×
10.04.2013
216.012.3257

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ФОТОКАТАЛИЗАТОРА ДЛЯ РАЗЛОЖЕНИЯ ОРГАНИЧЕСКИХ ЗАГРЯЗНИТЕЛЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится способу получения фотокатализатора. Описан способ получения фотокатализатора для разложения органических загрязнителей, заключающийся в приготовлении шихты из прекурсоров, взятых в стехиометрических соотношениях, которую смешивают с низкоплавким флюсом, прокаливанием смеси и последующим промыванием полученного фотокатализатора, причем в качестве прекурсоров взяты оксиды висмута, по крайней мере, один оксид металла из группы металлов, имеющих ионный радиус в интервале от 0,5 до 0,8 Å и, по крайней мере, один оксид метала из группы металлов, имеющих ионный радиус в интервале от 0,9 до 1,5 Å, смесь содержит от 1-80% флюса, в качестве флюса использована смесь NaCl и KCl, а прокаливание смеси осуществляют при температуре 700-900°С в течение 30-120 минут. Технический результат - получен эффективный фотокатализатор. 7 з.п. ф-лы, 7 ил., 1 табл., 10 пр.

Изобретение относится способу получения материалов, обладающих каталитическими, в частности фотокаталитическими, свойствами. Каталитические свойства предлагаемых материалов могут находить применение в органическом синтезе, в частности в реакциях дегидрирования, например дегидрирования бутана до 1,3-бутадиена. Фотокаталитические материалы широко используют для очистки воздуха и воды от биологических, минеральных и органических загрязнителей путем гетерогенных фотоиндуцированных каталитических процессов, в ходе которых образуются продукты, безопасные для окружающей среды и человека.

В последние годы значительно вырос интерес к фотокатализаторам на основе фаз Ауривиллиуса. К фазам Ауривиллиуса относят соединения, обладающие общей формулой [Bi2O2][An-1BnO3n+1], где В - металл, обладающий ионным радиусом от 0,5 до 0,8Å, а А - металл, обладающий ионным радиусом от 0,9 до 1,5Å. К преимуществам таких фотокатализаторов относится в первую очередь их способность проявлять фотокаталитическую активность при облучении не только ультрафиолетовым, но и видимым светом.

В настоящее время наиболее широко используемыми способами получения фотокаталитических материалов на основе фаз Ауривиллиуса являются керамический синтез, синтез методом соосаждения и золь-гель синтез.

Известен способ получения фотокатализаторов по керамической технологии с использованием в качестве прекурсоров оксидов, гидроксидов, карбонатов или нитратов металлов [1, 2]. Известный способ требует прокаливания в течение 3 дней при 700°С [1] или 4-8 часов при 800-950°С [2]. Кроме того, получаемый таким способом материал содержит частицы больших размеров, что снижает его эффективность в качестве катализатора.

Известен способ получения фотокатализаторов соосаждением из раствора, содержащего соли металлов, с последующим прокаливанием полученного прекурсора [3]. Известный способ позволяет получать частицы размером около 100 нм. Однако он требует значительных затрат времени (получение прекурсора - до суток; прокаливание прекурсора - не менее 6 ч). Кроме того, значительные сложности вызывает его распространение на фазы Ауривиллиуса, содержащие ниобий или тантал, так как их растворимые в воде соединения значительно менее доступны.

Известен способ получения фотокатализаторов в расплаве Bi2O3 [4]. Известный способ позволяет получить частицы материала с минимальным содержанием дефектов, однако требует длительного прокаливания при 1330-1450°С.

Известен способ получения фотокатализаторов Bi4M2O11 (М=Nb, Та, V) [5] гидротермальным методом. Гидротермальная обработка проводится при 160-200°С в течение 12-24 ч и требует специализированного оборудования, устойчивого к высоким давлениям и коррозионно-активной среде.

Известен способ получения фотокатализатора на основе Bi2WO6 [6], который является наиболее близким по решаемой технической задаче, достигаемому техническому результату, использованию в качестве способа получения фотокатализатора синтеза в расплаве солей, и выбранный в качестве прототипа. Этот способ заключается в приготовлении смеси нитратов лития и натрия в весовом отношении 27:23, используемой в качестве реакционной среды; смешивании реакционной среды и используемых для реакции оксидов в весовом отношении (5-30):1, добавлении безводного спирта, перетирании и высушивании при 50-80°С; нагревании полученной смеси до 200-500°С со скоростью 2-5°С/мин и выдерживании при этой температуре в течение 2-8 часов; растворении реакционной среды, фильтровании, промывании и высушивании при 50-80°С.

