×
27.05.2013
216.012.4598

Результат интеллектуальной деятельности: МАГНИТОРЕЗИСТИВНЫЙ ПРЕОБРАЗОВАТЕЛЬ

Вид РИД

Изобретение

№ охранного документа
0002483393
Дата охранного документа
27.05.2013
Аннотация: Изобретение относится к измерительной технике. Технический результат - уменьшение потребляемой мощности и нагрева. Сущность: преобразователь содержит подложку с диэлектрическим слоем, на котором расположены соединенные в мостовую схему четыре параллельно расположенные тонкопленочные магниторезистивные полоски, содержащие каждая верхний и нижний защитные слои, между которыми расположены две ферромагнитные пленки с разделительным слоем между ними. Поверх магниторезистивных полосок расположен первый изолирующий слой. На поверхности первого изолирующего слоя расположены четыре наномагнита в виде прямоугольных полосок, расположенных вдоль тонкопленочных магниторезистивных полосок. Каждый наномагнит содержит вспомогательный слой хрома с нанесенной поверх него магнитожесткой пленкой и защитный слой. Коэрцитивная сила магнитожесткой пленкой не менее, чем втрое превышает поле магнитной анизотропии ферромагнитной пленки. Наномагниты расположены с расстоянием, равным ширине полоски наномагнита. Период повторения наномагнитов равен удвоенному периоду повторения тонкопленочных магниторезистивных полосок. Магнитное поле, создаваемое наномагнитами в соседних плечах мостовой схемы, направлено антипараллельно. Соседние магниторезистивные полоски находятся в минимумах положительного и отрицательного постоянного поля наномагнитов. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области магнитных наноэлементов на основе многослойных металлических наноструктур с магниторезистивным эффектом и может быть использовано для измерения магнитного поля в измерительных комплексах, научном и медицинском приборостроении, устройствах диагностики печатных плат и микросхем, биообъектов (бактерий, вирусов, токсинов и ДНК).

Известны магниторезистивные преобразователи магнитного поля с линейной вольт-эрстедной характеристикой (ВЭХ), формируемой магнитным полем, создаваемым током в проводнике управления, расположенном над тонкопленочными магниторезистивными полосками (Касаткин С.И., Киселева И.Д., Лопатин В.В., Муравьев A.M., Попадинец Ф.Ф., Сватков А.В. Магниторезистивный датчик. // Патент РФ. 1999. №2139602). Однако для работы данного датчика магнитного поля требуется достаточно большая величина тока в проводнике управления.

Этот недостаток существенно уменьшен в магниторезистивном преобразователе магнитного поля с магнитомягкой наноструктурой над проводником управления (Касаткин С.И., Муравьев А.М. Магниторезистивный датчик. // Патент РФ. 2001. №2175797). Однако для правильной и оптимальной работы такого преобразователя магнитного поля надо на поверхности проводника получать магнитомягкие наноструктуры, что усложняет технологию изготовления, особенно при невысокой толщине этих наноструктур.

Задачей, поставленной и решаемой настоящим изобретением, является создание магниторезистивного преобразователя магнитного поля на основе металлической ферромагнитной наноструктуры с планарным протеканием сенсорного тока, имеющего линейную ВЭХ с параллельно намагниченными магнитожесткими пленками наномагнитов.

Указанный технический результат достигается тем, что в магниторезистивном преобразователе, содержащем подложку с диэлектрическим слоем, на котором расположены соединенные в мостовую схему немагнитными низкорезистивными перемычками четыре попарно и параллельно расположенные относительно друг друга тонкопленочные магниторезистивные полоски, содержащие каждая верхний и нижний защитные слои, между которыми расположены две ферромагнитные пленки с осью легкого намагничивания вдоль длины тонкопленочной магниторезистивной полоски, между которыми расположен разделительный слой, поверх тонкопленочных магниторезистивных полосок расположен первый изолирующий слой, на котором сформирован проводник управления с рабочими частями, расположенными над тонкопленочных магниторезистивных полосок вдоль каждой полоски, на поверхности первого изолирующего слоя расположены четыре наномагнита в виде прямоугольных магнитожестких полосок и расположенных вдоль них, содержащая каждая вспомогательный слой хрома с нанесенной поверх него магнитожесткой пленкой с коэрцитивной силой, не менее чем втрое превышающей поле магнитной анизотропии ферромагнитной пленки и защитный слой, при этом наномагниты расположены в один ряд с расстоянием, равным ширине полоски наномагнита, а период повторения наномагнитов равен удвоенному периоду повторения тонкопленочных магниторезистивных полосок, причем тонкопленочные магниторезистивные полоски расположены симметрично между соседними наномагнитами или относительно ширины магнитожесткой полоски магнита. В магниторезистивном преобразователе между наномагнитами и проводником управления может располагаться дополнительный изолирующий слой.

