×
10.05.2013
216.012.3d40

Результат интеллектуальной деятельности: СПОСОБ ВЫВЕДЕНИЯ НА ОРБИТУ РАКЕТЫ КОСМИЧЕСКОГО НАЗНАЧЕНИЯ ПАКЕТНОЙ СХЕМЫ НА УЧАСТКЕ ПОЛЕТА ДО ОТДЕЛЕНИЯ БОКОВЫХ БЛОКОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к ракетно-космической технике и может быть использовано в ракетах космического назначения (РКН) пакетной схемы. На участке полета до отделения боковых блоков выполняют программный разворот по крену на соответствующий азимуту прицеливания начальный угол для совмещения соответствующих плоскостей с заданным азимутом прицеливания, изменяют угол тангажа по заданной программе, отделяют отработавшие боковые блоки. В случае выведения ракеты, у которой соответствующие плоскости образуют углы по 45° с плоскостями симметрии, программный разворот ракеты по крену выполняют в 2 этапа, а именно через 5-10 с после старта выполняют разворот ракеты по крену на угол 45°, а при достижении углом тангажа предельно допустимого значения с учетом ограничений, накладываемых кинематикой гиростабилизированной платформы, выполняют разворот ракеты по крену на угол 45° до совмещения соответствующей плоскости с заданным азимутом прицеливания. Изобретение позволяет унифицировать аппаратуру системы управления и ее размещение на РКН. 4 ил.
Основные результаты: Способ выведения на орбиту ракеты космического назначения пакетной схемы на участке полета до отделения боковых блоков, заключающийся в старте ракеты, в выполнении программного разворота по крену на соответствующий азимуту прицеливания начальный угол γ для совмещения плоскости I-III с заданным азимутом прицеливания, в изменении угла тангажа по заданной программе и в отделении отработавших боковых блоков, отличающийся тем, что в случае выведения ракеты, у которой плоскость I-III образует углы по 45° с плоскостями симметрии, программный разворот ракеты по крену выполняют в 2 этапа, а именно через 5-10 с после старта выполняют разворот ракеты по крену на угол γ - 45°, а при достижении углом тангажа значения, являющегося предельно-допустимым с учетом ограничений, накладываемых кинематикой гиростабилизированной платформы, выполняют разворот ракеты по крену на угол 45° до совмещения плоскости I-III с заданным азимутом прицеливания.

Изобретение относится к ракетно-космической технике, а именно к ракетам космического назначения (РКН).

В ракетной технике известен выбранный в качестве прототипа способ выведения на орбиту ракеты космического назначения пакетной схемы на участке полета до отделения боковых блоков, заключающийся в старте ракеты, в выполнении программного разворота по крену на соответствующий азимуту прицеливания начальный угол γ0 для совмещения плоскости I-III с заданным азимутом прицеливания, в изменении угла тангажа по заданной программе и в отделении отработавших боковых блоков ([1], стр.59, 61, 62).

Недостатком известного способа является трудность в его реализации в случае когда плоскость I-III РКН не является ее плоскостью симметрии на участке полета до отделения боковых блоков (ББ). Такая ситуация имеет место для ракет типа РКН среднего класса «Ангара-3A» с двумя ББ, входящей в состав семейства РКН «Ангара» ([2], стр.91). Эта РКН получается из РКН тяжелого класса «Ангара-5А» с четырьмя ББ путем удаления двух ББ, расположенных по диагонали (см. фиг.1, 2). У РКН «Ангара-3А» плоскость I-III составляет углы, равные 45°, с обеими плоскостями симметрии. Применение известного способа выведения к такой РКН приведет к существенной взаимосвязи каналов тангажа и рыскания системы управления (СУ), что крайне нежелательно на атмосферном участке полета, так как потребует большого объема расчетных и экспериментальных работ по определению аэродинамических характеристик РКН, разработки принципиально новой динамической схемы пространственного движения РКН, создания алгоритмов управления взаимосвязанным движением РКН по тангажу и рысканию с одновременным ограничением аэродинамических нагрузок и др.

Задачей предложенного изобретения является разработка способа выведения на орбиту, обеспечивающего с учетом ограничений, накладываемых кинематикой трехстепенной гиростабилизированной платформы (ГСП), полет в плотных слоях атмосферы с отработкой программы тангажа в плоскости симметрии РКН, что позволяет сделать независимыми каналы тангажа и рыскания СУ.

