×
27.03.2013
216.012.3157

Результат интеллектуальной деятельности: ПЛАЗМОХИМИЧЕСКИЙ СПОСОБ ПЕРЕРАБОТКИ ТВЕРДЫХ БЫТОВЫХ И ПРОМЫШЛЕННЫХ ОТХОДОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу переработки отходов перерабатывающих, коммунальных, промышленных и других производств, содержащих органику. Способ переработки бытовых и промышленных отходов включает их загрузку с предварительной сепарацией путем отделения стекла, бетона, керамики и металла; сушку с частичным пиролизом органики в шахтной печи; перемешивание перерабатываемой массы отходов с дальнейшим их пиролизом. Достигается снижение температуры этого процесса до 500-850°C в результате воздействия восстановительных плазмохимических компонентов, получаемых путем парокислородной конверсии метана с увеличенным расходом пара, подаваемых противотоком перемещающимся отходам. Оборотный технологический газ, отходящий из шахтной печи, очищается в скрубберах и разделяется на топливный газ, подаваемый как в конвертор метана, так и в котел-утилизатор, при получении восстановительного газа, с частичным добавлением природного газа и кислорода. Отходящие газы из котла-утилизатора очищаются в адсорбере путем контакта с мелкозернистой известью, кроме того, часть образующихся восстановительных газов расходуется в нижней части реактора во время мгновенного теплового удара, осуществляемого путем сжигания сажепылевых частиц, поступающих из циклона для горячего газа с осажденными на них диоксинами, фуранами и другими вредными компонентами в атмосфере кислорода, причем образующиеся восстановительные газы могут направляться также в качестве синтез-газа в производство метанола, диметилэфира, моторного топлива и других продуктов. Изобретение позволяет снизить энергоемкость способа. 1 ил., 2 табл.
Основные результаты: Способ переработки бытовых и промышленных отходов, включающий их загрузку с предварительной сепарацией путем отделения стекла, бетона, керамики и металла; сушку с частичным пиролизом органики в шахтной печи; перемешивание перерабатываемой массы отходов с дальнейшим их пиролизом, отличающийся тем, что достигается снижение температуры этого процесса до 500-850°C в результате воздействия восстановительных плазмохимических компонентов, получаемых путем парокислородной конверсии метана с увеличенным расходом пара, подаваемых противотоком перемещающимся отходам, а оборотный технологический газ, отходящий из шахтной печи, очищается в скрубберах и разделяется на топливный газ, подаваемый как в конвертор метана, так и в котел-утилизатор, при получении восстановительного газа, с частичным добавлением природного газа и кислорода, при этом отходящие газы из котла-утилизатора очищаются в адсорбере путем контакта с мелкозернистой известью, кроме того, часть образующихся восстановительных газов расходуется в нижней части реактора во время мгновенного теплового удара, осуществляемого путем сжигания сажепылевых частиц, поступающих из циклона для горячего газа с осажденными на них диоксинами, фуранами и другими вредными компонентами, в атмосфере кислорода, причем образующиеся восстановительные газы могут направляться также в качестве синтез-газа в производство метанола, диметилэфира, моторного топлива и других продуктов.

Изобретение относится к способу переработки отходов перерабатывающих, коммунальных (ТБО), промышленных и других производств, содержащих органику.

Известен способ плазменной газификации и устройств для его выполнения (см. Кумкова И.И. Плазменная газификация. Деловой, инженерно-технический журнал о машиностроении, №2, 2007 г., стр.84-87), включающий высокотемпературную плазменную газификацию с возможностью получения электрической энергии, утилизацию остаточного тепла и последующую многоступенчатую очистку дымовых газов, при этом плазменная установка включает реактор-газификатор, генератор плазмы (до 50 кВт), дожигатель, генератор плазмы (6 кВт), скруббер распылительный, скруббер насадочный, вытяжной вентилятор.

Недостатком является значительная энергоемкость, обусловленная необходимостью наличия плазматрона, и связанные с ним электрозатраты, а также образование громадных количеств отходящих газов, требующих значительных затрат на их очистку и утилизацию.

