×
10.06.2013
216.012.480e

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ОСОБО ЧИСТЫХ ТЕЛЛУРИТНО-МОЛИБДАТНЫХ СТЕКОЛ

Вид РИД

Изобретение

Аннотация: Изобретение относится к волоконной оптике и касается разработки способа получения особо чистых теллуритно-молибдатных стекол для изготовления волоконных световодов и планарных оптических волноводов, применяемых в оптике и оптоэлектронных приборах ближнего и среднего ИК-диапазона. Способ включает получение шихты выделением из водного раствора, содержащего соединения элементов, являющихся компонентами стекла. Полученную шихту нагревают и выдерживают в окислительной атмосфере при 300-500°C в течение 40-70 часов, после чего ведут плавление шихты при 600-700°C с последующим охлаждением полученного расплава. Изобретение позволяет получать стекла систем TeO-MoO, TeO-MoO-BiO, TeO-MoO-BiO-LaF. Техническим результатом изобретения является получение особо чистых теллуритно-молибдатных стекол с повышенной высокой оптической прозрачностью в интервале 520-800 нм за счет возможности проведения синтеза при достаточно низкой температуре. 1 з.п. ф-лы, 1 табл., 2 пр.

Заявляемое изобретение относится к волоконной оптике и касается разработки способа получения особо чистых теллуритно-молибдатных стекол для изготовления волоконных световодов и планарных оптических волноводов, применяемых в оптике и оптоэлектронных приборах ближнего и среднего ИК-диапазона.

Традиционный способ получения теллуритно-молибдатных стекол заключается в сплавлении шихты, в качестве которой используют мелко растертые оксиды теллура(IV), молибдена(VI) и других элементов, которые являются макрокомпонентами стекла с заданным их содержанием, в тигле, изготовленном из платины, или золота, или оксида алюминия, с последующим охлаждением полученного расплава (см., например, Journal of Non-Crystalline Solids 185 (1995) 135-144, Journal of Non-Crystalline Solids 351 (205) 2493-2500, Optics Communications 282 (2009 1579-1583, Journal of materials science 31 (1996) 6339-6343). Во всех упомянутых источниках плавление шихты ведут при 700-900°C.

Недостатком упомянутых способов является относительно высокая температура синтеза, из-за которой полученные стекла обладают высоким светопоглощением в видимой и ближней ИК-области спектра, причем светопоглощение усиливается по мере повышения в стекле относительного содержания триоксида молибдена. В процессе синтеза стекол происходит восстановление молибдена(VI), что приводит к появлению в системе соединений молибдена в низших состояниях окисления. Эти соединения молибдена обусловливают высокие оптические потери в видимой и смежной с ней части ИК-области спектра.

Прототипом выбран способ получения теллуритно-молибдатных стекол плавлением шихты из мелко растертых оксидов теллура(IV) и молибдена(VI), которые являются макрокомпонентами стекла с заданным их содержанием, в тигле, изготовленном из оксида алюминия, при температуре 900-950°C, с последующим охлаждением полученного расплава (см. Journal of Non-Crystalline Solids 351 (2005) 2493-2500).

Недостатком прототипа является низкая прозрачность стекол в видимой и смежной с ней частью ближней ИК-области спектра за счет высокой температуры синтеза. Авторы заявляемого изобретения воспроизвели способ, описанный в прототипе, и получили стекло состава (TeO2)0.70(MoO3)0.30. По данным спектрофотометрии в спектральном интервале 520-750 нм упомянутое стекло имеет оптическую прозрачность менее 4%.

Задачей, на решение которой направлено заявляемое изобретение, является разработка способа получения особо чистых теллуритно-молибдатных стекол с высокой оптической прозрачностью во всей области пропускания.

Эта задача решается за счет того, что в известном способе получения особо чистых теллуритно-молибдатных стекол, основанном на плавлении шихты с последующим охлаждением расплава, согласно заявляемому изобретению в качестве шихты используют осадки, осажденные и выделенные из водного раствора, содержащего соединения элементов, являющихся компонентами стекла, а перед плавлением шихты эти осадки нагревают и выдерживают в окислительной атмосфере при температуре 300-500°C не менее 40 часов, при этом плавление шихты ведут при температуре 600-700°C.

