×
20.06.2013
216.012.4b90

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВЫХ МАГНИТНЫХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к порошковой металлургии, а именно к обработке металлических порошков, предназначенных для изготовления композитных изделий и покрытий, работающих в высокочастотных (ВЧ) и сверхвысокочастотных (СВЧ) диапазонах. Предложен способ получения порошкового магнитного материала на основе карбонильного железа, включающий приготовление смеси порошков карбонильного железа и кобальта, размол смеси порошков в две стадии. На первой стадии ведут размол смеси порошков карбонильного железа и кобальта до полного вредрения атомов кобальта в кристаллическую решетку α-железа в инертной газовой среде. На второй стадии ведут размол порошка в инертной жидкой среде до получения порошкового магнитного материала с удельной поверхностью от 0,2-4,0 м/г. В качестве порошка кобальта может быть использован порошок электролитического кобальта. Доля кобальта в смеси порошков, подвергаемых размолу в инертной среде, может составлять 0,1-24 мас.%. Изобретение направлено на увеличение скорости легирования железа и расширение спектра технологических возможностей для получения ферромагнитных порошков с различными структурными характеристиками и магнитными свойствами. 1 з.п. ф-лы, 2 ил., 1 табл., 3 пр.

Изобретение относится к технологии порошковой металлургии, специальной обработке металлических порошков, предназначенных для изготовления композитных изделий и покрытий, работающих в высокочастотных (ВЧ) и сверхвысокочастотных (СВЧ) диапазонах, для улучшения их свойств путем измельчения или размола.

Предлагаемый способ может быть использован в производстве композиционных материалов - поглотителей электромагнитного излучения (ЭМИ), а также материалов для изготовления средств защиты человека от сверхвысокочастотного (СВЧ) электромагнитного излучения, для повышения помехозащищенности и решения проблем электромагнитной совместимости электронных устройств, экранирования помещений, создания безэховых камер и т.п.

Уровень техники

Известен радиопоглощающий материал, содержащий порошкообразный ферромагнетик или карбонильное железо (патент RU 2107705, МПК C09D 5/32, опубл. 27.03.1998 г.) с частицами железа сферической формы.

Известен способ получения магнитных порошковых материалов, предназначенных для изготовления композитных радиопоглощающих материалов и покрытий в диапазоне сверхвысоких частот (патент RU 2236929, МПК B22F 1/00, H01F 1/20, опубл. 27.09.2004 г.). В способе, включающем размол порошка карбонильного железа в защитной среде в высокоэнергетическом размольном агрегате и последующую обработку, согласно изобретению размол проводят при удельной кинетической энергии воздействия мелющих тел на обрабатываемый материал от 65 Дж/кг до 600 Дж/кг до получения чешуйчатой формы частиц порошка с удельной поверхностью не менее 1,4 м2/г. При изготовлении из них композитов, содержащих размолотый порошок карбонильного железа, величина тангенса сверхвысокочастотных магнитных потерь может превышать 1,0.

Наиболее близким к предлагаемому является способ получения магнитных порошковых материалов, в котором порошки карбонильного железа и электролитического кобальта подвергают размолу в высокоэнергетическом размольном устройстве в жидкой среде спиртов (патент RU 2348997, МПК H01F 1/20, B22F 1/00, С22С 33/02, опубл. 10.03.2009 г.). Соотношение жидкость: порошок не ниже 1:1,5. При этом получают порошковый материал с удельной поверхностью 0,2÷4,0 м2/г и величиной тангенса магнитных потерь более 1,0 в диапазоне частот свыше 1,5 ГГц. После размола проводят сушку порошка при температуре менее 80°С.

Полученный материал обладает высокими магнитными потерями в СВЧ-диапазоне, обеспечивает высокую эффективность поглощения ЭМИ, позволяет снизить толщину покрытия, предназначенного для защиты от СВЧ-излучений.