Известен способ переработки бытовых и промышленных отходов (см. патент РФ №2349654, МПК C22B 7/00, F23G 5/00. Опубл. 20.03.2009), включающий загрузку их с флюсующими добавками в барботируемую подаваемым газом ванну шлакового расплава в электропечь с погруженным в шлаковый расплав электродом; при удельной мощности 400-1500 кВт/м3, интенсивности дутья 0,3-0,5 нм3/т и температуре расплава 1450-1600°C происходит дожигание выделяющихся горючих компонентов, утилизация пыли и тепла отходящих газов, при этом объем приэлектродной зоны поддерживают в пределах от 5 до 25% от объема ванны шлакового расплава, а газ поступает в шлаковый расплав со скоростью в пределах 50-150 нм/с.

Недостатком способа является необходимость подержания температуры до 1600°C, что приводит к высокой энергоемкости, обусловленной наличием высоковольтных генераторов плазмы переменного тока, использования дожигателя и сложной системы газоочистки.

Технической задачей является снижение энергоемкости способа переработки бытовых и промышленных отходов путем как уменьшения температуры сжигания, за счет использования восстановленных газов (CO+H2), получаемых методом паровой, углекислотной или кислородной конверсии метана, и присутствием продуктов дожига.

Решение технической задачи при реализации предлагаемого способа заключается в следующем:

- вместо плазменной газификации с температурой 1200°C и выше используются восстановленные газы, содержащие CO+H2, получаемые в конверторе путем паровой и парокислородной каталитической конверсии, что позволяет снизить температуру до 500-850°C;

- использование восстановительного газа с частичным добавлением кислорода и природного газа позволит резко сократить использование природного газа в реакторе и в целом в процессе плазмохимической переработки твердых бытовых отходов, причем зола и шлак являются экологически безопасным продуктом;

- осуществление очистки дымовых газов при контакте с мелкоизмельченной известью перед подачей в выхлопную трубу практически обеспечивает экологически необходимые параметры выбрасываемого в атмосферу потока в промзоне.

Технический результат достигается способом переработки бытовых и промышленных отходов, включающим загрузку с предварительной сепарацией путем отделения стекла, бетона, керамики и металла; сушку с частичным пиролизом органики в шахтой печи; перемешивание перерабатываемой массы отходов с дальнейшим пиролизом и отличающимся тем, что достигается снижение температуры конверсии метана до 500-850°C в результате воздействия газифицированных компонентов с увеличенным расходом пара, подаваемых противотоком перемещающимся отходам, а оборотный технологический газ, отходящий из шахтной печи, очищается в скрубберах и разделяется на топливный газ, подаваемый как в конвертор, так и в котел-утилизатор, при получении восстановительного газа, с частичным добавлением природного газа и кислорода, при этом отходящие газы из котла-утилизатора очищаются в адсорбере путем контакта с мелкозернистой известью, кроме того, часть образующихся восстановительных газов расходуется в нижней части реактора во время мгновенного теплового удара, осуществляемого путем сжигания сажепылевых частиц, поступающих из циклона для горячего газа с осажденными на них диоксинами, фуранами и другими вредными компонентами в атмосфере кислорода, причем образующиеся восстановительные газы направляются в качестве синтез-газа в производство метанола, диметилэфира, моторного топлива.

Оригинальность предлагаемого способа заключается в организации непрерывного процесса сушки и газификации отходов (ТБО) в атмосфере восстановительных газов, что позволяет поддерживать устойчивый процесс схемы большой мощности мусоросжигающих заводов (МСЗ), причем газовые потоки, циркулирующие в оборотном технологическом контуре, легко регулируются путем изменения соотношения их количества, и сжигания вредных примесей в системе реактора в рециркуляционном потоке восстановительного газа, вследствие чего твердые и газообразные продукты низкопламенного процесса газификации очищаются от вредных примесей до экологически допустимых норм.

Технологическая схема (фиг.1) предлагаемого плазмохимического способа переработки твердых бытовых отходов (ТБО) позволяет получать из биомассы отходов вторичный синтез-газ, обозначаемый на принципиальной схеме оборотным технологическим газом, с последующим использованием его для конверсии метана, получения пара, горячей воды и электроэнергии. При этом составной частью процесса высокотемпературного пиролиза являются твердые продукты в виде экологически чистых золы или шлака, а неконденсируемые газы CO и H2, имеющие высокую теплотворную способность, используются в качестве возобновляемого топлива.