Недостатком прототипа является сравнительно высокая продолжительность синтеза (4-10 часов с учетом времени нагрева), а также низкая кристалличность получаемого продукта, приводящая к сравнительно невысокой фотокаталитической активности.

Заявленное изобретение свободно от этих недостатков.

Техническим результатом заявленного изобретения является получение более эффективного фотокатализатора за более короткое время.

Указанный технический результат достигается тем, что в заявленном способе получения фотокатализатора для разложения органических загрязнителей, который заключается в приготовлении шихты из прекурсоров, взятых в стехиометрических соотношениях, которую затем смешивают с низкоплавким флюсом, проводят прокаливание смеси и последующее промывание полученного фотокатализатора, в соответствие с изобретением в качестве прекурсоров взяты оксид висмута, по крайней мере, один оксид металла из группы металлов, имеющих ионный радиус в интервале от 0,5 до 0,8 Å и, по крайней мере, один оксид метала из группы металлов, имеющих ионный радиус в интервале от 0,9 до 1,5 Å, смесь содержит от 1-80% флюса, в качестве флюса использована смесь солей NaCl и KCl, а прокаливание смеси осуществляют при температуре 700-900°С в течение 30-120 минут.

Кроме того, указанный технический результат достигается тем, что то в качестве оксида металла из группы металлов, имеющих ионный радиус в интервале от 0,5 до 0,8 Å, выбран титан.

Помимо того, указанный технический результат достигается тем, что в качестве оксидов металлов из группы металлов, имеющих ионный радиус в интервале от 0,5 до 0,8 Å, выбраны титан и ниобий.

Кроме этого, указанный технический результат достигается тем, что в качестве оксида металла из группы металлов, имеющих ионный радиус в интервале от 0,5 до 0,8 Å, выбран тантал.

Помимо этого, указанный технический результат достигается тем, что в качестве оксида металла из группы металлов, имеющих ионный радиус в интервале от 0,5 до 0,8 Å, выбраны титан и тантал.

Кроме того, указанный технический результат достигается тем, что в качестве оксида металла из группы металлов, имеющих ионный радиус в интервале от 0,9 до 1,5 Å, выбран висмут.

Кроме того, указанный технический результат достигается тем, что в качестве оксида металла из группы металлов, имеющих ионный радиус в интервале от 0,9 до 1,5 Å, выбран неодим.

Кроме того, указанный технический результат достигается тем, что в качестве оксида металла из группы металлов, имеющих ионный радиус в интервале от 0,9 до 1,5 Å, выбран неодим.

Кроме того, указанный технический результат достигается тем, что в качестве оксида металла из группы металлов, имеющих ионный радиус в интервале от 0,9 до 1,5 Å, выбран свинец.

На базе Санкт-Петербургского государственного университета были проведены лабораторные исследования, отражающие конкретные примеры реализации указанного изобретения.

Примеры конкретной реализации составов и способов получения фотокатализатора.

Пример 1.

В качестве флюса использовали смесь солей NaCl и KCl. Указанные соли, взятые в эквимолярном соотношении, предварительно совместно перетерли с добавлением спирта и полученный флюс высушили в сушильном шкафу.

Для получения шихты взяли навески оксидов металлов, выбранных для получения фотокатализатора с общей формулой [Bi2O2][AB2O7], в стехиометрических количествах таким образом, чтобы суммарная масса шихты составила 0,5000 г. Указанные навески смешали и перетирали в агатовой ступке в течение 0,5 ч.

Затем к полученной шихте добавили такое количество флюса, чтобы получить выбранное массовое соотношение шихта-флюс. Полученную смесь дополнительно перетерли в течение 10 минут, запрессовали в таблетку и прокаливали в закрытом тигле в муфельной печи. Использовался следующий режим прокаливания: нагрев в течение 30 минут до выбранной температуры (700-900°С); выдержка при данной температуре в течение 30-120 минут, естественное охлаждение печи до комнатной температуры.

Полученную в результате прокаливания массу переносили на фильтр, представляющий собой целлюлозную мембрану типа МФАС-Б-4 (производство «Владипор»), и промывали дистиллированной водой до полного удаления флюса. Полученный твердый остаток сушили в сушильном шкафу. Чистоту полученного вещества проверяли методом рентгенофазового анализа с использованием дифрактометра Thermo ARL X'TRA. Размер и морфологию частиц изучали методом сканирующей электронной микроскопии. Выбранные для синтеза металлы, а также температурные режимы прокаливания и соотношение шихта-флюс представлены в Таблице.

