×
10.04.2013
216.012.3370

Результат интеллектуальной деятельности: СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ВИРУСНОЙ ТРАНСДУКЦИИ

Вид РИД

Изобретение

№ охранного документа
0002478711
Дата охранного документа
10.04.2013
Аннотация: Изобретение относится к области биотехнологии. Эукариотические клетки трансдуцируют ретровирусом в присутствии гистонного белка бис-мет-гистона И 1.3. Способ позволяет повысить эффективность ретровирусной трансдукции и избежать недостатков аналогов. Изобретение может быть использовано в медицине, ветеринарии, биологии для получения лекарственных препаратов для генной терапии и для генетической модификации клеток in vitro/ex vivo. 6 ил., 4 пр.
Основные результаты: Способ увеличения частоты трансдукции эукариотических клеток с помощью ретровируса, отличающийся тем, что эукариотические клетки инфицируют ретровирусом в присутствии бис-мет-гистона Н 1.3 в эффективном количестве.

Изобретение относится к способу увеличения частоты ретровирусной трансдукции эукариотических клеток и может быть использовано в медицине, ветеринарии, биологии для получения лекарственных препаратов для генной терапии.

Известен способ [1] повышения эффективности ретровирусной трансдукции (инфекции, трансфекции генетического материала) с помощью поликатиона - декстрана. Недостатком способа является высокая токсичность и низкая эффективность декстрана. Кроме того, декстран не разрешен для клинического применения.

Известен способ [2] повышения эффективности ретровирусной трансдукции с помощью поликатиона - полибрена. Недостатком способа (Manning, Hackett et a1. 1971) является высокая токсичность и низкая эффективность полибрена. Кроме того, полибрен не разрешен для клинического применения.

Известен способ [3] «Опосредованный вирусом усиленный перенос ДНК». Способ также направлен на повышения эффективности ретровирусной трансдукции. Усиление ретровирусного переноса ДНК достигают инфицированием клеток в присутствии фибронектина или его фрагментов. Недостатком известного способа является высокая себестоимость фибронектина. Кроме того, инфицирование в присутствии фибронектина по указанному способу возможно только in vitro/ex vivo, так как фибронектин является одним из основных компонентов плазмы крови (300 мкг/мл). Таким образом, способ теряет смысл при применении in vivo, при котором фибронектин присутствует в больших количествах в организме в норме.

Наиболее близким изобретением является известный способ [4] повышения эффективности ретровирусной трансдукции с помощью протамин сульфата-специфического антагониста гепарина. Недостатком способа является низкая эффективность повышения ретровирусной трансдукции и возможные побочные эффекты при клиническом применении протамин сульфата. Например, внутривенное введение может вызвать артериальную гипотензию, брадикардию, чувство жара и покраснение кожи. У больных, принимавших протамин-цинк инсулин для лечения сахарного диабета, возможны анафилактические реакции на протамина сульфат. Противопоказанием к применению протамин сульфата является гиперчувствительность, идиопатическая или врожденная гипергепаринемия. Может взаимодействовать с другими лекарственными веществами, например с растворами цефалоспоринов и пенициллином, что может привести к снижению эффективности лекарственной терапии.

Способ позволяет повысить эффективность ретровирусной трансдукции и избежать недостатков аналогов.

Технический результат достигают тем, что эукариотические клетки трансдуцируют ретровирусом в присутствии гистонного белка - бис-мет-гистона Н 1.3 [5]. Под определением РЕТРОВИРУС подразумевают любой вирус семейства Retroviridae. Все представители семейства Retroviridae обладают схожим строением и жизненным циклом. Это семейство РНК-содержащих вирусов, представляющих из себя сферические вирионы сферической формы размером 80-100 нм, покрытые внешней липопротеиновой оболочкой, содержащие оболочечные гликопротеины. После инфицирования клетки ретровирусом в цитоплазме начинается синтез вирусного ДНК-генома с использованием вирионной РНК в качестве матрицы. Все ретровирусы используют для репликации своего генома механизм обратной транскрипции: вирусный фермент обратная транскриптаза (или ревертаза) синтезирует одну нить ДНК на матрице вирусной РНК, а затем уже на матрице синтезированной нити ДНК достраивает вторую, комплементарную ей нить. Образуется двунитевая молекула ДНК, которая, проникнув через ядерную оболочку, интегрируется в хромосомную ДНК клетки и далее служит матрицей для синтеза молекул вирусных РНК. Эти РНК выходят из клеточного ядра и в цитоплазме клетки упаковываются в вирусные частицы, способные инфицировать новые клетки. Наиболее известным представителем семейства Retroviridae является вирус иммунодефицита человека (ВИЧ). В качестве примера метода повышения эффективности вирусной трансдукции, мы используем репликационно дефектный рекомбинантный лентивирус (GFP-RV), сконструированный на основе генома ВИЧ и сохранившего основные свойства ВИЧ дикого типа: способность взаимодействовать с клеточными мембранами посредством поверхностных гликопротеинов, проникать внутрь клетки-хозяина, осуществлять реакцию обратной транскрипции, транспорта в ядро клетки и интеграции в геном клетки-хозяина. Так как подобные стадии жизненного цикла присущи всем представителям семейства Retroviridae, то предложенный метод будет эффективным и для других представителей семейства.