Предлагаемый способ заключается в следующем.

Бытовые отходы, проходя предварительную сепарацию (на фиг.1 не показано) с отделением стекол, бетона, керамики и металлов, и в виде материала на газификацию (см. фиг.1) поступают во влажном состоянии в шахту 1, где под воздействием восстановительного газа, противоположно направленного перемещающемуся ТБО, сушатся и частично осуществляется пиролиз органики по реакциям (4) и (5). После чего шнеком (на фиг.1 не показано) ТБО направляется в реактор 2 (собственно газификатор) с последующим перемешиванием, что улучшает процесс пиролиза под воздействием газифицирующих компонентов восстановительного газа, полученных ранее методом пароуглекислотной или кислородной конверсии метана.

Отходящие из реактора 2 газы поступают в циклон для горячего газа 4 и после шахтной печи 1 и скруббера 5 в качестве компонента смеси направляются в конвертор 3 и котел-утилизатор 7.

Перемешиваемая реакционная масса в нижней части реактора 2 подвергается термическому удару, возникающему за счет поступления пыли, сажи и кислорода; адсорбированные на частицы основные количества диоксинов, фуранов и других экологически вредных компонентов во всей массе при контакте с кислородом мгновенно выгорают. Зола и шлак становятся экологически безопасными и могут использоваться, например, в дорожном строительстве и т.д.

Газы, отходящие из шахтной печи 1, образуют оборотный технологический газ, который для очистки посредством газодувки 6 направляется в скруббер 5, а после газодувки 6 разделяется на два потока. Первый поток с частичным добавлением как кислорода и природного газа (ПГ), так пыли и газа из циклона 4 направляется в конвертор 3, куда одновременно поступает атмосферный воздух и топливный газ для отопления конвертора 3. Второй поток оборотного технологическою газа в виде «топливного газа» частично направляется в конвертор 3, а частично в котел-утилизатор 7, где, смешиваясь с воздухом, сгорает, образуя пар, который используется как для конверсии углеводорода в конверторе 3, так и поступает к потребителям на бытовые и производственные нужды, или в качестве синтез-газа направляется в процесс производства метанола, диметилэфира, моторного топлива и др.

Отходящие газы из котла-утилизатора 7 поступают в адсорбер 8, где контактируют с мелкоизмельченной известью, в результате чего улавливаются остатки диоксинов и фуранов. Дымовые газы после очистки в адсорбере 8, а также после конвертора поступают в выхлопную трубу 9, после чего в экологически безопасном состоянии выбрасываются в атмосферу.

Пример 1 практической реализации заявляемого способа, разрабатываемого по критериям качества газовой продукции

Механизм процессов пиролиза углерода в восстановительной среде

Бытовые отходы подвергаются предварительной сепарации с отделением неорганических компонентов в виде стекла, бетона, керамики и металла, после чего загружаются в шахтную печь 1 (см. принципиальную схему плазмохимической переработки твердых бытовых отходов), где под воздействием горячих восстановительных газов, получаемых путем смешанной пароуглекислотной каталитической конверсии метана:

или кислородной конверсии метана

(см., например, Атрощенко В.И. и др. Курс технологии связанного азота / Под ред. чл.-корр. АН УССР Атрощенко В.И. М.: Химия, 1968. - 383 с.), осуществляют сушку перемещающейся в шахтной печи 1 массы с частичным пиролизом органики. После чего шнеком (на фиг.1 не показан) ТБО перемещаются в реактор 2 с перемешиванием, что улучшает процесс дальнейшего пиролиза под воздействием газифицирующих компонентов, подаваемых противотоком к ТБО и организующих режим термолиза углерода:

Выбор окислителей и их сочетание определяются как целевым назначением процесса конверсии CH4 и CO, так и кинетическими и технико-экономическими решениями.

Так увеличение расхода водяного пара сверхстехиометрического

позволяет сдвинуть равновесие реакции (1) вправо, что повышает эффективность использования предлагаемого способа путем снижения температуры до 500-800°C. Следовательно, допускаются относительно невысокие температуры гомогенных реакций конверсии метана и оксида углерода:

которые протекают не только в отдельном аппарате-конверторе (реформере) (2), но частично и в шахтной печи 1 (реакциями (1), (2) и (3)).