Техническими результатами предлагаемого изобретения является минимизация затрат на разработку алгоритмов управления СУ для семейства РКН с несколькими боковыми блоками, а также унификация аппаратуры СУ и ее размещения на РКН для всех ракет семейства.

Указанные технические результаты достигаются тем, что в способе выведения на орбиту ракеты космического назначения пакетной схемы на участке полета до отделения боковых блоков, заключающемся в старте ракеты, в выполнении программного разворота по крену на соответствующий азимуту прицеливания начальный угол γ0 для совмещения плоскости I-III с заданным азимутом прицеливания, в изменении угла тангажа по заданной программе и в отделении отработавших боковых блоков, в соответствии с изобретением, в случае выведения ракеты, у которой плоскость I-III образует углы по 45° с плоскостями симметрии, программный разворот ракеты по крену выполняют в 2 этапа, а именно через 5-10 с после старта выполняют разворот ракеты по крену на угол γ0 - 45°, а при достижении углом тангажа значения, являющегося предельно допустимым с учетом ограничений, накладываемых кинематикой ГСП, выполняют разворот ракеты по крену на угол 45° до совмещения плоскости I-III с заданным азимутом прицеливания.

Сущность предлагаемого изобретения иллюстрируется фиг.1-4, где на фиг.1 показана РКН с четырьмя ББ на старте (вид сверху); на фиг.2 - РКН с двумя ББ на старте (вид сверху); на фиг.3 - схема расположения рамок ГСП; на фиг.4 - угловое положение РКН на участке полета в плотных слоях атмосферы: а) в плоскости тангажа (вид сбоку), б) в плоскости рыскания (вид сверху)в) в плоскости крена (вид сзади).

Известный способ выведения на орбиту применяется для РКН, у которых плоскость I-III является ее плоскостью симметрии (например, как на фиг.1.). После старта такая РКН совершает программный разворот по крену для совмещения плоскости I-III с вертикальной плоскостью выведения, составляющей с меридианом угол, равный азимуту прицеливания. В дальнейшем движении до отделения ББ система управления РКН в соответствии с известным способом выведения отрабатывает программу изменения угла тангажа в плоскости выведения.

Для более подробного описания известного способа выведения введем в рассмотрение две системы координат: начальную стартовую (НССК) и связанную (ССК). Начало НССК O0 находится в центре Земли, ось O0Y0 параллельна линии отвеса, проходящей через центр масс установленной на старте РКН, и направлена в сторону носа РКН, ось О0Х0 перпендикулярна оси O0Y0, лежит в плоскости выведения и направлена в сторону пуска (т.е. образует с направлением на Север угол, равный азимуту прицеливания), ось O0Z0 дополняет НССК до правой прямоугольной. Направление осей НССК фиксируется в момент старта РКН и в дальнейшем остается неизменным в инерциальном пространстве.

Начало ССК O находится в центре масс РКН, ось OX параллельна продольной оси РКН, ось OY параллельна плоскости I-III и направлена в сторону III полуплоскости, ось OZ дополняет СК до правой прямоугольной.

Угловое движение РКН характеризуется положением ССК относительно НССК и описывается тремя углами: тангажа ϑ, рыскания Ψ и крена γ (переход от НССК к ССК осуществляется путем последовательных поворотов на эти углы в указанном порядке). На борту РКН используемая в отечественной практике трехстепенная ГСП измеряет углы поворота рамок γГСП, ψГСП, ϑГСП (см. Фиг.3), связанные с углами ϑ, ψ, γ соотношениями:

ГСП реализует на борту РКН приборную систему координат OпрXпрYпрZпр оси которой в каждый момент времени параллельны осям НССК и одинаково направлены с ними. При этом ось внешней (тангажной) рамки ГСП всегда перпендикулярна плоскости I-III РКН.

Ось OY установленной на пусковом устройстве РКН образует с плоскостью выведения угол γ0, поэтому при использовании известного способа выведения через 5-10 с после старта осуществляется программный разворот РКН по крену на угол γ0. При этом плоскость OXY совмещается с плоскостью выведения O0X0Y0. В дальнейшем до отделения ББ СУ РКН отрабатывает заданную по времени программу изменения угла тангажа, обеспечивая выполнение условий:

ϑ=ϑпр(t); ψ≈0; γ≈0.