Возможность осуществления изобретения иллюстрируют примеры. Способ производят последовательно, например, в четыре этапа.

Пример 1

Первый этап.

Культивирование клеток.

Все работы с культурой клеток проводят в стерильном ламинарном боксе согласно общепринятым правилам работы в лаборатории 2-го класса био-безопасности.

Эмбриональные клетки почки человека НЕК-293Т (АТСС, CRL-11268) и HeLa (АТСС, CCL-2) культивируют в среде DMEM с добавлением 10% сыворотки крови плодов коровы (англ. Fetal Bovine Semm, FBS) и пенстрепа (фирма-производитель - Sigma, Великобритания). Клетки инкубируют при плюс 37°С, во влажной атмосфере, содержащей 5% СО2. Пересев клеток проводят при плотности клеточного монослоя 90% с применением 0,25% раствора трипсина-ЭДТА (фирма-производитель - БиоЛот, Санкт Петербург).

Таким путем завершают получение клеточных культур НЕК-293Т и HeLa и приступают ко второму этапу.

Второй этап. Получение рекомбинантного лентивируса (GFP-RV).

Рекомбинантный лентивирус получают с помощью котрансфекции культуры клеток плазмидами, кодирующими разные компоненты рекомбинантного вируса. Например плазмидами, полученными из некоммерческой организации AddGene (www.addgene.org): pCMV-VSV-G (плазмида №8454), psPAX2 (плазмида №12260) и pWPT-GFP (плазмида №12255). Клетки НЕК-293Т культивируют в культуральном флаконе Т75 до плотности клеточного монослоя 70%. Трансфекцию проводят, например через 2 часа после смены среды трансфекционной смесью: 112,5 мкг векторной плазмиды pWPT-GFP, 39,5 мкг оболочечной плазмиды pCMV-VSV-G, 75 мкг упаковочной плазмиды psPAX2, 3,3 мл ТЕ 0, 1X (10 мМ Трис + 1 мМ ЭДТА рН 8,0), 1,75 мл дистиллированной воды, 565 мкг 2,5 М раствора CaCl2, 5,7 мл 2х HBS (0,280 М NaCl, 0,1 М Hepes, 0,0015 М Na2HPO4, рН 7,12). Через 17 часов после трансфекции заменяют среду на свежую. Сбор содержащего вирус супернатанта проводят 3 раза, через каждые 12 часов. Супернатанты объединяют и хранят при плюс 4°С. По завершению сбора супернатанты центрифугируют в течение 5 минут, при 1500 об/мин и фильтруют через фильтр 0,22 мкм. Очищенные супернатанты хранят в аликвотах при минус 80°С.

Таким путем завершают получение раствора рекомбинантного лентивируса GFP-RV и приступают к третьему этапу.

Третий этап. Приготовление раствора бис-мет-гистона H 1.3.

Для приготовления препаратов гистона (гистонного белка) делают навеску бис-мет-гистона Н 1.3, растворяют в стерильной воде MilliQ до концентрации 50 мкг/мкл. Рабочий раствор бис-мет-гистона Н 1.3 хранят при плюс 4°С.

Четвертый этап. Трансдукция клеток HeLa рекомбинантным лентивирусом GFP-RV.