Использование восстановительного газа, получаемого в соответствии с реакциями (4) и (5) для образования CO2 в аппаратах 1 и 2 за счет газификации органических компонентов мусора с последующей подачей их в скрубберы для доочистки и далее смешивания с природным газом, позволяет устранить, частично или полностью, зависимость мусорозавода (МСЗ) от источников природного газа.

Исходные данные для расчетов процессов газификации ТБО

При расчете газогенераторных процессов воспользуемся следующими предположениями.

1) Температура газификации в верхней части реактора 2, куда из шахтной печи 1 поступают абсолютно сухие вещества ТБО и где достигается гарантированное подавление вредных веществ, в том числе хлорсодержащих диоксидов и фуранов, составляет 1000°C.

2) Полученная товарная продукция - тепловая энергия в количестве не менее 12,0 Гкал/час и негашеная известь в количестве до 150 кг/ч - отпускается потребителям, что окунает затраченные средства.

3) Производительность мусоросжигающего завода (МСЗ) но твердым бытовым отходам (ТБО), поступающим на МСЗ, составляет 10 т/час.

4) ТБО, поступающие на МСЗ, имеют следующий усредненный морфологический состав (% по массе):

- бумага - 35,1; - текстиль - 7,6;
- пищевые отходы - 18,5; - кожа - 2,8;
- древесина - 2,2; - резина - 3,3;
- металлы - 11,5; - пластмассы 8,7;
- стекло, бетон, керамика - 10,3

Средняя расчетная влажность ТБО - 32%.

5) На стадии сепарации отделяются неорганические отходы (стекло, бетон, керамика, металлы), суммарно - 21,8% массы. Для этих целей используется оборудование магнитной, механической, воздушной и частично ручной сепарации.

6) Средний элементарный состав абсолютно сухих органических компонентов ТБО составляет:

6.1 (в % масс): С - 44,0; Н - 5,2; О - 28,5; S - 0,1; Cl - 0,3; N - 4,4; зола - 17,5.

6.2 (в т): C - 2,34; H - 0,28; O - 1,52; S - 0,053; Cl - 0,016; N - 0,23; зола - 0,93. Всего - 5,32 т.

7) Органическая часть ТБО с влажностью 32% подвергается измельчению до фрагментов с размерами, не превышающими 100 мм. Измельчение происходит, например, в зубчатых дробилках. Далее измельченные органические компоненты включаются в соответствующие схемы газификации ТБО.

8) Газообразное дутье, осуществляемое в реакторе (1) и (2), нагревается до 300-400°C.

Результаты расчетов газовой фазы

Случай 1. Воздушное дутье

Так как энерго-материальные балансовые расчеты газогенераторных процессов являются весьма сложными и громоздкими (требуется совместное решение систем материальных и теплотехнических уравнений), то в нашем случае упростимся путем использования результатов уже осуществленных операций моделирования процессов в воздушной газификации ТБО заданного состава (Калинин Л.В., Калинина О.В., Тихонов А.В., Тихонова Е.В. Способ сжигания твердых бытовых прочих органических отходов и устройство для его осуществления / Изобретение. Патент Российской Федерации RU 2249766 от 05.08.2002).

Перерасчеты в нашем случае показывают, что для сжигания 5,32 т абсолютно сухих ТБО требуется количество воздуха, определяемое стехиометрическими соотношениями окислительных реакций

C+O2=CO2,

H2+0,5O2=H2O,

S2+2O2=2SO2,

и заданными значениями коэффициента избытка окислителя, равного 1,4, а также соотношением содержания кислорода в 1 кг воздуха, равным 0,233. Найдено, что в газогенератор 2 необходимо подать 44,5 т воздуха. Получаются следующие содержания газообразных продуктов (см. таблицу 1).