Время выдерживания шихты в окислительной атмосфере определяется дисперсностью шихты. В предпочтительном варианте осадки выдерживают в течение 40-70 часов. Выдерживание осадков в течение указанного времени обеспечивает получение стекол с максимально возможной прозрачностью, которая составляет 40-70%.

Сущность изобретения заключается в том, что в качестве шихты используют осадки, осажденные и выделенные из водного раствора, содержащего соединения элементов, являющихся компонентами стекла, а перед плавлением шихты эти осадки нагревают и выдерживают в окислительной атмосфере, например в атмосфере воздуха, или кислорода, или диоксида азота при 300-500°C не менее 40 часов, при этом плавление шихты ведут при температуре 600-700°C.

Поскольку осаждение компонентов шихты проводят из одного раствора, в котором реализована молекулярная дисперсия компонентов, то такая шихта является гомогенизированной по отношению к шихте, приготовленной растиранием смеси кристаллических оксидов. Согласно результатам рентгенофазового анализа гомогенизированная шихта рентгеноаморфна. Измерение размера частиц методом рентгеновского малоуглового рассеяния показало, что в гомогенизированной шихте имеются частицы размером от 1-2 до 20-30 нм, причем средний размер частиц составляет 8-10 нм. Обладая высокой поверхностной энергией, гомогенизированная шихта способна расплавляться при более низкой температуре, чем исходные измельченные оксиды.

Опытным путем были подобраны температура и время выдерживания осадков в окислительной атмосфере. Как показали эксперименты, выдерживание осадков при 300-500°C в течение 40-70 часов обеспечивает получение стекол с высокой оптической прозрачностью в видимой и ближней ИК-областях спектра, например, для стекла состава (TeO2)0.70(MoO3)0.30 на длине волны 600 нм прозрачность составляет 40%. При температуре ниже 300°C прозрачность стекла ухудшается более чем в 10 раз. При температуре выше 500°C происходит плавление содержимого тигля и взаимодействие расплава с материалом тигля. Это приводит к изменению заданного состава стекла. При этом существенное значение имеет время выдержки. При проведении выдержки в течение менее 40 часов прозрачность получаемых стекол составляет менее 10%.

Новым и существенным признаком в способе является температура плавления шихты, которая значительно ниже, чем в прототипе. Эта температура, 600-700°C, была подобрана опытным путем и, как показали эксперименты, является оптимальной с точки зрения получения прозрачного стекла. Она является необходимой для обеспечения совместного плавления компонентов шихты во всем интервале стеклообразования в системе TeO2-MoO3. При температуре ниже 600°C шихта плавится не полностью. В результате охлаждения такого расплава получают микронеоднородное стекло, содержащее твердые частицы исходной шихты. Если стеклообразующий расплав получается ниже 600°C, то при извлечении тигля из печи его содержимое не удается перелить полностью в форму для отжига. При температуре выше 700°C становится заметным внутримолекулярное восстановление молибдена и расплав, а вслед за ним и стекло, постепенно утрачивают прозрачность в видимой и смежной с ней ИК-области спектра.

Все перечисленные признаки являются существенными, т.к. каждый необходим, а вместе они достаточны для решения поставленной задачи - разработки способа получения высокочистых теллуритно-молибдатных стекол с высокой оптической прозрачностью во всей области пропускания за счет снижения температуры синтеза.

Осаждение шихты можно выполнять как из кислого, так и из щелочного раствора. Выбор способа получения осадка определяется природой компонентов стекла.

Для изменения тепловых и оптических свойств теллуритно-молибдатных стекол в эту систему могут быть введены другие компоненты, например Bi2O3 или La2O3. Эти компоненты вводят в шихту на стадии приготовления раствора. Соединения висмута и лантана осаждаются из раствора совместно с другими макрокомпонентами стекла.