№ образца Металл А Металл В % флюса в реакционной смеси Температура прокаливания Время прокаливания, мин
1 Bi Nb/Ti* 80 800 60
2 Bi Ta/Ti* 80 800 60
3 Nd Nb/Ti* 80 800 60
4 Pb Nb 80 800 60
5 Nd Ta/Ti* 80 800 60
6 Bi Nb/Ti* 80 800 30
7 Bi Nb/Ti* 1 900 60
8 Bi Nb/Ti* 1 800 120
9 Bi Nb/Ti* 50 800 90
10 Bi Nb/Ti* 80 700 120
*) В случаях, когда в качестве металла В выбраны два металла, их брали в эквимолярных количествах.

Пример 2.

Способ получения фотокатализатора состава Bi3NbTiO9

Для получения шихты взяли 0,3833 г Bi2O3, 0,0729 г Nb2O5, 0,0438 г TiO2. К шихте добавили 2,0000 г флюса. Прокаливание проводили при 800°С в течение 60 мин.

Пример 3.

Способ получения фотокатализатора состава Bi3NbTiO9

Для получения шихты взяли 0,3833 г Bi2O3, 0,0729 г Nb2O5, 0,0438 г TiO2. К шихте добавили 2,0000 г флюса. Прокаливание проводили при 800°С в течение 30 мин.

Пример 4.

Способ получения фотокатализатора состава Bi3NbTiO9

Для получения шихты взяли 0,3833 г Bi2O3, 0,0729 г Nb2O5, 0,0438 г TiO2. К шихте добавили 0,0050 г флюса. Прокаливание проводили при 900°С в течение 60 мин.

Пример 5.

Способ получения фотокатализатора состава Bi3NbTiO9

Для получения шихты взяли 0,3833 г Bi2O3, 0,0729 г Nb2O5, 0,0438 г TiO2. К шихте добавили 0,0050 г флюса. Прокаливание проводили при 800°С в течение 120 мин.

Пример 6.

Способ получения фотокатализатора состава Bi3NbTiO9

Для получения шихты взяли 0,3833 г Bi2O3, 0,0729 г Nb2O5, 0,0438 г TiO2. К шихте добавили 0,5000 г флюса. Прокаливание проводили при 800°С в течение 90 мин.

Пример 7.

Способ получения фотокатализатора состава Bi3NbTiO9

Для получения шихты взяли 0,3833 г Bi2O3, 0,0729 г Nb2O5, 0,0438 г TiO2. К шихте добавили 2,0000 г флюса. Прокаливание проводили при 700°С в течение 120 мин.

Пример 8.

Способ получения фотокатализатора состава Bi3TaTiO9

Для получения шихты взяли 0,3495 г Bi2O3, 0,1105 г Ta2O5, 0,0400 г TiO2. К шихте добавили 2,0000 г флюса. Прокаливание проводили при 800°С в течение 60 мин.

Пример 9.

Способ получения фотокатализатора состава Bi2NdNbTiO9

Для получения шихты взяли 0,2750 г Bi2O3, 0,0785 г Nb2O3, 0,0993 г Nd2O3, 0,0472 г TiO2. К шихте добавили 2,0000 г флюса. Прокаливание проводили при 800°С в течение 120 мин.

Пример 10.

Способ получения фотокатализатора состава Bi2PbNb2O9

Для получения шихты взяли 0,2439 г Bi2O3, 0,1392 г Nb2O5, 0,1169 г PbO2. К шихте добавили 2,0000 г флюса. Прокаливание проводили при 800°С в течение 60 мин.

Пример 11.

Способ получения фотокатализатора состава Bi2NdTaTiO9

Для получения шихты взяли 0,2491 г Bi2O3, 0,1182 г Ta2O5, 0,0900 г Nd2O3, 0,0427 г TiO2. К шихте добавили 2,0000 г флюса. Прокаливание проводили при 800°С в течение 120 мин.

На Фиг.1-5 представлены дифрактограммы образцов фотокатализаторов, полученных способом согласно изобретению. Во всех случаях получено химически чистое вещество требуемого состава.

На Фиг.1 представлена дифрактограмма образцов фотокатализатора состава Bi3NbTiO9 (пример 3).