Эксперименты проводят, например - в 24-луночных культуральных планшетах. Клетки HeLa культивируют в 24-луночном планшете до плотности клеточного монослоя 50%. Далее клетки инфицируют рекомбинантным лентивирусом GFP-RV, экспрессирующим GFP. Для этого к клеткам HeLa добавляют рекомбинантный лентивирус с протамин сульфатом в количестве 5 мкг на 500 мкл среды (конечная концентрация 10 мкг/мл).

Клетки инкубируют в течение 48 часов при плюс 37°С, во влажной атмосфере, содержащей 5% СO2, после чего определяют степень инфицирования клеток рекомбинантным лентивирусом.

Инфицирование клеток определяют по экспрессии и флуоресценции GFP, например - на проточном цитометре Becton Dickinson FACSCalibur (Becton Dickinson, San Jose, CA, USA) согласно инструкциям производителя.

Пример 2

Отличается от примера 1 тем, что на 4 этапе клетки (вместо протамин сульфата) предобрабатывают бис-мет-гистоном Н 1.3. и затем добавляют рекомбинантный лентивирус.

Пример 3

Отличается от примера 1 тем, что на 4 этапе клетки (вместо протамин сульфата) обрабатывают рекомбинантным лентивирусом и затем бис-мет-гистоном H 1.3.

Пример 4

Отличается от примера 1 тем, что на 4 этапе клетки (вместо протамин сульфата) обрабатывают смесью рекомбинантного лентивируса и бис-мет-гистона H 1.3.

Бис-мет-гистон Н 1.3 (в примерах 2-4) добавляют в лунку в количестве 125 мкг на 500 мкл среды (конечная концентрация 250 мкг/мл).

Концентрация 250 мкг/мл - максимально нетоксичная концентрация гистона для клеток HeLa (на сроках 24, 48 и 72 часа после добавления бис-мет-гистона Н 1.3), то есть была выбрана максимально безопасная (с точки зрения цитотоксичности) концентрация гистона, которая является эффективной в данном случае. В каждом конкретном случае количество бис-мет-гистона Н 1.3 будет зависеть от клеточной культуры, от используемого ретровируса и возможно других факторов.

На Фигурах приведены данные проточной цитофлуориметрии клеток, трансдуцированных рекомбинантным лентивирусом, экспрессирующим зеленый флуоресцентный белок GFP. Культуру клеток или раствор лентивируса обрабатывали рекомбинантным бис-мет-гистоном Н 1.3 в различных вариантах. Эффективность вирусной трансдукции по экспрессии репотерного гена, например - GFP. Ген GFP входит в состав генома рекомбинантного лентивируса и, таким образом, ведет себя как типичный вирусный ген. Для экспрессии лентивирусных генов необходимо, чтобы провирус встроился (интегрировался) в геном клетки хозяина. После встраивания в геном клетки хозяина начинается экспрессия вирусных генов - транскрипция мРНК и трансляция белка. Таким образом, наличие зеленой флуоресценции клеток свидетельствует об успешной вирусной трансдукции.

Фиг.1. Не трансдуцированные клетки (контроль фоновой флуоресценции). В связи с тем, что популяция клеток обладает естественной гетерогенностью по уровню автофлуоресценции, пороговое значение флуоресценции было выбрано таким образом, что 99,5% клеток считались не флуоресцирующими, а 0,5% клеток, соответственно, считались ложно-положительными по флуоресценции.

Фиг.2. - Клетки, трансдуцированные рекомбинантным лентивирусом GFP-RV. 9,21% клеток обладали флуоресценцией, что свидетельствует о трансдукции GFP-RV.

Фиг.3. - Клетки, трансдуцированные рекомбинантным лентивирусом GFP-RV с добавлением протамин сульфата. 12,73% клеток обладали флуоресценцией, что свидетельствует о трансдукции GFP-RV. Таким образом, добавление протамин сульфата повысило эффективность вирусной трансдукции на 38,22% по отношению с GFP-RV без дополнительных добавок.

Фиг.4. - Клетки, предобработанные рекомбинантным бис-мет-гистоном Н 1.3 и затем трансдуцированные рекомбинантным лентивирусом GFP-RV. 8,16% клеток обладали флуоресценцией, что свидетельствует о трансдукции GFP-RV. Таким образом, предобработка клеток бис-мет-гистоном Н 1.3 не привела к увеличению эффективности лентивирусной трансдукции.