Сущность предлагаемого технического решения заключается в том, что для создания над парами магнитожестких полосок постоянного магнитного поля для формирования у магниторезистивного преобразователя магнитного поля линейной нечетной ВЭХ V(H)=-V(-H) наномагниты расположены в один ряд с расстоянием, равным ширине полоски наномагнита, а период повторения наномагнитов равен удвоенному периоду повторения тонкопленочных магниторезистивных полосок, причем тонкопленочные магниторезистивные полоски расположены симметрично между соседними наномагнитами или относительно ширины магнитожесткой полоски магнита. Такая топология магниторезистивного преобразователя позволяет создать магнитное поле наномагнитов, антипараллельно направленное в соседних тонкопленочных магниторезистивных полосках, что и создает линейную нечетную ВЭХ магниторезистивного преобразователя.

Изобретение поясняется чертежами: на фиг.1 представлен магниторезистивный преобразователь в разрезе; на фиг.2 показана конструкция магниторезистивного преобразователя, вид сверху; на фиг.3 показано теоретическое распределение магнитного поля, создаваемое наномагнитами с размерами 960×48×0,1 мкм3, намагниченными поперек их длины на высоте 3,0 мкм от тонкопленочных магниторезистивных полосок; на фиг.4 показано теоретическое распределение магнитного поля, создаваемое током 100 мА в проводнике управления шириной 24 мкм и толщиной 1 мкм на высоте 4,5 мкм от тонкопленочных магниторезистивных полосок.

Магниторезистивный преобразователь магнитного поля содержит подложку 1 (фиг.1) с диэлектрическим слоем 2, тонкопленочные магниторезистивные полоски, содержащие нижний 3 и верхний 4 защитные слои, между которыми расположены ферромагнитные пленки 5 и 6, разделенные слоем 7. Поверх тонкопленочных магниторезистивных полосок расположен первый изолирующий слой 8, на котором расположены наномагниты из вспомогательного слоя хрома 9, магнитожесткой пленки 10 и защитного слоя 11. Поверх наномагнитов расположен второй изолирующий слой 12, на котором сформирован проводник управления 13 с рабочими частями, расположенными над тонкопленочными магниторезистивными полосками. Выше расположен верхний защитный слой 14.

Конструктивно, магниторезистивный преобразователь магнитного поля состоит из четырех тонкопленочных магниторезистивных полосок 15-18 (фиг.2) мостовой схемы. Эти полоски 15-18 соединены в мостовую схему немагнитными низкорезистивными перемычками 19-21. В низкорезистивных перемычках выполнены контактные площадки 22-25. На поверхности изолирующего слоя расположены наномагниты 26-29. Над тонкопленочными магниторезистивными полосками 15-18 и наномагнитами 26-29 расположен проводник управления 13 с контактными площадками 30, 31.

Работа магниторезистивного преобразователя магнитного поля происходит следующим образом. Наномагниты 26-29, расположенные на поверхности изолирующего слоя над тонкопленочными магниторезистивными полосками 15-18, намагничены в одном направлении поперек своей длины и создают постоянное магнитное поле, направленное перпендикулярно длине этих полосок. Распределение создаваемого ими магнитного поля, действующего на тонкопленочные магниторезистивные полоски 15-18, имеет периодический вид с противоположным направлением постоянного магнитного поля. На фиг.3 приведено теоретическое распределение магнитного поля, создаваемое наномагнитами с размерами 960×48×0,1 мкм3, намагниченными поперек их длины на высоте 3,0 мкм от тонкопленочных магниторезистивных полосок 15-18. Соседние тонкопленочные магниторезистивные полоски находятся в минимумах положительного и отрицательного постоянного магнитного поля наномагнитов 26-29. Под действием постоянного магнитного поля, создаваемого наномагнитами 26-29 и направленного перпендикулярно ОЛН, векторы намагниченности пар тонкопленочных магниторезистивных полосок 15, 17 и 16, 18 разворачиваются в направлении этого постоянного магнитного поля антипараллельно друг другу. Этот разворот приводит к возникновению в магниторезистивном преобразователе линейной нечетной ВЭХ и заменяет магнитное поле, создаваемое током в проводнике управления 13.