Таблица 1
Компонент Влажный газ Сухой газ
т тыс. нм3 % объемн. т тыс. нм3 % объемн.
CO2 8,79 4,47 21,45 8,79 4,47 30,64
H2O 5,02 6,25 30,00 - - -
SO2 0,01 0,00 0,00 0,01 0,00 0,00
O2 1,88 1,32 6,33 1,88 1,32
Cl 0,016 0,01 0,05 0,016 0,01 0,05
N 35,677 8,79 42,18 35,674 8,79 60,25
Зола 0,93 - - 0,93 - -
Итого: 52,32 20,84 100,00 47,30 14,60 100,00

В результате сгорания углерода, водорода и серы реальное выделение тепловой энергии составило (за вычетом 20% теплопотерь) 26,0 Гкал/час.

Случай 2. Паровоздушное дутье

Расчеты авторов изобретения RU 2249766 показывают, что при использовании камеры каталитического дожига температура продуктов сгорания достигает 1385-1400°C. Вычисления других авторов (Бесков С.Д. Технохимические расчеты. - М.: Высш. шк., 1965. - С.265-316) выявляют, что при газификации угля чистым воздухом внутри газогенератора можно достичь температуры 1498°C. Нами же в условиях задачи принято, что температура газификации должна быть равной 1000°C. Снижения температуры до заданною предела можно достичь за счет применения паровоздушного дутья в зону реакции:

C+0,5O2+1,88N2=CO+1,88N2,

C+H2O=CO+H2

По Бескову С.Д. для обеспечения в генераторе температуры 1000°С вдувается паровоздушная смесь в соотношении: на 0,129 нм3 пара 1 нм3 воздуха. Или в перерасчете: на 1 кг угля расходуется 3,81 нм3 паровоздушной смеси (с.273). Следовательно, при газификации 2,34 т элементарного угля объем сухого генераторного газ составляет: 2,34×3,84=10 нм3/час. Состав его будет следующим (% объемн.):

СО - 34,4; N2 - 53,8; H2 - 8,9.

Подача пара достигает:

или 3,56 т/ч, где 29 - молярная масса воздуха, моль-1.

Случай 3. Восстановительное плазменное дутье

Влияние подач кислорода на изменение объема газовой фазы не учитываем вследствие незначительности воздействия этого фактора. Не учитываем также влияние на этот же процесс факторов подач хлора, серы с исходным топливом.

Газифицируется ТБО следующего элементарного состава (т):

C - 2,34; O - 1,52; H - 0,28; N - 0,23; H2O - 2,5 т (физическая вода).

1) Расход кислорода на сжигание водорода:

;

где 2 т, 8 т и 18 т - молярные массы водорода, кислорода и водяного пара.

Остается кислорода: 1,52-1,12=0,4 т

2) Сгорает углерода:

;

где 12 т, 8 т и 28 т - молярные массы углерода, кислорода и окиси углерода

Остается углерода: 2,34-0,60=1,74 т

3) Конверсия углерода водяным паром:

Расходуется воды:

; ;

4) В газовой фазе содержится воды:

2,5+x2-x5=2,5+2,52-2,61=2,41 т/ч=3000 нм3

В газовую фазу выделился СО:

1,40+4,06=5,46 т/ч или 4370 нм3

Образуется водорода: 0,29 т или 3,250 нм3

5) Переходит в газовую фазу азота (0,23 т) или 370 нм3

6) Состав сухого генераторного газа при плазменной газификации ТБО (см. табл.2)

Таблица 2
Компонент м3 % объемн.
CO 4370 54,69
H2 3250 40,68
N2 370 4,63
Всего 7990 100

Выводы

1. Соотношение между объемами сухих генераторных газов:

Vвоздушн. дутье:Vпаровоздушн. дутье:Vплазм. газиф.=14600:9000:8000=1,83:1,13:1

Очевидно, что расходные коэффициенты на перемещение и очистку генераторных газов будут наименьшими для варианта с плазменной газификацией ТБО.

2. Соотношение между количествами химически и энергетически ценных восстановительных компонентов (CO и H2 обозначим их сумму через a 1, а 2 и а 3 в % от объема сухих генераторных газов):

а 1:а 2:а 3=0:46,30:95,37=0:1:2,06

Видно, что наиболее ценные продукты образуются в варианте плазменной восстановительной газификации ТБО, что и обозначает ее технико-экономические и экологические преимущества.