При этом каналы тангажа, рыскания и крена СУ являются независимыми, что является необходимым условием для разработчика СУ. Это связано с тем, что плоскость выведения является плоскостью геометрической (а следовательно, и аэродинамической) симметрии на участке полета в плотных слоях атмосферы. В частности, отклоняя камеры двигателей в плоскости I-III (по тангажу), можно управлять углом атаки без создания угла скольжения, а отклоняя камеры двигателей в плоскости II-IV (по рысканию) - управлять углом скольжения без создания угла атаки.

Конструкция используемой на российских ракетах ГСП допускает любые значения измеряемых ею углов γГСП и ϑГСП. Однако на угол отклонения промежуточной рамки ГСП ψГСП наложено ограничение: (обычно ), при нарушении которого рамки ГСП «складываются» и дальнейший управляемый полет становится невозможным. При использовании известного способа выведения из условий ψ≈0; γ≈0 следует ψГСП≈0.

В случае выведения РКН типа «Ангара-«3A», когда плоскость I-III образует углы по 45° с плоскостями симметрии, в соответствии с предлагаемым в изобретении способом выведения через 5…10 с после старта РКН осуществляется первый этап программного разворота по крену на угол γ0 - 45°. При этом одна из плоскостей симметрии РКН П1 совмещается с плоскостью выведения. Для описания движения РКН в этом случае целесообразно наряду со связанной СК ввести в рассмотрение связанную-1 систему координат (ССК-1) OXY1Z1, оси OY1 и OZ1 которой параллельны плоскостям симметрии П1 и П2 соответственно (см. фиг.2). Угловое положение ССК-1 относительно НССК и описывается тремя углами: тангажа ϑ, рыскания Ψ и крена-1 γ1=γ - 45°. При полете в плотных слоях атмосферы угол γ1 для ракеты типа «Ангара-3A» играет ту же роль, что и угол γ для РКН типа «Ангара-5А». После завершения первого этапа программного разворота по крену РКН типа «Ангара-3A» будет иметь угол γ1≈0. В дальнейшем СУ осуществляет отработку программы тангажа, обеспечивая выполнение условий ϑ=ϑпр(t); ψ≈0; γ1≈0 (γ≈45°). При этом каналы тангажа, рыскания и крена СУ остаются независимыми, так как плоскость выведения практически совпадает с плоскостью симметрии РКН. Угловое положение РКН типа «Ангара-3A» на участке полета в плотных слоях атмосферы показано на фиг.4.

В процессе дальнейшего полета с углом крена γ≈45°по мере уменьшения угла тангажа (увеличивается угол отклонения промежуточной рамки ГСП ψГСП. Это связано с тем, что в целях унификации конструкции ракет семейства «Ангара» ГСП устанавливается таким образом, что ось внешней (тангажной) рамки ГСП на всех РКН семейства устанавливается перпендикулярно плоскости I-III. Такая установка оси внешней рамки является также необходимым условием для нормального продолжения управляемого полета после отделения боковых блоков. В связи с необходимостью предотвратить «складывание» рамок ГСП при достижении углом ψГСП своего предельно-допустимого значения , в соответствии с изобретением осуществляется второй этап программного разворота по крену на угол 45°. Этот этап начинается, когда угол тангажа (достигнет своего предельно-допустимого значения ϑmin, величина которого рассчитывается из первого уравнения системы (1) при ψ=0; γ=45°: Положив (с запасом) получим ϑmin=45°. На типовой траектории выведения РКН «Ангара-3A» это значение угла тангажа соответствует ≈125 с полета от команды КП, когда скоростной напор составляет ≈400 кгс/м2 и в дальнейшем уменьшается до 0. Второй этап программного разворота на угол 45° целесообразно «растянуть» по времени, закончив его к моменту отделения ББ (≈207 с полета). При этом зависимость от времени программного угла крена, для которой угол отклонения промежуточной рамки ψГСП не превышает своего максимально допустимого значения имеет вид: .

К моменту отделения ББ РКН будет иметь угол крена γ=0, что необходимо для нормального продолжения полета.

Источники информации

1. Ю.Г.Сихарулидзе. Баллистика летательных аппаратов. М., «Наука», 1982 г.

2. С.П.Уманский. Ракеты-носители. Космодромы. М., «Рестарт+», 2001 г.

