×
20.03.2013
216.012.304f

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ ПРОВОДНИКОВ В НАНОСТРУКТУРАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии создания сложных проводящих структур и может быть использовано в нанотехнологии. Сущность изобретения: способ формирования проводников в наноструктурах включает нанесение на подложку исходного диэлектрического вещества, в молекулы которого входят атомы металла, полное удаление из него атомов неметалла в выбранных участках путем облучения диэлектрического вещества через маску пучком ускоренных частиц и повторное облучение этих же участков пучками ускоренных ионов или атомов неметаллов, входящих в состав исходного диэлектрического вещества с дозой, обеспечивающей уменьшение объема сформированных при первичном облучении металлических проводников. Техническим результатом изобретения является уменьшение размеров формируемых проводников, расширение используемых материалов, упрощение требований к соотношению размеров в маске. 1 ил.
Основные результаты: Способ формирования проводников в наноструктурах, включающий нанесение на подложку исходного диэлектрического вещества, в молекулы которого входят атомы металла, полное удаление из него атомов неметалла в выбранных участках путем облучения диэлектрического вещества через маску пучком ускоренных частиц и повторное облучение этих же участков пучками ускоренных ионов или атомов неметаллов, входящих в состав исходного диэлектрического вещества с дозой, обеспечивающей уменьшение объема сформированных при первичном облучении металлических проводников.

Изобретение относится к технологии создания сложных проводящих структур с помощью потока ускоренных частиц и может быть использовано в нанотехнологиях, микроэлектронике для создания сверхминиатюрных приборов, интегральных схем и запоминающих устройств.

Известен способ создания элементов проводящей структуры на диэлектрических слоях (см. описание к заявке ФРГ N 19503178, Н01L 21/60, 1997 /1/). Способ включает разрушение оксидного слоя на поверхности алюминия и осаждение упрочняющего материала. Для этого упрочняющий материал, находящийся на подложке, переносится с помощью мощного излучения на поверхность алюминия, причем перед этим оксидный слой разрушается под действием мощного излучения и возбужденных частиц упрочняющего материала. При помощи отклоняющего луч устройства на обрабатываемой поверхности создается слоистая металлизированная структура с требуемой геометрией рисунка. Недостатком известного способа является невозможность получения структуры с размерами отдельных элементов в несколько нанометров. Кроме того, использование способа ограничено, поскольку он применим только для алюминиевых подложек.

Известен способ формирования рисунка с применением электронного пучка (см. описание к заявке Японии N 6038411, Н01L 21/302, 1994 /2/). Способ заключается в том, что в реакционной камере размещают систему для фокусировки электронного пучка, создают атмосферу из возбужденных реакционноспособных частиц и размещают на держателе обрабатываемую пластину. С помощью электронного пучка, несущего информацию, связанную с определенным рисунком, облучают пластину и в результате изменения ее вещества под воздействием электронного пучка и реакционноспособных частиц на пластине формируется определенный рисунок. Недостатком известного способа являются последовательный (низкопроизводительный) характер и сложность его осуществления, заключающаяся в формировании в камере атмосферы, состоящей из частиц с одинаковой реакционной способностью, чтобы обеспечить воспроизводимость процесса на всех участках рисунка, что требует сложной аппаратуры контроля. Кроме того, известный способ не позволяет обеспечить получение элементов изображения, составляющих рисунок, с размерами в несколько нанометров.

Известен способ формирования проводящей структуры, включающий нанесение на подложку слоя материала и преобразование материала в проводящий под действием излучения от источника заряженных частиц (см. И.А.Аброян, А.Н.Андронов и др. Физические основы электронной и ионной технологии. М.: Высшая школа, 1984, с.308-310 /3/).

Недостатком известного способа является малая разрешающая способность создаваемого рисунка (проводящей структуры), не позволяющая получать отдельные элементы структуры размером в несколько нанометров.

Известен способ формирования проводящей структуры в диэлектрической матрице, включающий нанесение на подложку слоя исходного диэлектрического материала и его преобразование в проводящий под действием излучения от источника заряженных частиц. На подложку наносят слой материала толщиной 2-20 нм, а преобразование материала в проводящий проводят модулированным потоком заряженных частиц после нанесения материала на подложку (RU 2129320 [4]).