Фиг.5. - Клетки, трансдуцированные рекомбинантным лентивирусом GFP-RV и затем обработанные рекомбинантным бис-мет-гистоном Н 1.3. 27,19% клеток обладали флуоресценцией, что свидетельствует о трансдукции GFP-RV. Таким образом, обработка бис-мет-гистоном Н 1.3 повысила эффективность вирусной трансдукции на 213,59% по отношению с GFP-RV без дополнительных добавок.

Фиг.6. - Клетки, трансдуцированные смесью рекомбинантного лентивируса GFP-RV и рекомбинантного бис-мет-гистона Н 1.3. 23,75% клеток обладали флуоресценцией, что свидетельствует о трансдукции GFP-RV. Таким образом, смесь GFP-RV с бис-мет-гистоном Н 1.3 повысила эффективность вирусной трансдукции на 186,57% по отношению с GFP-RV без дополнительных добавок.

Приведенные примеры показывают полезность способа для повышения эффективности ретровирусной трансдукции. Способ повышения эффективности вирусной трансдукции может найти применение в клеточной биологии, биотехнологии и генной терапии для создания препаратов, повышающих эффективность ретровирусной трансдукции, что применимо, в частности, для генетической модификации клеток in vitro.

Данное техническое решение также может найти применение для лечения наследственных заболеваний, посредством использования известных стандартных технических устройств и оборудования.

Источники информации

1. Duc-Nguyen, H. (1968). "Enhancing effect of diethylaminoethyl-dextran on the focus-forming titer of a murine sarcoma virus (Harvey strain)." J Virol 2(6): 643-644.

2. Manning, J.S., A.J.Hackett, et al. (1971). "Effect of polycations on sensitivity of BALD-3T3 cells to murine leukemia and sarcoma virus infectivity." Appl Microbiol 22(6): 1162-1163.

3.Патент RU 2174846. Опосредованный вирусом усиленный перенос ДНК.

4. Cornetta, K. and W.F.Anderson (1989). "Protamine sulfate as an effective alternative to polybrene in retroviral-mediated gene-transfer: implications for human gene therapy." J Virol Methods 23(2): 187-194.

5. WO 2008122434, 16.10.2008.

Способ увеличения частоты трансдукции эукариотических клеток с помощью ретровируса, отличающийся тем, что эукариотические клетки инфицируют ретровирусом в присутствии бис-мет-гистона Н 1.3 в эффективном количестве.
СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ВИРУСНОЙ ТРАНСДУКЦИИ
СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ВИРУСНОЙ ТРАНСДУКЦИИ
СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ВИРУСНОЙ ТРАНСДУКЦИИ
СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ВИРУСНОЙ ТРАНСДУКЦИИ
СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ВИРУСНОЙ ТРАНСДУКЦИИ
СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ВИРУСНОЙ ТРАНСДУКЦИИ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 38.
10.06.2015
№216.013.4ff0

Набор олигонуклеотидных зондов, днк-микрочип, способ его получения, комплект для молекулярно-генетического исследования человека и их применение

Изобретение относится к области биохимии, в частности к набору олигонуклеотидных зондов для диагностики популяции людей, проживающих на территории РФ, на наследственные моногенные заболевания, путем выявления мутаций и/или полиморфизмов. Также заявлены способ получения ДНК-микрочипа, набор для...
Тип: Изобретение
Номер охранного документа: 0002551985
Дата охранного документа: 10.06.2015
10.07.2015
№216.013.5dcc

Применение гистонного белка в качестве ингибитора аденовирусной трансдукции

Изобретение относится к области биологии, медицины и ветеринарии. Предложено применение рекомбинантного гистонного белка Н1.3 в качестве ингибитора аденовирусной трансдукции эукариотических клеток. Изобретение может быть использовано для получения лекарственных препаратов для лечения...
Тип: Изобретение
Номер охранного документа: 0002555553
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.64ee

Кодон-оптимизированные последовательности и фармацевтическая композиция для восстановления кровеносных сосудов

Изобретение относится к области биохимии, в частности к кодон-оптимизированным последовательностям ДНК. Заявлены кодон-оптимизированные кДНК, кодирующие фактор стромальных клеток 1 альфа и сосудистый эндотелиальный фактор роста изоформы 165, а также содержащая их рекомбинантная плазмида....
Тип: Изобретение
Номер охранного документа: 0002557385
Дата охранного документа: 20.07.2015
27.07.2015
№216.013.6875

Кодон-оптимизированная рекомбинантная плазмида, способ стимуляции регенерации периферического нерва, способ лечения поврежденного нерва человека