На фиг.4 показано теоретическое распределение магнитного поля, создаваемое током 100 мА в проводнике управления 13 шириной 24 мкм и толщиной 1 мкм на высоте 4,5 мкм от тонкопленочных магниторезистивных полосок 15-18. Эти параметры являются типичными для магниторезистивного преобразователя с проводником управления. Максимальное магнитное поле, создаваемое током 100 мА, составляет около 19 Э. Постоянное магнитное поле, создаваемое наномагнитами 26-29 толщиной 0,1 мкм составляет около 10 Э. Таким образом, толщина наномагнитов для создания магнитного поля, компенсирующего магнитное поле, создаваемого током в проводнике управления 13, должна быть около 0,2 мкм, что представляет собой реальную величину для вакуумно напыленных наномагнитов 26-29.

Для считывания сигнала в мостовую схему с тонкопленочными магниторезистивными полосками 15-18 магниторезистивного преобразователя подается постоянный сенсорный ток. Перед началом измерения векторы намагниченности ферромагнитных пленок 5, 6 в тонкопленочных магниторезистивных полосках 15-18 направлены антипараллельно друг другу и отклонены от ОЛН ферромагнитной пленки приблизительно на 45°. Это значение угла является оптимальным для магниторезистивного преобразователя с точки зрения получения максимальной чувствительности и линейности ВЭХ. Ввиду разброса параметров магниторезистивного преобразователя, в первую очередь ферромагнитных пленок 5, 6 и параметров наномагнитов 26-29, угол отклонения векторов намагниченности ферромагнитных пленок 5, 6 - не оптимальный. Поэтому в проводник управления 13 подается постоянный ток нужной полярности, позволяющий отклонить векторы намагниченности ферромагнитных пленок 5, 6 на оптимальный, относительно ОЛН, угол 45°. Величина этого тока в несколько раз меньше, чем в прототипе, так как требуется только небольшой доворот векторов намагниченности ферромагнитных пленок 5, 6, а не полный разворот этих векторов намагниченности и не будет превышать 10-15 мА.

Постоянное магнитное поле, создаваемое наномагнитами 26-29 в соседних плечах мостовой схемы, направлено антипараллельно друг другу. Это приводит к отклонению векторов намагниченности ферромагнитных пленок 5, 6 соседних плеч мостовой схемы в противоположных направлениях. При воздействии на мостовую схему внешнего однородного магнитного поля векторы намагниченности ферромагнитных пленок 5, 6 будут отклоняться в направлении этого магнитного поля. При этом в двух плечах мостовой схемы векторы намагниченности тонкопленочных магниторезистивных полосок, находящихся в противоположном по направлению относительно внешнего магнитного поля постоянном магнитном поле наномагнитов 26-29, будут приближаться к оси тонкопленочных магниторезистивных полосок (направлению сенсорного тока), а в двух других - отклоняться. Изменение магнитосопротивления в анизотропном магниторезистивном эффекте пропорционально cos2φ, где φ - угол между направлением сенсорного тока в тонкопленочной магниторезистивной полоске и вектором намагниченности ферромагнитной пленки. При этом в одной паре плеч мостовой схемы магнитосопротивление будет увеличиваться, а в другой паре плеч - уменьшаться. Это приведет к разбалансу мостовой схемы и появлению на ее двух вершинах электрического сигнала считывания.

Таким образом, в предлагаемом магниторезистивном преобразователе линейная нечетная ВЭХ создается автоматически без использования тока в проводнике управления за счет постоянного магнитного поля, создаваемого наномагнитами, что существенно улучшает его технические характеристики за счет уменьшения потребляемой мощности и нагрева, а также возможности использования такого магниторезистивного преобразователя в линейке или матрице преобразователей.


МАГНИТОРЕЗИСТИВНЫЙ ПРЕОБРАЗОВАТЕЛЬ
МАГНИТОРЕЗИСТИВНЫЙ ПРЕОБРАЗОВАТЕЛЬ
МАГНИТОРЕЗИСТИВНЫЙ ПРЕОБРАЗОВАТЕЛЬ
МАГНИТОРЕЗИСТИВНЫЙ ПРЕОБРАЗОВАТЕЛЬ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 114.
23.02.2019
№219.016.c64b

Способ измерения объемного содержания нефти и воды в потоке нефтеводяной эмульсии в трубопроводе

В резонаторе (4), встроенном в измерительный участок (1) трубопровода (2), возбуждают электромагнитные колебания и формируют два сигнала, частота одного из которых пропорциональна собственной (резонансной) частоте колебаний резонатора, а частота другого - его добротности. По резонансной частоте...
Тип: Изобретение
Номер охранного документа: 0002410672
Дата охранного документа: 27.01.2011
23.02.2019
№219.016.c660