Пример 2 оценки степени экологической безопасности заявленного способа по внутрипроизводственному подавлению диоксинов и фуранов

В вышеупомянутом изобретении RU 2249766, для условий, аналогичных нашим, рассматривается пример санитарной очистки отходящих газов от указанных экологически чрезвычайно опасных компонентов путем обработки продуктов сгорания (52320 кг/ч) в камере декарбонизации (вертикальная шахта, противоток снизу вверх). Навстречу газовому потоку распыляется известковая мука (CaCo3) в количестве 220 кт/ч со средним диаметром частиц 15 мм. При температурах 1100-1200°C время полной диссоциации частиц этого компонента не превышает 0,12 с, т.е. практически мгновенно. Экспериментально доказано, что хлорсодержащие компоненты, входящие в состав диоксинов и фуранов (Cl - 16 кг) (см. выше), практически полностью экологически дезактивируются с образованием негашеной извести в количестве до 150 кг/ч, что отпускается потребителям (в нашем случае процесс дезактивации продуктов сгорания осуществляется в аппарате 8).

Однако с учетом особой экологической опасности упомянутых супертоксикантов, относящихся к классам полихлордибензодиоксинов и полихлорбензофуранов, простейшим из которых является 2,4-дихлорфеноксиуксусная кислота

,

мы предусмотрели ряд внутрипроизводственных мероприятий по их дезактивации:

1) Замена окислительной среды в реакторе 1 и 2 (см. схему) на восстановительную. В результате образование токсинов подавляется вследствие протекания реакции дезактивации хлора:

Cl2+H2=2Cl-+2H+

2) Организация рецикла по линии аппаратов 2, 1, 6, 3, чем минимизируется вынос из схемы токсикантов.

3) Возможная неполнота сгорания токсикантов, образующихся при огневой переработке хлорорганических отходов, подавляется путем подачи в нижнюю часть реактора 2 кислорода и природною газа, где при температурах 1000-1100°C сжигается пыль и сажа, на которых адсорбируются вредности. Получаются экологически безопасные твердые (зола, шлак) и газообразные продукты (оборотный технологический газ, топливный газ и конвертированный газ). Кроме того, доставка кислорода и природного газа на 15-20% интенсифицирует процессы пиролиза в реакторе 2.

4) Организация санитарной очистки отходящих газов в аппарате 8.

Оригинальность предлагаемого способа заключается в организации непрерывного процесса сушки и газификации отходов (ТБО) в атмосфере восстановительных газов, что позволяет поддерживать устойчивый процесс схемы большой мощности мусоросжигающих заводов (МСЗ), причем газовые потоки, циркулирующие в оборотном технологическом контуре, легко регулируются путем изменения соотношения их количества, и сжигания вредных примесей в системе реактора в рециркуляционном потоке восстановительного газа, вследствие чего твердые и газообразные продукты низкопламенного процесса газификации очищаются от вредных примесей до экологически допустимых норм.

Способ переработки бытовых и промышленных отходов, включающий их загрузку с предварительной сепарацией путем отделения стекла, бетона, керамики и металла; сушку с частичным пиролизом органики в шахтной печи; перемешивание перерабатываемой массы отходов с дальнейшим их пиролизом, отличающийся тем, что достигается снижение температуры этого процесса до 500-850°C в результате воздействия восстановительных плазмохимических компонентов, получаемых путем парокислородной конверсии метана с увеличенным расходом пара, подаваемых противотоком перемещающимся отходам, а оборотный технологический газ, отходящий из шахтной печи, очищается в скрубберах и разделяется на топливный газ, подаваемый как в конвертор метана, так и в котел-утилизатор, при получении восстановительного газа, с частичным добавлением природного газа и кислорода, при этом отходящие газы из котла-утилизатора очищаются в адсорбере путем контакта с мелкозернистой известью, кроме того, часть образующихся восстановительных газов расходуется в нижней части реактора во время мгновенного теплового удара, осуществляемого путем сжигания сажепылевых частиц, поступающих из циклона для горячего газа с осажденными на них диоксинами, фуранами и другими вредными компонентами, в атмосфере кислорода, причем образующиеся восстановительные газы могут направляться также в качестве синтез-газа в производство метанола, диметилэфира, моторного топлива и других продуктов.
ПЛАЗМОХИМИЧЕСКИЙ СПОСОБ ПЕРЕРАБОТКИ ТВЕРДЫХ БЫТОВЫХ И ПРОМЫШЛЕННЫХ ОТХОДОВ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 150.
20.07.2014
№216.012.dfe0