Получены двойные и многокомпонентные теллуритно-молибдатные стекла с содержанием примесей ряда металлов ниже пределов обнаружения прямого спектрального анализа. Ниже приведена таблица содержания примесей металлов.

Таблица
Результаты атомно-эмиссионного анализа стекол системы TeO2-MoO3
Примесь Содержание примесей в стеклах, % мас.
(TeO2)0.90 (TeO2)0.80 (TeO2)0.70 (TeO2)0.60 (TeO2)0.50
(MoO3)0.10 (MoO3)0.20 (MoO3)0.30 (MoO3)0.40 (MoO3)0.50
Cu <4×10-3 <4×10-3 <4×10-3 <4×10-3 <4×10-3
V <4×10-4 <4×10-4 <4×10-4 <4×10-4 <4×10-4
Mn <4×10-4 <4×10-4 <4×10-4 <4×10-4 <4×10-4
Fe 6×10-3 4×10-3 1×10-2 3×10-3* 3×10-3
Al 1×10-2 7×10-3 1×10-2 2×10-2 1×10-2
Ca <2×10-3 <2×10-3 <2×10-3 <2×10-3 <2×10-3
Mg 1×10-3 5×10-4 1×10-3 1×10-3 1×10-3
Cr <4×10-3 <4×10-3 <4×10-3 <4×10-3 <4×10-3
Si 3×10-3 2×10-3 4×10-3 4×10-3 5×10-3
Ag <5×10-5 <5×10-5 <5×10-5 <5×10-5 <5×10-5
Ni <2×10-4 <2×10-4 <2×10-4 <2×10-4 <2×10-4
Co <6×10-4 <6×10-4 <6×10-4 <6×10-4 <6×10-4

Стекла, изготовленные предлагаемым способом, по данным спектрофотометрии в спектральном интервале 520 - 750, нм имеют оптическую прозрачность 40-70%. Например, для стекла состава (TeO2)0.70(MoO3)0.30 на длине волны 600 нм прозрачность составляет 40%. Для стекла такого же состава, полученного по способу, описанному в прототипе, на длине волны 600 нм прозрачность менее 4%, т.е. в 10 раз ниже, чем для стекла, изготовленного по заявляемой технологии.

Температура синтеза стекол составляет 600-700°C, в то время как в прототипе эта температура составляет 900-950°C.

Пример 1.

Диоксид теллура массой 36.06 г и тетрагидрат гептамолибдата аммония массой 17.08 г растворяют в 150 мл концентрированной соляной кислоты. К раствору при постоянном перемешивании добавляют 25% раствор аммиака до достижения pH 4. Полученный осадок отмывают дистиллированной водой от растворенного хлорида аммония, отделяют от раствора центрифугированием и высушивают. Оставшееся вещество переносят в фарфоровый глазурованный тигель. Содержимое тигля нагревают до температуры 450°C и выдерживают в течение 50 часов в атмосфере воздуха, после чего содержимое нагревают до 650°C. Полученный стеклообразующий расплав охлаждают до комнатной температуры в режиме выключенной печи. Методом рентгенофлуоресцентного анализа найдено, что полученное стекло отвечает составу (TeO2)0.70(MoO3)0.30. Стекло обладает светопропусканием 5-40% в диапазоне 520-750 нм. Содержание примесей в стекле, по данным атомно-эмиссионного анализа, находится на уровне 10-3-10-4% мас. (см. таблицу).

Пример 2.

Диоксид теллура массой 28.73 г, тетрагидрат гептамолибдата аммония массой 15.89 г и триоксид дилантана массой 3.31 г растворяют в 200 мл концентрированной соляной кислоты. К раствору при постоянном перемешивании добавляют 25% раствор аммиака до достижения pH 6. Полученный осадок отмывают дистиллированной водой, отделяют от раствора центрифугированием и высушивают. Полученное вещество переносят в фарфоровый тигель. Содержимое тигля нагревают до температуры 400°C и выдерживают в течение 60 часов в атмосфере воздуха, после чего содержимое нагревают до 700°C. Стеклообразующий расплав охлаждают до комнатной температуры в режиме выключенной печи. Согласно результатам рентгенофлуоресцентного анализа было получено стекло состава (TeO2)0.63(MoO3)0.26(LaO1.5)0.11. Светопропускание этого образца на длине волны 600 нм составляет 55%.