Устройство для измерения массы сжиженного газа в замкнутом резервуаре

Изобретение относится к электромагнитным методам контроля и измерения и может быть использовано для измерения массы сжиженных газов, включая криогенные жидкости, при любом их фазовом состоянии. Сущность: устройство содержит резонатор, выполненный в виде непрерывной щелевой линии на стенке...
Тип: Изобретение
Номер охранного документа: 0002427805
Дата охранного документа: 27.08.2011
23.02.2019
№219.016.c6ad

Способ управления движением судна по заданной траектории

Изобретение относится к области судовождения, в частности к автоматическому управлению движением судна. В способе используют сигналы текущего путевого угла и заданного значения путевого угла, которые совместно с сигналами угловой скорости судна и угла перекладки руля используют для формирования...
Тип: Изобретение
Номер охранного документа: 0002465169
Дата охранного документа: 27.10.2012
23.02.2019
№219.016.c6bb

Оптико-электронный расходомер потока газа или жидкости

Изобретение относится к области тепловой меточной расходометрии и может быть использовано для определения объемного или массового расхода газа или жидкости. Сущность: расходомер содержит измерительный трубопровод (1) с выравнивателем потока (2) на входе, управляемый генератор (3) тепловой метки...
Тип: Изобретение
Номер охранного документа: 0002460047
Дата охранного документа: 27.08.2012
01.03.2019
№219.016.cf3e

Способ определения плотности диэлектрических жидких веществ

Предлагаемое изобретение относится к области измерительной техники. Способ определения плотности диэлектрических жидких веществ, протекающих по диэлектрическому трубопроводу, при котором зондируют вещество электромагнитными колебаниями и принимают распространяющиеся по трубопроводу колебания....
Тип: Изобретение
Номер охранного документа: 0002404421
Дата охранного документа: 20.11.2010
08.03.2019
№219.016.d4b5

Счетчик-расходомер

Изобретение может быть использовано для измерения объемного и массового расхода в технологических трубопроводах, а также измерения плотности и количества газа или жидкости в узлах учета энергоресурсов для коммерческого расчета. Расходомер содержит сужающее устройство (2), датчик перепада...
Тип: Изобретение
Номер охранного документа: 0002396517
Дата охранного документа: 10.08.2010
08.03.2019
№219.016.d4b8

Способ измерения сопротивления и устройство для его реализации

Изобретение относится к области измерительной техники. Последовательно осуществляют три такта измерения периода колебаний, зависящего от значения измеряемого сопротивления при различной конфигурации частотно-зависимой цепи. В первом такте формируют измеряемую величину , где R - первое эталонное...
Тип: Изобретение
Номер охранного документа: 0002395098
Дата охранного документа: 20.07.2010
08.03.2019
№219.016.d525

Способ преобразования непрерывного сигнала в частоту и устройство для его осуществления

Изобретение относится к способам и устройствам преобразования сигнала. Техническим результатом является линеаризация преобразований от входного параметра до частотного выхода. Предложено устройство преобразования непрерывного сигнала в частоту, содержащее измерительное устройство с квадратичным...
Тип: Изобретение
Номер охранного документа: 0002413269
Дата охранного документа: 27.02.2011
08.03.2019
№219.016.d54d

Измеритель частоты резонаторного датчика технологических параметров

Изобретение относится к измерительной технике. Измеритель частоты резонаторного датчика технологических параметров содержит первый сумматор, соединенный соответственно первым и вторым плечами с резонаторным датчиком и выходом перестраиваемого по частоте генератора электромагнитных колебаний, и...
Тип: Изобретение
Номер охранного документа: 0002456556
Дата охранного документа: 20.07.2012
08.03.2019
№219.016.d563

Способ обработки и анализа изображений кометоподобных объектов, полученных методом "днк-комет"

Способ заключается в том, что в компьютер с биологического препарата, установленного на флуоресцентный микроскоп с видеокамерой, вводят изображение с кометоподобными объектами - «кометами», представляющими собой набор слитых и отдельностоящих флуоресцирующих точек разной яркости. Затем...
Тип: Изобретение
Номер охранного документа: 0002404453
Дата охранного документа: 20.11.2010
Показаны записи 41-50 из 55.
20.02.2019
№219.016.c2f6