Термокамера для испытания электронных изделий

Изобретение относится к устройствам, используемым для климатических испытаний полупроводниковых приборов при одновременном измерении их электрических параметров. Изобретение обеспечивает получение нормированных условий климатических испытаний электронных изделий путем равномерной подачи...
Тип: Изобретение
Номер охранного документа: 0002523098
Дата охранного документа: 20.07.2014
20.10.2014
№216.012.fe65

Система гелиотеплохладоснабжения

Изобретение предназначено для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах. Система гелиотеплохладоснабжения содержит южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на...
Тип: Изобретение
Номер охранного документа: 0002530981
Дата охранного документа: 20.10.2014
20.11.2014
№216.013.06dc

Устройство для сбора нефти с поверхности воды

Изобретение относится к гидротехнике, в частности к устройствам для разделения несмешивающихся жидкостей, и может использоваться при очистке сточных вод, загрязненных маслами, нефтью и другими веществами. Устройство содержит бесконечную ленту, установленную на ведущем и натяжном барабанах с...
Тип: Изобретение
Номер охранного документа: 0002533157
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.08fc

Устройство для регулирования температуры воздуха в помещении

Изобретение относится к области автоматического регулирования и управления, в частности к устройствам для регулирования температуры воздуха в помещениях, отапливаемых от систем открытого теплоснабжения. Технической задачей предлагаемого изобретения является снижение энергоемкости теплоснабжения...
Тип: Изобретение
Номер охранного документа: 0002533701
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.0b41

Строительная панель

Изобретение относится к наземному строительству и может найти применение при строительстве панельных домов. Технический результат: поддержание теплоизоляционных свойств строительной панели при воздействии отрицательных температур окружающей среды путем устранения воздействия «мостиков холода»...
Тип: Изобретение
Номер охранного документа: 0002534289
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0d6b

Устройство для пневматического транспортирования сыпучего материала

Изобретение относится к пневматическому транспортированию сыпучего материала и может быть использовано в строительной, металлургической, химической и других отраслях промышленности. Устройство пневматического транспортирования сыпучего материала содержит расходный бункер с аэрирующим...
Тип: Изобретение
Номер охранного документа: 0002534852
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0f9b

Компрессорная установка

Изобретение относится к управлению компрессорными установками. Компрессорная установка содержит компрессор с воздушным фильтром, установленные на линии нагнетания теплообменник-утилизатор, концевой холодильник, воздухосборник, соединенные между собой основными и дополнительными трубопроводами,...
Тип: Изобретение
Номер охранного документа: 0002535412
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1178

Компрессорная установка

Изобретение относится к управлению компрессорными установками. Компрессорная установка содержит компрессор, установленные на линии нагнетания теплообменник-утилизатор, концевой холодильник, воздухосборник, соединенные между собой основными и дополнительными трубопроводами, и пневмосеть....
Тип: Изобретение
Номер охранного документа: 0002535895
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.16f5

Сенсор для получения спектров гигантского комбинационного рассеяния и способ его изготовления

Изобретение относится к способу изготовления сенсора для получения спектров гигантского комбинационного рассеяния света (ГКР), который представляет собой стеклянный капилляр, на внутреннюю сторону которого нанесены наночастицы серебра. Наночастицы серебра получаются и прикрепляются к...
Тип: Изобретение
Номер охранного документа: 0002537301
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1b07

Система гелиотеплохладоснабжения

Изобретение предназначено для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах. Система гелиотеплохладоснабжения, содержащая южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на...
Тип: Изобретение
Номер охранного документа: 0002538347
Дата охранного документа: 10.01.2015
Показаны записи 41-50 из 146.
20.11.2013
№216.012.8333