Недостатком известного способа является высокие требования к расходимости пучка заряженных частиц, необходимой для получения проводящих элементов очень малых размеров и невозможность их получения в «толстых» (~100 нм и более) пленках. Хорошо известно, что взаимодействие ускоренных частиц с веществом сопровождается их рассеянием. Эффекты рассеяния приводят к тому, что зона воздействия ускоренных частиц на облучаемый материал всегда превышает размеры пучка или размеры отверстий в маске, если облучение производится через маску. Это превышение тем больше, чем больше энергия ускоренных частиц, а при толщинах материала, меньших длины проективного пробега, ускоренных частиц в нем - пропорционально толщине материала. При средних и больших энергиях ускоренных частиц профиль рассеяния имеет грушевидную форму (см. фиг. в [4]). Аналогичную форму имеет и зона преобразования состава при использовании способа [4]. Поэтому если слой сделать тонким, то можно получить относительно более мелкие детали проводящей структуры. Если слой материала сделать толщиной более 20 нм, то, при прочих равных условиях, размеры получаемых элементов структуры начинают возрастать.

Наиболее близким к заявляемому по своей технической сущности и достигаемому результату является способ формирования проводящей структуры в диэлектрической матрице, который включает нанесение маски с отверстиями, образующими требуемый рисунок, на пленку или заготовку окисла металла или полупроводника, облучение маски (заготовки) потоком ускоренных протонов или атомов водорода и последующее воздействие на облученные участки кислородом, при этом отверстия в маске выполняют с аспектным соотношением, обеспечивающим получение элементов структуры меньшего размера, чем поперечный размер отверстий в маске (RU 2404479 [5]).

Недостатком известного способа является относительная сложность, поскольку для реализации требуется сложная в изготовлении маска и ограниченность спектра материалов в отношении которых способ применим.

Заявляемый в качестве изобретения способ формирования проводников в наноструктурах направлен на расширение спектра материалов, для которых возможно использование предлагаемого способа для уменьшения размеров формируемых наноразмерных проводников в диэлектрической матрице, а также на упрощение требований на аспектное соотношение отверстий в маске.

Указанный результат достигается тем, что способ формирования проводников в наноструктурах включает нанесение на подложку исходного диэлектрического вещества, в молекулы которого входят атомы металла, полное удаление из него атомов неметалла в выбранных участках путем облучения диэлектрического вещества через маску пучком ускоренных частиц и повторное облучение этих же участков пучками ускоренных ионов или атомов неметаллов, входящих в состав исходного диэлектрического вещества с дозой, обеспечивающей уменьшение объема сформированных при первичном облучении металлических проводников.

Использование маски с отверстиями, образующими требуемый рисунок, и облучение через маску потоком ускоренных частиц нанесенного на подложку слоя исходного диэлектрического вещества до полного удаления из него атомов неметалла в выбранных участках позволяет обеспечить восстановление исходного материала заготовки до практически чистого одноатомного вещества, обладающего проводящими свойствами (металл или полупроводник), и сформировать проводящий рисунок требуемой топологии. Режимы работы источников ускоренных частиц определяются расчетным путем или подбираются экспериментально.

Повторное облучение этих же участков пучками ускоренных ионов или атомов неметаллов, входящих в состав исходного диэлектрического вещества позволяет восстановить исходное диэлектрическое вещество на поверхности ранее восстановленного металла и уменьшить его объем. Дозы, обеспечивающие уменьшение объема сформированных при первичном облучении металлических проводников, определяются расчетным путем или подбираются экспериментально. Таким образом, становится возможным изготавливать проводящие структуры не только в диэлектрических матрицах, представляющих собой окислы металлов или полупроводников, а практически из любых неорганических соединений.

Облучение маски с отверстиями и обрабатываемого слоя материала необходимо осуществлять до достижения минимального флюенса ускоренных частиц, который соответствует значениям, достаточным для полного восстановления соответствующего слоя диэлектрического материала до одноатомного металла или проводника.