Способ выведения на орбиту ракеты космического назначения пакетной схемы на участке полета до отделения боковых блоков, заключающийся в старте ракеты, в выполнении программного разворота по крену на соответствующий азимуту прицеливания начальный угол γ для совмещения плоскости I-III с заданным азимутом прицеливания, в изменении угла тангажа по заданной программе и в отделении отработавших боковых блоков, отличающийся тем, что в случае выведения ракеты, у которой плоскость I-III образует углы по 45° с плоскостями симметрии, программный разворот ракеты по крену выполняют в 2 этапа, а именно через 5-10 с после старта выполняют разворот ракеты по крену на угол γ - 45°, а при достижении углом тангажа значения, являющегося предельно-допустимым с учетом ограничений, накладываемых кинематикой гиростабилизированной платформы, выполняют разворот ракеты по крену на угол 45° до совмещения плоскости I-III с заданным азимутом прицеливания.
СПОСОБ ВЫВЕДЕНИЯ НА ОРБИТУ РАКЕТЫ КОСМИЧЕСКОГО НАЗНАЧЕНИЯ ПАКЕТНОЙ СХЕМЫ НА УЧАСТКЕ ПОЛЕТА ДО ОТДЕЛЕНИЯ БОКОВЫХ БЛОКОВ
СПОСОБ ВЫВЕДЕНИЯ НА ОРБИТУ РАКЕТЫ КОСМИЧЕСКОГО НАЗНАЧЕНИЯ ПАКЕТНОЙ СХЕМЫ НА УЧАСТКЕ ПОЛЕТА ДО ОТДЕЛЕНИЯ БОКОВЫХ БЛОКОВ
СПОСОБ ВЫВЕДЕНИЯ НА ОРБИТУ РАКЕТЫ КОСМИЧЕСКОГО НАЗНАЧЕНИЯ ПАКЕТНОЙ СХЕМЫ НА УЧАСТКЕ ПОЛЕТА ДО ОТДЕЛЕНИЯ БОКОВЫХ БЛОКОВ
СПОСОБ ВЫВЕДЕНИЯ НА ОРБИТУ РАКЕТЫ КОСМИЧЕСКОГО НАЗНАЧЕНИЯ ПАКЕТНОЙ СХЕМЫ НА УЧАСТКЕ ПОЛЕТА ДО ОТДЕЛЕНИЯ БОКОВЫХ БЛОКОВ
Источник поступления информации: Роспатент

Показаны записи 91-100 из 104.
17.04.2019
№219.017.1574

Блок электроразъемов

Изобретение относится к устройствам для соединения и последующего разъединения электрических соединительных элементов между разделяемыми отсеками космических летательных аппаратов. Предлагаемый блок содержит две части соединителя с взаимодействующими между собой элементами электроразъемов,...
Тип: Изобретение
Номер охранного документа: 0002294039
Дата охранного документа: 20.02.2007
17.04.2019
№219.017.1575

Блок предварительной расстыковки электроразъемов

Изобретение относится к устройствам для соединения и последующего разъединения электрических соединительных элементов, установленных на космических летательных аппаратах. Предлагаемый блок содержит две части соединителя с взаимодействующими между собой элементами электроразъемов, привод...
Тип: Изобретение
Номер охранного документа: 0002294038
Дата охранного документа: 20.02.2007
09.05.2019
№219.017.4da9

Узел стыковки электрических цепей разъемного соединения

Изобретение относится к ракетной технике и может быть использовано для соединения и последующего разъединения электрических цепей отделяемого и бортового оборудования. Узел стыковки содержит первую и вторую части соединителя, установленные соответственно на отделяемом и бортовом блоках...
Тип: Изобретение
Номер охранного документа: 0002339553
Дата охранного документа: 27.11.2008
09.05.2019
№219.017.4f2e

Способ разделения ступеней ракеты-носителя пакетной схемы

Изобретение относится к космической технике. Способ разделения ступеней ракеты-носителя пакетной схемы характеризуется тем, что в расчетный момент времени разрывают нижние узлы связи. Разворачивают первую ступень вокруг верхних узлов связи за счет силы тяги двигателей первой ступени. Разрывают...
Тип: Изобретение
Номер охранного документа: 0002455204
Дата охранного документа: 10.07.2012
24.05.2019
№219.017.6053

Способ защиты стартовых сооружений от газодинамического воздействия струй двигателей ракеты