Магниторезистивная головка-градиометр

Изобретение относится к области магнитных наноэлементов на основе многослойных металлических наноструктур с магниторезистивным эффектом. Техническим результатом является создание магниторезистивной головки-градиометра на основе металлической ферромагнитной наноструктуры с планарным протеканием...
Тип: Изобретение
Номер охранного документа: 0002403652
Дата охранного документа: 10.11.2010
17.03.2019
№219.016.e27d

Способ электрохимического осаждения пленок пермаллоя nife с повышенной точностью воспроизведения состава

Изобретение относится к области гальванотехники и может быть использовано для получения магнитомягкого материала элементов интегральных микросистем, концентрирующих или экранирующих магнитное поле. Способ включает осаждение пленки в гальванической ванне при плотности тока 20±1,0 мА/см,...
Тип: Изобретение
Номер охранного документа: 0002682198
Дата охранного документа: 15.03.2019
20.03.2019
№219.016.e8ea

Магниторезистивный датчик

Изобретение относится к области магнитных датчиков и может быть использовано в тахометрах, устройствах неразрушающего контроля, датчиках перемещения, датчиках для измерения постоянного и переменного магнитного поля, электрического тока. Магниторезистивный датчик содержит подложку с...
Тип: Изобретение
Номер охранного документа: 0002436200
Дата охранного документа: 10.12.2011
10.04.2019
№219.017.02ff

Магниторезистивный датчик

Изобретение может быть использовано в тахометрах, устройствах неразрушающего контроля, датчиках перемещения, датчиках для измерения постоянного и переменного магнитного поля, электрического тока. Датчик содержит подложку с диэлектрическим слоем, на котором расположены соединенные в мостовую...
Тип: Изобретение
Номер охранного документа: 0002312429
Дата охранного документа: 10.12.2007
10.04.2019
№219.017.06fe

Способ изготовления микросистемы контроля трех компонент вектора магнитной индукции

Изобретение относится к технологии микро- и наноэлектроники и может быть использовано в производстве гибридных микросистем анализа слабого магнитного поля. Сущность изобретения: способ изготовления микросистемы контроля трех компонент вектора магнитной индукции включает формирование на...
Тип: Изобретение
Номер охранного документа: 0002470410
Дата охранного документа: 20.12.2012
10.04.2019
№219.017.07b7

P-i-n-диодный преобразователь нейтронного излучения

Изобретение относится к полупроводниковым приборам для преобразования воздействий радиационного излучения, преимущественно нейтронного, в электрический сигнал, измерение которого позволяет определить уровень радиации или набранную дозу облучения. P-I-N-диодный преобразователь нейтронного...
Тип: Изобретение
Номер охранного документа: 0002408955
Дата охранного документа: 10.01.2011
10.04.2019
№219.017.085a

Способ изготовления интегрального высокодобротного кремниевого микромеханического резонатора

Изобретение относится к измерительной технике, а именно к интегральным высокодобротным кремниевым микромеханическим резонаторам, использующим в качестве резонирующего элемента балочные и консольные структуры из монокристаллического кремния, размещенные в капсулах с высоким вакуумом, и, в...
Тип: Изобретение
Номер охранного документа: 0002435294
Дата охранного документа: 27.11.2011
19.04.2019
№219.017.306b

Матрица интегральных преобразователей давления

Предлагаемое изобретение относится к полупроводниковым приборам для преобразования механических воздействий в электрический сигнал, измерение которого позволяет определить тактильное давление, создаваемое при соприкосновении датчика с каким-либо предметом. Тактильные датчики предназначены для...
Тип: Изобретение
Номер охранного документа: 0002362236
Дата охранного документа: 20.07.2009
19.04.2019
№219.017.30bc

Способ изготовления магниторезистивных датчиков

Изобретение может быть использовано для измерения постоянного и переменного магнитного поля. В способе согласно изобретению после нанесения защитного слоя на первую магниторезистивную наноструктуру производится травление защитного слоя и первой магниторезистивной наноструктуры на той части...
Тип: Изобретение
Номер охранного документа: 0002320051
Дата охранного документа: 20.03.2008
09.05.2019
№219.017.4fab

Магниторезистивный датчик

Изобретение может быть использовано для измерения магнитного поля в измерительных комплексах, научном и медицинском приборостроении, устройствах диагностики печатных плат и микросхем, биообъектов (бактерий, вирусов, токсинов и ДНК). Магниторезистивный датчик содержит подложку с диэлектрическим...
Тип: Изобретение
Номер охранного документа: 0002433507
Дата охранного документа: 10.11.2011
+ добавить свой РИД