На Фиг.2 представлена дифрактограмма образцов фотокатализатора состава Bi3NbTiO9 (пример 4).

На Фиг.3 представлена дифрактограмма образцов фотокатализатора состава Bi2NdNbTiO9 (пример 9).

На Фиг.4 представлена дифрактограмма образцов фотокатализатора состава Bi2PbNb2O9 (пример 10).

На Фиг.5 представлена дифрактограмма образцов фотокатализатора состава Bi2NdTaTiO9 (пример 11).

На Фиг.6 представлена электронная микрофотография фотокатализатора согласно Примеру 10. Видно, что фотокатализатор образуется в виде хорошо закристаллизованных пластинок толщиной около 0,2 мкм и диаметром около 1 мкм. Низкая толщина частиц обеспечивает высокую площадь поверхности катализатора, а высокая кристалличность обеспечивает высокий квантовый выход фотокаталитического процесса.

На Фиг.7 представлены графики разложения модельного загрязнителя (краситель метиловый оранжевый) в присутствии фотокатализатора согласно примерам 2 и 10. Анализ кинетической зависимости в случае фотокатализатора согласно примеру 2 показывает, что уже через 30 мин после начала процесса степень разложения модельного загрязнителя составляет более 93%. В случае фотокатализатора, полученного согласно способу прототипа степень разложения модельного загрязнителя составляет 89,7% через 1 час после начала процесса.

Таким образом, заявленное изобретение, как показали результаты многочисленных исследований, позволяет получать более эффективный фотокатализатор за более короткий промежуток времени.

Технико-экономическая эффективность заявленного изобретения состоит в разработке быстрого и недорогого способа получения высокоэффективного фотокатализатора, пригодного для использования в системах очистки воды от органических загрязнителей.

Использованные источники информации

1. US 5935549.

2. CN 101612561.

3. US 4668500.

4. US 6143679.

5. CN 101612560.

6. CN 101264934 - прототип.


СПОСОБ ПОЛУЧЕНИЯ ФОТОКАТАЛИЗАТОРА ДЛЯ РАЗЛОЖЕНИЯ ОРГАНИЧЕСКИХ ЗАГРЯЗНИТЕЛЕЙ
СПОСОБ ПОЛУЧЕНИЯ ФОТОКАТАЛИЗАТОРА ДЛЯ РАЗЛОЖЕНИЯ ОРГАНИЧЕСКИХ ЗАГРЯЗНИТЕЛЕЙ
СПОСОБ ПОЛУЧЕНИЯ ФОТОКАТАЛИЗАТОРА ДЛЯ РАЗЛОЖЕНИЯ ОРГАНИЧЕСКИХ ЗАГРЯЗНИТЕЛЕЙ
СПОСОБ ПОЛУЧЕНИЯ ФОТОКАТАЛИЗАТОРА ДЛЯ РАЗЛОЖЕНИЯ ОРГАНИЧЕСКИХ ЗАГРЯЗНИТЕЛЕЙ
СПОСОБ ПОЛУЧЕНИЯ ФОТОКАТАЛИЗАТОРА ДЛЯ РАЗЛОЖЕНИЯ ОРГАНИЧЕСКИХ ЗАГРЯЗНИТЕЛЕЙ
СПОСОБ ПОЛУЧЕНИЯ ФОТОКАТАЛИЗАТОРА ДЛЯ РАЗЛОЖЕНИЯ ОРГАНИЧЕСКИХ ЗАГРЯЗНИТЕЛЕЙ
СПОСОБ ПОЛУЧЕНИЯ ФОТОКАТАЛИЗАТОРА ДЛЯ РАЗЛОЖЕНИЯ ОРГАНИЧЕСКИХ ЗАГРЯЗНИТЕЛЕЙ
Источник поступления информации: Роспатент

Показаны записи 31-38 из 38.
20.06.2015
№216.013.57b9

N-адамантилбензотриазолы, проявляющие активность против вируса гриппа а, и способ их получения

Изобретение относится к области органической химии, а именно к производным N-адамантилбензотриазола 1 и 2, где R и R являются водород или нитрогруппа. Также изобретение относится к способу получения соединения формул 1 и 2. Технический результат: получены новые производные...
Тип: Изобретение
Номер охранного документа: 0002553987
Дата охранного документа: 20.06.2015
20.08.2015
№216.013.7001