Недостаток известного способа - сравнительно невысокая скорость замещения атомов Fe атомами легирующего компонента в решетке α-Fe твердого раствора при совместном размоле порошков карбонильного железа и кобальта в сравнении со скоростью самого размола в жидкой среде. Для сплавов с относительно высоким содержанием легирующего компонента (свыше ~8 мас.%) принципиально невозможна диффузия всех атомов легирующего металла в решетку железа, если оптимальное время размола составляет величину менее 1,5÷2,0 часов. Исходная бинарная смесь порошков останется либо смесью с неоднородным фазовым составом, когда частицы на основе твердого раствора α-Fe соседствуют с частицами порошка легирующего компонента, либо осуществляется «перемол» порошков за время свыше 1,5÷2 часов (время приводится при условии применения измельчителя - аттритора объемом 12 л, числом оборотов 400 1/мин, мощностью 3 кВт).

Для целого ряда практических целей применения магнитных порошковых материалов основной задачей является получение гомогенного дисперсного сплава (например, Fe-Co) с относительно высоким содержанием легирующего компонента и оптимальными макроструктурными характеристиками (насыпной плотностью и удельной поверхностью, определенными размерами частиц и размерами блочной структуры). При одностадийном размоле в жидкой среде достижение результата не всегда возможно.

В ряде случаев применения магнитных порошков требуется получение композиционных магнитодиэлектрических материалов (КММ) с относительно малыми значениями тангенса угла магнитных потерь на отдельных участках СВЧ-диапазона. КММ представляют собой полимерную матрицу с наполнителем из ферромагнитного порошка. Но использование порошков, полученных при одностадийном размоле, зачастую приводит к получению КММ с неоправданно высокими значениями тангенса угла магнитных потерь.

Техническая задача, на решение которой направлено изобретение, - упрощение аппаратного обеспечения способа, увеличение скорости легирования железа и расширение спектра технологических возможностей для получения ферромагнитных порошков с различными структурными характеристиками и магнитными свойствами в целях обеспечения способности варьирования магнитных характеристик КММ в широком частотном диапазоне.

Сущность предложения

Решение поставленной технической задачи достигается путем проведения предварительного этапа «сухого» совместного «размола» порошка железа и порошка легирующего компонента - кобальта в аттриторной высокоэнергетической мельнице.

Согласно предложения способ получения магнитных порошковых материалов на основе карбонильного железа включает приготовление смеси порошков определенного состава, создание инертной среды и механохимический размол смеси порошков карбонильного железа до гомогенно-распределенного легирующего элемента в кристаллической решетке α-железа, согласно предложения осуществляют размол в две стадии сначала в среде инертного газа, а затем в среде химически инертной жидкости до получения порошков с удельной поверхностью до 0,2÷4,0 м2/г.

При этом в случае использования в качестве порошка легирующего элемента порошка электролитического кобальта смесь подвергают совместному размолу в среде инертного газа до достижения доли гомогенно-распределенного легирующего элемента 0,1÷24 мас.%. Качество размола определяют на стадии отработки режимов размола смесей порошков определенного состава путем периодического взятия проб и измерения доли гомогенно-распределенного легирующего элемента методами рентгеноструктурного и рентгеновского фазового анализа (определяется фазовый состав получаемых порошков и размеры блочной структуры твердой фазы) и удельной поверхности порошков по методу БЭТ - низкотемпературной адсорбции инертных газов.

После окончания размола проводят вакуумную сушку порошка при давлении менее 10-2 мм рт.ст. и температуре не выше 80°С.

Наши исследования показали, что при диаметре частиц железа 1-6 мкм размер частиц исходного порошка карбонильного железа марки Р10 в процессе «размола» порошков без жидкости происходит практически полное внедрение кобальта в решетку железа в количестве до 24 мас.% за время обработки не более 2,0 часов.

Если включить такой этап «сухого» размола в механохимический цикл изготовления магнитных порошков на основе легированного железа по известному способу, то поставленные выше цели легирования железа и модифицирования его структуры могут быть достигнуты в два этапа непосредственно в мельнице (аттриторе) без привлечения дополнительного технологического оборудования и без изменений дальнейших этапов получения материала - его последующего размола в жидкой среде, сушки, грануляции и расфасовки готового порошка-ферромагнетика.

Продолжительность механохимической обработки смеси порошков «железо-легирующий металл» в среде инертного газа (азота, аргона и т.п.) определяется составом смеси (количеством кобальта или другого легирующего элемента), а также энергонапряженностью мельницы. Если сухой размол проводить в заявленном диапазоне энергонапряженности 200÷500 Дж/кг, то время практически полного внедрения кобальта в кристаллическую решетку железа составит величину от 0,1 до 2,0 часов.