Изобретение относится к генной инженерии, а также к медицине, а именно к нейрохирургии и травматологии. Описана геннотерапевтическая конструкция, кодирующая эндотелиальный сосудистый фактор роста (VEGF) и фактор роста фибробластов (FGF-2). В основе геннотерапевтической конструкции, кодирующей...
Тип: Изобретение
Номер охранного документа: 0002558294
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.6d3c

Ингаляционная лекарственная форма полисиалированной дезоксирибонуклеазы i человека и способ ее получения

Изобретение относится к биотехнологии. Описана лиофилизированная лекарственная форма гликопротеина дезоксирибонуклеазы I человека для приготовления ингаляционного раствора для снижения вязкости мокроты, отличающаяся тем, что указанный гликопротеин представляет собой рекомбинантную...
Тип: Изобретение
Номер охранного документа: 0002559522
Дата охранного документа: 10.08.2015
27.08.2015
№216.013.74e6

Антиретровирусные препараты на основе производных азидотимидина

Изобретение относится к антиретровирусным производным азидотимидина формулы 1 и может быть использовано в качестве лекарственного средства. R+R=-CH(CH)CH- R+R=-CH(CH)CH- R=Н, R=СН R=H, R=CHCHCH R=H, R=C(CH) R=H, R=CH(CH)CH Предложены новые эффективные средства с низкой токсичностью...
Тип: Изобретение
Номер охранного документа: 0002561501
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7537

Инъекционная лекарственная форма олигопептидного препарата для лечения рассеянного склероза и способ ее получения

Группа изобретений относится к области фармацевтики и касается инъекционной лекарственной формы олигопептидов для лечения рассеянного склероза. Инъекционная лекарственная форма содержит олигопептиды GGDRGAPKRGSGKDSHH; GFGYGGRASDYKSAHK; QGTLSKIFKLGGRDSRSGSPMARR, заключенные в липосомы,...
Тип: Изобретение
Номер охранного документа: 0002561582
Дата охранного документа: 27.08.2015
20.09.2015
№216.013.7dcf

Способ доставки нуклеиновых кислот в эукариотические клетки

Изобретение относится к биотехнологии, в частности к генетической инженерии. Предложен способ доставки нуклеиновых кислот в эукариотические клетки, предусматривающий трансфекцию методом кальций-фосфатной преципитации в присутствии гистона Н1.3 в эффективном количестве. Способ повышает...
Тип: Изобретение
Номер охранного документа: 0002563804
Дата охранного документа: 20.09.2015
10.12.2015
№216.013.960e

Способ наращивания объема костной ткани в зонах дефекта альвеолярного отростка челюсти

Изобретение относится к медицине, в частности к остеологии, и касается наращивания объема костной ткани в зонах дефекта альвеолярного отростка челюсти. Способ включает забор из передней брюшной стенки методом липосакции жировой ткани, последующую ее ферментизацию с добавлением коллагеназы,...
Тип: Изобретение
Номер охранного документа: 0002570034
Дата охранного документа: 10.12.2015
12.01.2017
№217.015.5d45

Способ получения суспензии ядросодержащих клеток из пуповинной крови со стандартизированной концентрацией

Изобретение относится к области биохимии, в частности к способам получения из пуповинной крови ядросодержащих клеток для парентерального введения в терапии заболеваний внутренних органов человека. Заявлен способ получения суспензии ядросодержащих клеток из пуповинной крови со...
Тип: Изобретение
Номер охранного документа: 0002590688
Дата охранного документа: 10.07.2016
Показаны записи 11-20 из 59.
10.07.2015
№216.013.5dcc

Применение гистонного белка в качестве ингибитора аденовирусной трансдукции

Изобретение относится к области биологии, медицины и ветеринарии. Предложено применение рекомбинантного гистонного белка Н1.3 в качестве ингибитора аденовирусной трансдукции эукариотических клеток. Изобретение может быть использовано для получения лекарственных препаратов для лечения...
Тип: Изобретение
Номер охранного документа: 0002555553
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.64ee

Кодон-оптимизированные последовательности и фармацевтическая композиция для восстановления кровеносных сосудов