Источник поступления информации: Роспатент

Показаны записи 11-16 из 16.
29.06.2019
№219.017.9f27

Способ получения халькогенидных стекол системы as-s с низким содержанием кислорода

Изобретение относится к волоконной оптике и касается разработки способа получения халькогенидных стекол системы As-S с низким содержанием примеси кислорода в виде гидроксильных групп, молекулярной воды, диоксида углерода и может быть использовано для получения волоконных световодов, применяемых...
Тип: Изобретение
Номер охранного документа: 0002419589
Дата охранного документа: 27.05.2011
29.06.2019
№219.017.9fe6

Способ получения высокочистых теллуритных стекол

Изобретение относится к волоконной оптике и к разработке способа получения высокочистых теллуритных стекол. Технический результат изобретения заключается в получении высокочистых теллуритных стекол и проведении процесса в условиях безопасной работы. Инициируют реакции окисления кислородом...
Тип: Изобретение
Номер охранного документа: 0002455243
Дата охранного документа: 10.07.2012
29.06.2019
№219.017.9ff6

Особо чистый сульфидно-мышьяковый материал для синтеза высокопрозрачных халькогенидных стекол и способ его получения

Заявляемое изобретение относится к области оптического материаловедения и касается разработки особо чистого сульфидно-мышьякового материала, исходного для синтеза халькогенидных стекол системы As-S с высокой прозрачностью в среднем ИК-диапазоне. Сульфидно-мышьяковый материал содержит компоненты...
Тип: Изобретение
Номер охранного документа: 0002450983
Дата охранного документа: 20.05.2012
29.06.2019
№219.017.a02f

Двойной тигель и способ изготовления волоконных световодов из стекол, склонных к кристаллизации и содержащих макрокомпонент с повышенной летучестью

Изобретение относится к волоконной оптике и касается разработки устройства двойного тигля и способа вытяжки световодов с его использованием из стекол, склонных к кристаллизации и содержащих макрокомпонент с повышенной летучестью, каковыми являются халькогенидные стекла и стекла на основе...
Тип: Изобретение
Номер охранного документа: 0002401815
Дата охранного документа: 20.10.2010
10.07.2019
№219.017.afe8

Металлокерамический композит и способ его получения

Изобретение относится к области создания новых композиционных материалов на основе пористых металлов и оксидной композиции и может быть использовано для приготовления металлокерамических мембран барометрических и мембранно-каталитических процессов, в частности, проявляющих каталитическую...
Тип: Изобретение
Номер охранного документа: 0002450082
Дата охранного документа: 10.05.2012
10.07.2019
№219.017.b0ec

Способ окислительного дегидрирования метанола

Изобретение относится к области производства катализаторов для химической и нефтехимической промышленности, которые могут быть использованы в процессах превращения спиртов с целью получения удобных и экологически чистых видов энергоносителей и перспективных химических продуктов. Способ...
Тип: Изобретение
Номер охранного документа: 0002443464
Дата охранного документа: 27.02.2012
Показаны записи 11-20 из 27.
10.05.2018
№218.016.3ebb

Способ получения особо чистых халькогенидных стекол системы германий-селен

Изобретение относится к способу получения особо чистых халькогенидных стекол системы германий-селен. Способ включает загрузку компонентов шихты в вакуумированный кварцевый реактор, синтез стеклообразующего расплава, его гомогенизирующее плавление и закалку. В качестве источника германия...
Тип: Изобретение
Номер охранного документа: 0002648389
Дата охранного документа: 26.03.2018
04.04.2019
№219.016.fb27

Сложный оксид лантана, молибдена и теллура

Изобретение относится к области химии и касается синтеза сложного оксида лантана, молибдена и теллура LaMoTeO, который может быть использован для получения лантансодержащих теллуритно-молибдатных стекол не только в качестве компонента шихты наряду с другими соединениями, но и в качестве...
Тип: Изобретение
Номер охранного документа: 0002683834
Дата охранного документа: 02.04.2019
04.04.2019
№219.016.fb80