В предложенном способе возможно и дальнейшее увеличение содержания легирующего компонента, а также легирование несколькими элементами, что, как это очевидно, не вызовет необходимость более чем 3-часового сухого размола, так как рост числа легирующих частиц в массе порошка будет увеличивать их обязательное участие в каждом соударении размольных тел, т.е. увеличивать скорость процесса легирования.

Сведения, подтверждающие возможность осуществления предложения

Изобретение иллюстрируется примерами осуществления способа, количественным описанием состава порошка, режимов размола и результатами измерения характеристик магнитных порошковых материалов.

Фиг.1 - Изменение удельной поверхности в зависимости от времени размола в жидкой среде следующих материалов: 1 - порошок карбонильного железа; 2 - смесь порошков карбонильного железа и электролитического кобальта (содержание Со в смеси 4 мас.%); 3 - смесь порошков карбонильного железа и электролитического кобальта (содержание Со в смеси 8 мас.%).

Фиг.2 - Изменение химического состава порошков системы Fe-Co (содержания Со в «свободном» состоянии) в зависимости от времени размола в разных средах: 4 - сухой размол смеси порошков карбонильного железа и электролитического кобальта (содержание Со в смеси 4 мас.%); 5 - размол в среде этилового спирта смеси порошков карбонильного железа и электролитического кобальта (содержание Со в смеси 4 мас.%); 6 - сухой размол смеси порошков карбонильного железа и электролитического кобальта (содержание Со в смеси 8 мас.%); 7 - размол в среде этилового спирта смеси порошков карбонильного железа и электролитического кобальта (содержание Со в смеси 8 мас.%)

По данным рентгеновского фазового анализа процесс внедрения атомов Со в кристаллическую решетку α-Fe по механизму замещения атомов железа в кубической объемно-центрированной ячейке на атомы кобальта определяется заданным (необходимым) содержанием атомов Со (табл.1).

Таблица 1.
Зависимость времени полного (100%) внедрения атомов Со в кристаллическую решетку α-Fe по механизму замещения атомов железа в кубической объемноцентрированной решетке на атомы кобальта.
Содержание Со, мас.% Время сухого размола* в атмосфере азота
2,0 0,15
4,0 0,7
8,0 1,5
12 1,7
18 1,9
24 2,0
* - число оборотов (1/мин) - 350÷400.

Кинетика размола и кинетика внедрения атомов кобальта в решетку железа представлены на фиг.1. Экспериментальные данные позволяют в полном объеме рассчитать временные интервалы отдельных стадий процесса механо-химического получения дисперсных ферромагнетиков сложного состава на основе карбонильного железа. Кроме того, очевидно, что реализовав выбранный состав на первом этапе сухого размола, можно реализовать весь спектр микро- и макроструктур порошков именно для данного состава на втором этапе обработки порошков.

Размолу подвергаются серийные порошки карбонильного железа марок Р-10, Р-20 и, при необходимости, Р-100, а в качестве легирующего компонента используют серийные электролитические порошки кобальта марки Со-0.

Соотношение масс порошка и размольных шаров для обеих стадий лежит в диапазоне величин 1/10-1/8 (стандартная загрузка шаровых мельниц и аттриторов), а соотношение массы порошка к массе жидкости на стадии жидкостного размола ~1/1,5.

Так же как и в случае размола в жидкой среде по известному способу, формирование бинарного сплава Fe-Co на стадии сухого размола приводит к измельчению первичных кристаллитов α-Fe от размера 38÷40 нм (в исходном карбонильном железе) до 5÷7 нм в сплавах с содержанием кобальта более 10÷12%.

Рост протяженности малоугловых границ и, соответственно, напряжений в матрице твердого раствора (в частицах сплава) способствует увеличению их хрупкости и, соответственно, росту кинетики жидкофазного размола. Близкими остаются размеры частиц размолотых сплавов и величины удельной поверхности получаемых материалов. В пределе, размол идет до значений удельной поверхности порошка 3,5÷4,0 м2/г.