Многофункциональный оптический коррелятор для обработки потока информации

Изобретение может быть использовано для опознавания сигнала в потоке информации и преобразования формы оптических импульсов. Коррелятор содержит блок для формирования потока оптической информации и блок для обработки потока оптической информации. Блок для обработки потока оптической информации...
Тип: Изобретение
Номер охранного документа: 0002560243
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.74ed

Способ иммобилизации стронций-цезиевой фракции высокоактивных отходов включением в геокерамические матрицы

Изобретение относится к средствам иммобилизации высокоактивных отходов от переработки отработанного ядерного топлива в керамические материалы с последующим захоронением в геологических формациях. В заявленном способе при иммобилизации Sr-Cs-фракции высокоактивных отходов путем включения в...
Тип: Изобретение
Номер охранного документа: 0002561508
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.77bd

Рацемический 2,17β-дисульфамоилокси-3-метокси-8α-эстра-1,3,5(10)-триен в качестве ингибитора пролиферации опухолевых клеток mcf-7

Изобретение относится к рацемическому 2,17β-дисульфамоилокси-3-метокси-8α-эстра-1,3,5(10)-триену, ингибирующему пролиферацию опухолевых клеток рака молочной железы MCF-7. 1 пр.
Тип: Изобретение
Номер охранного документа: 0002562242
Дата охранного документа: 10.09.2015
27.09.2015
№216.013.7fe6

Слоистые титанаты, способ их получения и применения

Изобретение может быть использовано в химической промышленности. Слоистый титанат содержит химически связанный, не содержащий примесей анионов гидразин, входящий в межслоевое пространство титанатных слоев. Слоистый титанат имеет следующий состав: kNH·mAO·(TiM)(OOHF)·nHO, где k, m, q, w, x, y и...
Тип: Изобретение
Номер охранного документа: 0002564339
Дата охранного документа: 27.09.2015
20.11.2015
№216.013.90ff

Ниобат-титанат гидразина, способ его получения и использования

Изобретение относится к области очистки промышленных жидких отходов и сточных вод от токсичных и радиоактивных элементов и может использовано для удаления ряда радиоизотопов, таких как технеций-99, палладий-107, и токсичных экологических загрязнителей, включая свинец и шестивалентный хром....
Тип: Изобретение
Номер охранного документа: 0002568735
Дата охранного документа: 20.11.2015
25.08.2017
№217.015.c4b7

Антимикробная комбинация в отношении устойчивых к карбапенемам грамотрицательных бактерий вида pseudomonas aeruginosa, продуцирующих металло-β-лактамазу

Изобретение относится к области медицины, в частности к клинической микробиологии, и описывает антимикробные комбинации сочетанного применения карбапенемов и бисфосфонатов в отношении устойчивых к карбапенемам грамотрицательных бактерий вида Pseudomonas aeruginosa ATCC 27853, продуцирующих...
Тип: Изобретение
Номер охранного документа: 0002618433
Дата охранного документа: 03.05.2017
29.12.2017
№217.015.fc8a

Способ определения влажности почвы и устройство для его реализации

Изобретение относится к области электротехники, а именно, к устройству и способу определения влажности почвы на основе зависимости диэлектрической проницаемости почвы от ее влажности, и может быть использовано в сельском хозяйстве для оперативного определения влажности почвы. В качестве...
Тип: Изобретение
Номер охранного документа: 0002638150
Дата охранного документа: 12.12.2017
Показаны записи 41-42 из 42.
19.06.2019
№219.017.8a07

Способ получения фотокатализатора на основе нанокристаллического диоксида титана

Изобретение относится к способам получения фотокатализаторов. Описан способ получения фотокатализатора на основе нанокристаллического диоксида титана, заключающийся в приготовлении водного раствора сульфата титанила с концентрацией 0,1-1,0 моль/л, добавлении в раствор кислоты до получения...
Тип: Изобретение
Номер охранного документа: 0002408428
Дата охранного документа: 10.01.2011
19.06.2019
№219.017.8a0a

Способ получения фотокатализатора на основе диоксида титана

Изобретение относится к способам получения фотокатализаторов. Описан способ получения фотокатализатора на основе диоксида титана, заключающийся в приготовлении водного раствора сульфата титанила с концентрацией 0,1-1,0 моль/л, добавлении в раствор кислоты до получения концентрации 0,15-1 моль/л...
Тип: Изобретение
Номер охранного документа: 0002408427
Дата охранного документа: 10.01.2011
+ добавить свой РИД