.05.2014
20.07.2014
№216.012.df2e

Электролизер для тонкослойного электролитического рафинирования металлического свинца

Изобретение относится к тонкослойному рафинированию легкоплавких цветных металлов, в частности сортового свинца. Электролизер для тонкослойного электролитического рафинирования металлического свинца содержит вертикально помещенную в корпус электролизера пористую керамическую диафрагму,...
Тип: Изобретение
Номер охранного документа: 0002522920
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e1a4

Композитный электродный материал для электрохимических устройств

Изобретение относится к области катализа, а именно каталитическим активным пористым композитным материалам, которые могут быть использованы в качестве несущих электродов электрохимических устройств для получения водорода и/или кислорода либо высоко- и среднетемпературных твердооксидных...
Тип: Изобретение
Номер охранного документа: 0002523550
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.e957

Способ получения нановискерных структур оксидных вольфрамовых бронз на угольном материале

Изобретение относится к способу получения нановискерных структур оксидных вольфрамовых бронз на угольном материале, в котором электролиз ведут в импульсном потенциостатическом режиме при перенапряжении 300 мВ в расплаве, содержащем 30 мол. % KWO, 25 мол. % LiWO и 45 мол. % WO, с использованием...
Тип: Изобретение
Номер охранного документа: 0002525543
Дата охранного документа: 20.08.2014
10.01.2015
№216.013.1832

Состав шихты для изготовления оксидно-металлического инертного анода

Изобретение может быть использовано при изготовлении композиционного оксидно-металлического инертного кислородвыделяющего анода для электролитического получения металлов, в частности, алюминия. Состав шихты для изготовления указанного анода включает смесь оксидной и металлической составляющих,...
Тип: Изобретение
Номер охранного документа: 0002537622
Дата охранного документа: 10.01.2015
+ добавить свой РИД