Таким образом, совместный размол карбонильного железа и кобальта проводят путем воздействия размольных тел (например, шаров из стали ШХ-15 диаметром от 3 до 10 мм) с высокой кинетической энергией от 200 до 500 Дж/кг на обрабатываемый материал в две стадии: сухой размол в атмосфере инертного газа, для достижения определенного уровня гомогенности по составу, и размола в жидкой среде, для достижения нужного уровня дисперсности при заданном составе.

Продолжительность первичной стадии сухого размола выбирается в зависимости от состава порошка (табл.1). По окончании стадии сухого размола в аттритор заливают жидкость (этиловый или изопропиловый спирт, уайт-спирит или другую, нейтральную по своим химическим свойствам к железу и легирующим компонентам, жидкость, можно с ПАВ). После размола в жидкости, продолжительность которого выбирается исходя из данных фиг.1, осуществляется декантация спирта. Влажный порошок подвергается сушке в вакууме (10-1÷10-2 мм рт.ст.) при температурах 75÷80°С и просеиванию через сита с размером ячеек 80÷250 мкм. Сушка проводится при температурах менее 80°С во избежание эффектов самовозгорания в конце процесса сушки из-за высокой пирофорности железа и возможного вскипания жидкости в вакууме. Пирофорность особенно касается порошков с поверхностью более 2,0 м2/г.

При размоле в жидкой среде происходит изменение размера и формы частиц сформированного ранее α-Fe твердого раствора, а также внедрение остатков кобальта в его решетку. Эффективности указанного процесса на обеих стадиях размола способствует полная взаимная растворимость компонентов (атомов Fe и Со), обуславливающая образование твердых растворов замещения при близких значениях ионных радиусов рассматриваемых металлов и локальное (при соударении шаров) повышение температуры металлов до 500°С и более.

Важнейшим техническим результатом предложения является оптимизация сверхвысокочастотных магнитных потерь, характеризующих получаемый магнитный порошок на основе карбонильного железа и электролитического кобальта.

При этом значительно расширяется технологический и исследовательский диапазон составов для разработки и создания новых высоколегированных дисперсных ферромагнетиков, как это осуществляется, например, в металлургии сплавных ферромагнитных компактных материалов, а также расширяются возможности механохимического способа получения порошков конкретной системы железо-кобальт.

В отличие от известного способа, введение стадии сухого размола делает значимой газовую среду в мельнице на первой стадии процесса, так как определенный эффект обновления поверхности даже малодисперсных порошков исходного железа и кобальта с удельной поверхностью порядка 0,2 м2/г, при их сухой «обкатке» шарами, требует исключить контакт частиц металлов с кислородом воздуха.

Способ осуществляют следующим образом.

Аттритор или шаровую планетарную мельницу загружают стальными шарами и порошком карбонильного железа (марки Р10 или Р20, как правило) в соотношении массы порошка к массе шаров в пределах от 1/8 до 1/10. Добавляют порошок кобальта (марка Со 0) в количестве 0,1÷24 мас.%.

Размольный стакан или емкость аттритора продувают, например, техническим азотом (либо аргоном или другим инертным газом) в соотношении объемов 8÷10 к 1 и герметично закрывают. Включается охлаждение и размол в инертной среде, время которого выбирается исходя из состава порошка от 0,1 до 2,0 часов.

По окончании сухого размола аппарат разгерметизируют.

Заливают жидкость (например, этиловый технический спирт или изопропиловый спирт) в количестве 1/1 или 1,5/1 в соотношениях масс жидкость/порошок. Аппарат снова герметизируют, продувают азотом и включают двигатель для второй стадии размола - размола в жидкости.

В зависимости от состава порошка и степени размола выбирается время механохимической обработки в жидкости при определенном числе оборотов двигателя.

По истечении заданного времени процесса размола и образования оптимального по структуре порошка мельницу разгружают с отделением (на грубой сетке) шаров и пульпы. Промывают шары, сливая пульпу в ту же емкость.