Мостовой измеритель параметров многоэлементных rlc двухполюсников

Изобретение относится к измерительной технике. Мостовой измеритель параметров многоэлементных RLC двухполюсников содержит генератор импульсов напряжения, выход которого подключен ко входу четырехплечей мостовой цепи, первая ветвь которой состоит из последовательно включенных одиночного...
Тип: Изобретение
Номер охранного документа: 0002499263
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.8334

Мостовой измеритель параметров двухполюсников

Изобретение относится к промышленной электронике, автоматике, информационно-измерительной технике. Мостовой измеритель параметров двухполюсников содержит последовательно соединенные генератор питающих импульсов, четырехплечую мостовую цепь и нуль-индикатор. Мост содержит две параллельные ветви,...
Тип: Изобретение
Номер охранного документа: 0002499264
Дата охранного документа: 20.11.2013
27.11.2013
№216.012.85b0

Силовая установка транспортного средства

Изобретение может быть использовано в силовых установках, эксплуатируемых на транспортных средствах, преимущественно на тепловозах. Силовая установка транспортного средства содержит двигатель внутреннего сгорания с турбокомпрессором, снабженным всасывающим и выхлопным патрубками и сообщенным с...
Тип: Изобретение
Номер охранного документа: 0002499902
Дата охранного документа: 27.11.2013
27.11.2013
№216.012.860f

Мостовой измеритель параметров двухполюсников

Изобретение относится к измерительной технике. Мостовой измеритель параметров двухполюсников содержит последовательно соединенные генератор, мостовую цепь и нуль-индикатор. Первый выход генератора подключен ко входу четырехплечей мостовой цепи, который образует общий вывод двух параллельно...
Тип: Изобретение
Номер охранного документа: 0002499997
Дата охранного документа: 27.11.2013
10.12.2013
№216.012.89e8

Цифровой многокомпонентный датчик перемещений

Изобретение относится к измерительной технике, в частности к устройствам для измерения деформаций и перемещений, и предназначено для измерения статических или плавно меняющихся перемещений. Цифровой многокомпонентный датчик перемещений, содержащий корпус, пишущий узел, чувствительный элемент с...
Тип: Изобретение
Номер охранного документа: 0002500986
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8a0f

Мостовой измеритель параметров n-элементных двухполюсников

Изобретение относится к контрольно-измерительной технике, автоматике и промэлектронике, оно может быть использовано для измерения параметров объектов, которые можно представить схемами замещения в виде многоэлементных пассивных двухполюсников, а также его можно использовать для определения...
Тип: Изобретение
Номер охранного документа: 0002501025
Дата охранного документа: 10.12.2013
20.12.2013
№216.012.8ac8

Способ (варианты) и устройство диагностики состояний пчелиных семей по их акустическому шуму

Изобретение относится к области пчеловодства и может быть применено в практической работе на индивидуальных и коллективных пасеках. В первом способе диагностики состояний пчелиных семей по их акустическому шуму в течение времени анализа, до 10 минут, осуществляют снятие звукового сигнала с...
Тип: Изобретение
Номер охранного документа: 0002501211
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.901a

Способ обработки при восстановлении некруглого вала трех диаметров

Способ включает долбление фасонным долбяком с линией режущей кромки рабочей части, состоящей из двух секторов и предназначенной для последовательной обработки путем обкатки одной грани обрабатываемого некруглого вала трех диаметров, относящейся к части некруглого вала и участков цилиндрической...
Тип: Изобретение
Номер охранного документа: 0002502583
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.9581

Устройство для автоматической поверки стрелочных измерительных приборов

Изобретение относится к вычислительной технике и может быть использовано для автоматизации поверки стрелочных измерительных приборов. Техническим результатом устройства является сокращение времени поверки стрелочных измерительных приборов. Технический результат достигается тем, что в...
Тип: Изобретение
Номер охранного документа: 0002503967
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.96e5

Устройство для контроля анизотропии электрической проводимости биотканей

Изобретение относится к медицинской технике. Устройство для измерения импеданса биологических тканей содержит последовательно соединенные матрицу из N электродов, блок коммутации, инструментальный усилитель, блок детекторов, многоканальный АЦП, микроконтроллер и ЭВМ. В устройство введены первый...
Тип: Изобретение
Номер охранного документа: 0002504328
Дата охранного документа: 20.01.2014
+ добавить свой РИД