Изобретение относится к ракетно-космической технике, а именно к ракетам космического назначения. Способ защиты стартовых сооружений от газодинамического воздействия струй двигателей ракеты заключается в выполнении маневра углового разворота ракеты по заранее введенной в систему управления...
Тип: Изобретение
Номер охранного документа: 0002407680
Дата охранного документа: 27.12.2010
29.05.2019
№219.017.6874

Электросоединитель

Изобретение относится к ракетной технике и может быть использовано для соединения и последующего разъединения электрических цепей, формирующих сигнал в системе управления. Электросоединитель содержит первую (1) и вторую (2) части и снабжен кожухом (6) с хвостовиком (7), который соединен...
Тип: Изобретение
Номер охранного документа: 0002455203
Дата охранного документа: 10.07.2012
09.06.2019
№219.017.7c3c

Фланцевый точечный стык

Фланцевый точечный стык относится к космической и авиационной технике и может быть использован с целью сохранения или минимизации деформаций внешних обводов силовых частей и агрегатов космических аппаратов, ракет-носителей и летательных аппаратов, имеющих в процессе эксплуатации существенный...
Тип: Изобретение
Номер охранного документа: 0002361790
Дата охранного документа: 20.07.2009
13.06.2019
№219.017.81dc

Терморегулирующее покрытие

Изобретение относится к терморегулирующим покрытиям, наносимым на наружную поверхность для поддержания определенного теплового режима космического аппарата. Описано терморегулирующее покрытие, выполненное из композиции, содержащей в качестве связующего амидосодержащую акриловую смолу в...
Тип: Изобретение
Номер охранного документа: 0002315794
Дата охранного документа: 27.01.2008
13.06.2019
№219.017.8236

Идентификатор частотных характеристик

Идентификатор частотных характеристик предназначен для экспериментального исследования динамических (частотных) характеристик систем автоматического управления. Техническим результатом изобретения является расширение функциональных возможностей устройства. Идентификатор состоит из генератора...
Тип: Изобретение
Номер охранного документа: 0002321043
Дата охранного документа: 27.03.2008
13.06.2019
№219.017.8241

Блок электроразъемов летательного аппарата

Изобретение относится к электромеханическим разъемным соединениям и может быть использовано для соединения и последующего разъединения электроразъемов летательного аппарата. Блок электроразъемов летательного аппарата содержит первую и вторую части соединителя, штыри, пальцы со сферическими...
Тип: Изобретение
Номер охранного документа: 0002320521
Дата охранного документа: 27.03.2008
Показаны записи 81-84 из 84.
03.06.2020
№220.018.2331

Способ стабилизации структурно неустойчивых осцилляторов жидкости ракет-носителей

Заявленное изобретение относится к способу стабилизации структурно неустойчивых осцилляторов жидкости ракет-носителей с помощью маршевого или управляющих двигателей. Для стабилизации осцилляторов измеряют параметры движения ракеты-носителя, применяют алгоритм стабилизации, основанный на...
Тип: Изобретение
Номер охранного документа: 0002722519
Дата охранного документа: 01.06.2020
04.06.2020
№220.018.2419

Способ управления программным разворотом разгонного блока

Изобретение относится к управлению ориентацией жидкостного разгонного блока (РБ) во время работы продольно установленных двигателей поджатия топлива (или маршевой двигательной установки). Априорная информация (известная до полета РБ) о параметрах колебаний жидкости в баке РБ имеет достаточную...
Тип: Изобретение
Номер охранного документа: 0002722628
Дата охранного документа: 02.06.2020
26.07.2020
№220.018.3893

Способ автономной навигации для объекта космического назначения

Изобретение относится к области навигационного приборостроения и может найти применение в системах автономной навигации объектов космического назначения: ракет-носителей (РН), разгонных блоков (РБ) и космических аппаратов (КА), использующих платформенную инерциальную навигационную систему,...
Тип: Изобретение
Номер охранного документа: 0002727784
Дата охранного документа: 23.07.2020
01.06.2023
№223.018.749e

Стенд гидравлического канала связи

Изобретение относится к устройствам для имитации гидравлического канала передачи данных при строительстве скважин, считывания показаний с измерительных приборов и передачи по запросу показаний в сеть сбора данных и может быть применено для настройки, проведения исследований на этапе...
Тип: Изобретение
Номер охранного документа: 0002778813
Дата охранного документа: 25.08.2022
+ добавить свой РИД