Затем суспензию отстаивают в течение 1,5÷2,5 часов, спирт декантируют для повторного использования. Влажный порошок раскладывают на поддоны из нержавеющей стали слоем толщиной не более 1,5 см и помещают в вакуумный сушильный шкаф (вакуум 10-1÷10-2 мм рт.ст.), в котором высушивают при температурах не выше 80°С до полного удаления жидкости. Спирт в процессе сушки конденсируют и также возвращают в технологический цикл. Высушенный порошок принудительно просеивают через металлическое сито с размером ячеек 80÷250 мкм на вибрационной установке, взвешивают и упаковывают в герметичную металлическую тару или полиэтиленовые мешки.

У полученного материала измеряют насыпную плотность (волюмометром) и производят определение удельной поверхности по методу БЭТ - низкотемпературной адсорбции инертных газов (оба метода стандартизированы).

Выборочно, методами рентгеноструктурного и рентгеновского фазового анализа, определяется фазовый состав получаемых порошков и размеры блочной структуры твердой фазы. При этом размер блочной структуры - первичных кристаллитов железа - должен составлять величину порядка 5,0÷40,0 нм, а фазовый состав получаемых материалов отвечать α-Fe (твердому раствору кобальта в железе).

Выборочно, на растровом электронном микроскопе, анализируются изменения структуры частиц порошков при увеличениях от ×1000 до ×6000.

Измерение значений СВЧ магнитных потерь в контрольных образцах композитов из порошка и полимерной матрицы (КММ) (количество порошка до 30-35% объемных) проводят по методике, изложенной в опубликованных работах (например, Liszi I, Domankos I, Szabo I, Acta Chem. Acad. Sci. Hung.,79, 3, 323-330 (1973); Hannely L, Lopes A, Salello S, Chem. Eng. Data, 28, 2, 169 (1983), Hannai T, Kouzumi N, Gotoh R, Nippon Kagaku Zasshi, 80, 17 (1959), с использованием векторных анализаторов цепей типа HP 8510 или измерителей комплексных коэффициентов передачи типа Р4-53.

Изобретение иллюстрируется следующими примерами

Пример 1. Получают магнитный порошковый материал на основе карбонильного железа и кобальта. В аттритор емкостью 12 л, предварительно загруженный размольным шарами диаметром 6 мм в количестве 15 кг, загружают порошок карбонильного железа марки Р-10 в количестве 1,5 кг (форма частиц сферическая) и 62,5 г порошкообразного кобальта марки Со 0 (из расчета 4,0 мас.%), продувают техническим азотом в количестве 100 л, герметизируют размольную емкость аттритора и включают охлаждение (проточная вода в рубашке аттритора). Включают ротор ворошителя на 400 1/мин. Проводят размол смеси порошков железо-кобальт в течение 0,5 часа.

Разгерметизируют емкость аттритора и заливают в нее 1,8 л этилового спирта. Аппарат снова герметизируют и проводят размол в спирте в течение 1,0 часа при 400 об/мин ротора с постоянным охлаждением помольной камеры проточной водой.

По окончании размола аттритор разгружают; суспензию порошок/спирт отстаивают, спирт декантируют, а влажный порошок, разложенный на стальные поддоны слоем толщиной около 10 мм, высушивают при температуре 75÷80°С в вакууме.

После сушки магнитный порошковый материал просеивают на вибрационном грохоте через металлическое сито с размером ячейки 125 мкм, взвешивают и упаковывают в полиэтиленовые мешки.

Проводят контроль насыпной массы полученного магнитного порошкового материала и его удельной поверхности. Анализируют фазовый состав порошка и его структурные характеристики. Размер блочной структуры 13,0÷15,0 нм.

Анализ формы и размеров полученных частиц бинарного сплава выборочно проводят на электронном растровом микроскопе.

Для определения магнитных потерь изготавливают контрольные образцы композита с содержанием порошка Fe-Co 30÷35% объемных.

Удельная поверхность магнитного порошкового материала составляет 1,5 м2/г, а насыпная масса 1,3 г/см3.

У 65% частиц форма чешуйчатая, а у 35% - сферическая (не размолотые частицы). Много мелких частиц с размерами не более одного микрона.

Тангенс СВЧ магнитных потерь в частотном диапазоне 1,5÷2 ГГц составил в среднем 0,25.