Изобретение относится к области биохимии, в частности к кодон-оптимизированным последовательностям ДНК. Заявлены кодон-оптимизированные кДНК, кодирующие фактор стромальных клеток 1 альфа и сосудистый эндотелиальный фактор роста изоформы 165, а также содержащая их рекомбинантная плазмида....
Тип: Изобретение
Номер охранного документа: 0002557385
Дата охранного документа: 20.07.2015
27.07.2015
№216.013.6875

Кодон-оптимизированная рекомбинантная плазмида, способ стимуляции регенерации периферического нерва, способ лечения поврежденного нерва человека

Изобретение относится к генной инженерии, а также к медицине, а именно к нейрохирургии и травматологии. Описана геннотерапевтическая конструкция, кодирующая эндотелиальный сосудистый фактор роста (VEGF) и фактор роста фибробластов (FGF-2). В основе геннотерапевтической конструкции, кодирующей...
Тип: Изобретение
Номер охранного документа: 0002558294
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.6d3c

Ингаляционная лекарственная форма полисиалированной дезоксирибонуклеазы i человека и способ ее получения

Изобретение относится к биотехнологии. Описана лиофилизированная лекарственная форма гликопротеина дезоксирибонуклеазы I человека для приготовления ингаляционного раствора для снижения вязкости мокроты, отличающаяся тем, что указанный гликопротеин представляет собой рекомбинантную...
Тип: Изобретение
Номер охранного документа: 0002559522
Дата охранного документа: 10.08.2015
27.08.2015
№216.013.74e6

Антиретровирусные препараты на основе производных азидотимидина

Изобретение относится к антиретровирусным производным азидотимидина формулы 1 и может быть использовано в качестве лекарственного средства. R+R=-CH(CH)CH- R+R=-CH(CH)CH- R=Н, R=СН R=H, R=CHCHCH R=H, R=C(CH) R=H, R=CH(CH)CH Предложены новые эффективные средства с низкой токсичностью...
Тип: Изобретение
Номер охранного документа: 0002561501
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7537

Инъекционная лекарственная форма олигопептидного препарата для лечения рассеянного склероза и способ ее получения

Группа изобретений относится к области фармацевтики и касается инъекционной лекарственной формы олигопептидов для лечения рассеянного склероза. Инъекционная лекарственная форма содержит олигопептиды GGDRGAPKRGSGKDSHH; GFGYGGRASDYKSAHK; QGTLSKIFKLGGRDSRSGSPMARR, заключенные в липосомы,...
Тип: Изобретение
Номер охранного документа: 0002561582
Дата охранного документа: 27.08.2015
20.09.2015
№216.013.7dcf

Способ доставки нуклеиновых кислот в эукариотические клетки

Изобретение относится к биотехнологии, в частности к генетической инженерии. Предложен способ доставки нуклеиновых кислот в эукариотические клетки, предусматривающий трансфекцию методом кальций-фосфатной преципитации в присутствии гистона Н1.3 в эффективном количестве. Способ повышает...
Тип: Изобретение
Номер охранного документа: 0002563804
Дата охранного документа: 20.09.2015
10.12.2015
№216.013.960e

Способ наращивания объема костной ткани в зонах дефекта альвеолярного отростка челюсти

Изобретение относится к медицине, в частности к остеологии, и касается наращивания объема костной ткани в зонах дефекта альвеолярного отростка челюсти. Способ включает забор из передней брюшной стенки методом липосакции жировой ткани, последующую ее ферментизацию с добавлением коллагеназы,...
Тип: Изобретение
Номер охранного документа: 0002570034
Дата охранного документа: 10.12.2015
12.01.2017
№217.015.5d45

Способ получения суспензии ядросодержащих клеток из пуповинной крови со стандартизированной концентрацией

Изобретение относится к области биохимии, в частности к способам получения из пуповинной крови ядросодержащих клеток для парентерального введения в терапии заболеваний внутренних органов человека. Заявлен способ получения суспензии ядросодержащих клеток из пуповинной крови со...
Тип: Изобретение
Номер охранного документа: 0002590688
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.7487

Способ создания персонализированного ген-активированного имплантата для регенерации костной ткани

Предложенная группа изобретений относится к области медицины. Предложены персонализированный ген-активированный имплантат для замещения костных дефектов у млекопитающего и способ его получения, предусматривающий проведение компьютерной томографии области костной пластики, моделирование костного...
Тип: Изобретение
Номер охранного документа: 0002597786
Дата охранного документа: 20.09.2016
+ добавить свой РИД