Способ получения сложного оксида лантана, молибдена и теллура

Изобретение относится к области химии и касается способа синтеза сложного оксида лантана, молибдена и теллура, который может быть использован для получения лантансодержащих теллуритно-молибдатных стекол. Способ получения сложного оксида лантана, молибдена и теллура LaMoTeO включает растворение...
Тип: Изобретение
Номер охранного документа: 0002683833
Дата охранного документа: 02.04.2019
06.04.2019
№219.016.fdce

Применение сложного оксида лантана, молибдена и теллура

Изобретение относится к области химии и касается применения сложного оксида лантана, молибдена и теллура, имеющего химическую формулу LaMoTeO, для получения лантансодержащих теллуритно-молибдатных стекол простым и технологичным способом. LaMoTeO может быть использован не только в качестве...
Тип: Изобретение
Номер охранного документа: 0002684087
Дата охранного документа: 03.04.2019
08.05.2019
№219.017.48f2

Способ получения сложного оксида лантана, вольфрама и теллура lawteo

Изобретение относится к области химии и касается способа получения сложного оксида лантана, вольфрама и теллура LaWTeO. В качестве исходных веществ используют гексагидрат нитрата лантана, тетрагидрат додекавольфрамата аммония и ортотеллуровую кислоту, взятые в мольном соотношении 24:1:72....
Тип: Изобретение
Номер охранного документа: 0002686828
Дата охранного документа: 30.04.2019
09.05.2019
№219.017.4a4c

Применение сложного оксида празеодима, молибдена и теллура prmoteo

Изобретение относится к области химии и касается применения сложного оксида празеодима, молибдена и теллура, имеющего химическую формулу PrMoTeO в качестве компонента шихты для получения празеодимсодержащих теллуритно-молибдатных стекол. Техническим результатом от использования изобретения...
Тип: Изобретение
Номер охранного документа: 0002686941
Дата охранного документа: 06.05.2019
16.05.2019
№219.017.5286

Способ получения сложного оксида празеодима, молибдена и теллура prmoteo

Изобретение относится к области химии и касается синтеза сложного оксида празеодима, молибдена и теллура PrMoTeO, который может быть использован в качестве компонента в составе шихты для получения празеодимсодержащих теллуритно-молибдатных стекол. Исходные компоненты по отдельности растворяют в...
Тип: Изобретение
Номер охранного документа: 0002687420
Дата охранного документа: 13.05.2019
16.05.2019
№219.017.5295

Способ получения сложного оксида празеодима, молибдена и теллура prmoteo

Изобретение относится к области химии и касается синтеза сложного оксида празеодима, молибдена и теллура PrMoTeO, который может быть использован в качестве компонента в составе шихты для получения празеодимсодержащих теллуритно-молибдатных стекол. Исходные компоненты по отдельности растворяют в...
Тип: Изобретение
Номер охранного документа: 0002687419
Дата охранного документа: 13.05.2019
07.06.2019
№219.017.7512

Сложный оксид празеодима, молибдена и теллура prmoteo

Изобретение относится к области химии и касается сложного оксида празеодима, молибдена, теллура, имеющего химическую формулу PrMoTeO, который может быть использован в качестве компонента шихты для получения празеодимсодержащих теллуритно-молибдатных стекол. Техническим результатом от...
Тип: Изобретение
Номер охранного документа: 0002690812
Дата охранного документа: 05.06.2019
26.06.2019
№219.017.9202

Способ получения изотопно-обогащенных стеклообразных диоксидов кремния

Изобретение относится к способу получения изотопно-обогащенного стеклообразного диоксида кремния SiО, обогащенного изотопами кремния Si или Si или Si, который может быть использован для получения изотопов кремния, оптических материалов, волоконных световодов и пленок из изотопно-обогащенного...
Тип: Изобретение
Номер охранного документа: 0002692310
Дата охранного документа: 24.06.2019
+ добавить свой РИД