Пример 2. Получают магнитный порошковый материал на основе карбонильного железа и кобальта по примеру 1. В аттритор емкостью 12 л, предварительно загруженный размольными шарами диаметром 6 мм в количестве 15 кг, загружают порошок карбонильного железа марки Р-10 в количестве 1,5 кг (форма частиц сферическая) и 130,4 г порошкообразного кобальта марки Со 0 (из расчета 8,0 мас.%), продувают техническим азотом в количестве 100 л, герметизируют размольную емкость аттритора и включают охлаждение (проточная вода в рубашке аттритора). Включают ротор ворошителя на 400 1/мин. Проводят размол смеси порошков железо-кобальт в течение 0,7 часа.

Разгерметизируют емкость аттритора и заливают в нее 1,8 л этилового спирта. Аппарат снова герметизируют и проводят размол в спирте в течение 1,0 часа при 400 об/мин ротора с постоянным охлаждением помольной камеры проточной водой.

По окончании размола аттритор разгружают, суспензию порошок/спирт отстаивают, спирт декантируют, а влажный порошок, разложенный на стальные поддоны слоем толщиной порядка 10 мм, высушивают при температуре 75÷80°С в вакууме.

После сушки магнитный порошковый материал просеивают на вибрационном грохоте через металлическое сито с размером ячейки 125 мкм, взвешивают и упаковывают в полиэтиленовые мешки.

Проводят контроль насыпной массы полученного магнитного порошкового материала и его удельной поверхности. Анализируют фазовый состав порошка и его структурные характеристики. Размер блочной структуры 8,0÷9,0 нм.

Анализ формы и размеров полученных частиц бинарного сплава выборочно проводят на электронном растровом микроскопе.

Для определения магнитных потерь изготавливают контрольные образцы композита с содержанием порошка Fe-Co 30÷35% объемных.

Удельная поверхность магнитного порошкового материала составляет 1,3 м2/г, а насыпная масса 1,1 г/см3.

У 65% частиц форма чешуйчатая, а у 35% - сферическая (не размолотые частицы). Много мелких частиц с размерами не более одного микрона.

Тангенс СВЧ магнитных потерь в частотном диапазоне 1,5÷2 ГГц составил в среднем 0,2. Тангенс СВЧ магнитных потерь в частотном диапазоне 7,0÷8,0 ГТц составил в среднем 0,8.

Пример 3. Получают магнитный порошковый материал на основе карбонильного железа и кобальта по примеру 1. При содержании кобальта 12 мас.% Размол в азоте продолжается 1,5 часа, а размол в среде этилового спирта при 550 об/мин в течение 1,0 часа.

Полученный магнитный порошковый материал имеет удельную поверхность 1,9 м2/г, насыпную массу 1,32 г/см3. Количество сферических (неразмолотых) частиц - менее 25%. Размер блоков 8,0÷10,0 нм.

Тангенс СВЧ магнитных потерь в частотном диапазоне 8,0÷9,5 ГГц составил в среднем 0,95.

Как доказывают примеры, предлагаемый способ, включающий поэтапную механохимическую обработку и легирования железа, в частности - порошков системы железо-кобальт, позволяет получать гомогенные по химическому и фазовому составу высокодисперсные материалы-ферромагнетики. Способ открывает принципиальную возможность осуществлять легирование железных порошков с получением сложных составов так же, как это делается в металлургии плавлением и отливкой компактных тел и материалов.


СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВЫХ МАГНИТНЫХ МАТЕРИАЛОВ
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВЫХ МАГНИТНЫХ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 11.
20.01.2013
№216.012.1ca3

Электропроводящая краска для радиопоглощающих заполнителей

Изобретение может быть использовано для получения искусственных пленочных электропроводящих покрытий (резистов), предназначенных для изготовления радиопоглощающих заполнителей. Электропроводящая краска для радиопоглощающих заполнителей включает поливинилацетатное связующее, коллоидный графит,...
Тип: Изобретение
Номер охранного документа: 0002472825
Дата охранного документа: 20.01.2013
27.01.2013
№216.012.203d

Способ монтажа наружной стены с применением фасадных панелей

Изобретение относится к строительству, в частности к способу возведения многослойной стены здания. Технический результат: снижение трудоемкости и затрат на монтаж стен послойной сборки, исключение мокрых процессов. Способ возведения наружной стены многоэтажного здания, состоящей из внутреннего...
Тип: Изобретение
Номер охранного документа: 0002473754
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.23a6

Слоистый защитный материал

Изобретение относится к швейной промышленности и может использоваться при изготовлении швейных изделий. Волокнистый поглотитель электромагнитного излучения включает два внутренних слоя из смеси диэлектрических и электропроводящих углеродных волокон, механически скрепленных между собой...
Тип: Изобретение
Номер охранного документа: 0002474628
Дата охранного документа: 10.02.2013
27.04.2013
№216.012.3919

Способ закрытой репозиции переломов пяточной кости

Изобретение относится к медицине, в частности к травматологии. Техническим результатом является создание пространства в подтаранном суставе для эффективной ориентации в нем суставной поверхности при любом типе переломов пяточной кости, что позволяет восстановить анатомию кости. В пяточный бугор...
Тип: Изобретение
Номер охранного документа: 0002480178
Дата охранного документа: 27.04.2013
27.06.2013
№216.012.4ff3

Способ получения многослойной радиопрозрачной панели со средним слоем калиброванного пенопласта

Изобретение относится к способу получения многослойной радиопрозрачной панели из, по меньшей мере, двух слоев стеклопластика со средним газонаполненным слоем калиброванного пенопласта. Согласно способу укладывают пропитанную стеклоткань в форму, состоящую из матрицы и пуансона, повторяющих...
Тип: Изобретение
Номер охранного документа: 0002486060
Дата охранного документа: 27.06.2013
10.11.2013
№216.012.7e63

Способ возведения кирпичных стен многоэтажного жилого здания в зимних условиях

Изобретение относится к области строительных конструкций и технологии возведения зданий и сооружений. Технический результат: сокращение и удаление возможных технологических простоев, а также существенное сокращение продолжительности и стоимости строительства за счет уменьшения накладных...
Тип: Изобретение
Номер охранного документа: 0002498028
Дата охранного документа: 10.11.2013
27.12.2013
№216.012.9125

Конический ребристый купол покрытия вертикального цилиндрического резервуара

Изобретение относится к области строительства, в частности к купольным покрытиям вертикальных цилиндрических резервуаров. Технический результат изобретения заключается в снижении материалоемкости и трудоемкости изготовления и монтажа купола. Купольная крыша образована путем сопряжения двух...
Тип: Изобретение
Номер охранного документа: 0002502850
Дата охранного документа: 27.12.2013
10.06.2014
№216.012.d0e1

Углеродсодержащая композиция для радиозащитных материалов

Заявленное изобретение относится к области электротехники, а именно к составу углеродсодержащей композиции для получения радиозащитных материалов. Композиция содержит 5-16 мас.% ультрадисперсного активного углерода со средним размером частиц 5-100 нм и удельной поверхностью 16-320 м/г,...
Тип: Изобретение
Номер охранного документа: 0002519244
Дата охранного документа: 10.06.2014
10.05.2016
№216.015.3b57

Способ концентрирования изотопов азота

Изобретение относится к области технологии разделения стабильных изотопов азота N и N. Способ концентрирования изотопов азота включает проведение противоточного массообменного процесса с использованием молекулярного азота в качестве рабочего вещества, при этом газообразную смесь изотопов азота...
Тип: Изобретение
Номер охранного документа: 0002583808
Дата охранного документа: 10.05.2016
25.08.2017
№217.015.9e71

Установка очистки поверхностного стока

Изобретение относится к установке очистки поверхностного стока на очистных сооружениях ливневой канализации. Установка включает блок первичной очистки, состоящий из по меньшей мере двух унифицированных, автономно функционирующих секций 1, и блок глубокой доочистки. Каждая секция 1 содержит...
Тип: Изобретение
Номер охранного документа: 0002605983
Дата охранного документа: 10.01.2017
Показаны записи 1-10 из 15.
20.01.2013
№216.012.1ca3

Электропроводящая краска для радиопоглощающих заполнителей

Изобретение может быть использовано для получения искусственных пленочных электропроводящих покрытий (резистов), предназначенных для изготовления радиопоглощающих заполнителей. Электропроводящая краска для радиопоглощающих заполнителей включает поливинилацетатное связующее, коллоидный графит,...
Тип: Изобретение
Номер охранного документа: 0002472825
Дата охранного документа: 20.01.2013
27.01.2013
№216.012.203d

Способ монтажа наружной стены с применением фасадных панелей

Изобретение относится к строительству, в частности к способу возведения многослойной стены здания. Технический результат: снижение трудоемкости и затрат на монтаж стен послойной сборки, исключение мокрых процессов. Способ возведения наружной стены многоэтажного здания, состоящей из внутреннего...
Тип: Изобретение
Номер охранного документа: 0002473754
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.23a6

Слоистый защитный материал

Изобретение относится к швейной промышленности и может использоваться при изготовлении швейных изделий. Волокнистый поглотитель электромагнитного излучения включает два внутренних слоя из смеси диэлектрических и электропроводящих углеродных волокон, механически скрепленных между собой...
Тип: Изобретение
Номер охранного документа: 0002474628
Дата охранного документа: 10.02.2013
27.06.2013
№216.012.4ff3

Способ получения многослойной радиопрозрачной панели со средним слоем калиброванного пенопласта

Изобретение относится к способу получения многослойной радиопрозрачной панели из, по меньшей мере, двух слоев стеклопластика со средним газонаполненным слоем калиброванного пенопласта. Согласно способу укладывают пропитанную стеклоткань в форму, состоящую из матрицы и пуансона, повторяющих...
Тип: Изобретение
Номер охранного документа: 0002486060
Дата охранного документа: 27.06.2013
10.06.2014
№216.012.d0e1

Углеродсодержащая композиция для радиозащитных материалов

Заявленное изобретение относится к области электротехники, а именно к составу углеродсодержащей композиции для получения радиозащитных материалов. Композиция содержит 5-16 мас.% ультрадисперсного активного углерода со средним размером частиц 5-100 нм и удельной поверхностью 16-320 м/г,...
Тип: Изобретение
Номер охранного документа: 0002519244
Дата охранного документа: 10.06.2014
10.05.2016
№216.015.3b57

Способ концентрирования изотопов азота

Изобретение относится к области технологии разделения стабильных изотопов азота N и N. Способ концентрирования изотопов азота включает проведение противоточного массообменного процесса с использованием молекулярного азота в качестве рабочего вещества, при этом газообразную смесь изотопов азота...
Тип: Изобретение
Номер охранного документа: 0002583808
Дата охранного документа: 10.05.2016
25.08.2017
№217.015.9e71

Установка очистки поверхностного стока

Изобретение относится к установке очистки поверхностного стока на очистных сооружениях ливневой канализации. Установка включает блок первичной очистки, состоящий из по меньшей мере двух унифицированных, автономно функционирующих секций 1, и блок глубокой доочистки. Каждая секция 1 содержит...
Тип: Изобретение
Номер охранного документа: 0002605983
Дата охранного документа: 10.01.2017
19.01.2018
№218.016.0bd5

Способ электродуговой многоэлектродной сварки под слоем флюса продольных стыков толстостенных труб большого диаметра

Изобретение может быть использовано при производстве толстостенных сварных труб большого диаметра с использованием многоэлектродной сварки под слоем флюса. В зоне окончания кристаллизации ванны расплавленного металла осуществляют удаление расплавленного флюса. Принудительное охлаждение...
Тип: Изобретение
Номер охранного документа: 0002632496
Дата охранного документа: 05.10.2017
10.05.2018
№218.016.4129

Стабилизатор для ручной подводной фото-видеосъемки

Изобретение относится к области подводной фото и видеосъемки. Стабилизатор содержит основание. Основание выполнено в виде горизонтальной пластины. По краям основания закреплены вертикальные крылья. На законцовках вертикальных крыльев расположены модульные поплавки. Стабилизатор содержит...
Тип: Изобретение
Номер охранного документа: 0002649067
Дата охранного документа: 29.03.2018
27.04.2019
№219.017.3c9f

Реконфигурируемый вычислительный модуль

Изобретение относится к области вычислительной техники. Технический результат заключается в повышении удельных производительностей на единицу мощности потребления и на единицу площади. Реконфигурируемый вычислительный модуль, подключаемый к внутрикристальной кольцевой сети, содержит макроблок...
Тип: Изобретение
Номер охранного документа: 0002686017
Дата охранного документа: 23.04.2019
+ добавить свой РИД