Сущность заявляемого способа формирования проводников в наноструктурах поясняется примерами его реализации и фигурой, на которой показана последовательность проведения операции при формировании структуры.

Пример 1. В общем случае способ реализуется следующим образом. В вакуумной камере технологической установки на подложкодержателе устанавливается подложка (заготовка) 1 с нанесенным на ней диэлектрическим материалом 2, который преобразуется под воздействием потока 3 ускоренных протонов или атомов водорода в проводящий материал. Выше этого слоя размещается маска 4 с требуемым рисунком, изготавливаемая по любой из известных технологий. В вакуумной камере, объем которой откачивается до давления 1·10-7 торр, размещен источник ускоренных частиц - протонов. Заготовка облучается ускоренными частицами, например протонами или атомами водорода или гелия с энергией несколько кэВ до дозы, соответствующей минимальному значению, достаточному для полного удаления атомов неметалла из диэлектрического материала. Соответствующее значение минимальной дозы облучения определяется заранее экспериментальным путем. В результате взаимодействия материала с потоком ускоренных частиц под отверстиями в маске образуются элементы проводящей структуры 5, составляющие заданный рисунок, окруженные областями 6, где восстановление до состояния металла или полупроводника не произошло.

Затем заготовка подвергается воздействию пучков ускоренных ионов или атомов неметаллов 7, входящих в состав исходного диэлектрического вещества с дозой, обеспечивающей уменьшение объема сформированных при первичном облучении металлических проводников. В результате, как показывают измерения, выполненные с помощью методов атомно-силовой микроскопии, размеры сформированных элементов из металла могут достигать несколько нм.

Пример 2. В конкретных случаях способ реализуется следующим образом. В вакуумной камере технологической установки на подложкодержателе устанавливается подложка (заготовка) с нанесенным на ней диэлектрическим материалом, который преобразуется под воздействием потока ускоренных протонов или атомов водорода в проводящий. Поверх этого слоя размешается маска 4 с требуемым рисунком, изготавливаемая по любой из известных технологий.

Облучаемый материал представлял из себя пленку нитрида висмута толщиной 30 нм, напыленную на стандартную кремниевую пластину В вакуумной камере, объем которой откачивается до давления 1·10-7 торр, размещен источник ускоренных частиц - протонов. Заготовка облучается протонами с энергией 1,5 КэВ до дозы, соответствующей минимальному значению, достаточному для полного удаления атомов азота из пленки нитрида висмута толщиной 30 нм при облучении без маски. Соответствующее значение минимальной дозы облучения определяется заранее экспериментальным путем. В результате взаимодействия материала с потоком ускоренных частиц под отверстиями в маске образуются элементы проводящей структуры, составляющие заданный рисунок. Затем заготовка подвергается воздействию ускоренных ионов или атомов азота.

Как показали последующие измерения, выполненные с использованием различных методов (AFM-микроскопии, электронной микроскопии, электрофизических измерений), минимальный размер проводящих элементов составил ~15 нм.

Пример 3. Способ осуществлялся по той же схеме, что и в примерах 1 и 2, только с тем отличием, что на кремниевую пластину наносился слой нитрида алюминия толщиной 20 нм.

Пример 4. Способ осуществлялся по той же схеме, что и в примерах 1 и 2, только с тем отличием, что на подложку из кремния наносился слой оксида никеля толщиной 40 нм. При проведении экспериментов в качестве маски использовалась маска из электронного резиста с изготовленной в ней двумерной периодической структурой в виде рядов прямоугольных отверстий шириной 60 нм и длиной 800 нм.

Пример 5. Способ осуществлялся по той же схеме, что и в примерах 1 и 2, только с тем отличием, что на подложку из кремния наносился слой нитрида титана толщиной 30 нм.

Пример 6. Способ осуществлялся по той же схеме, что и в примерах 1 и 2, только с тем отличием, что на подложку из кремния наносился слой нитрида галия толщиной 20 нм.

Пример 7. Способ осуществлялся по той же схеме, что и в примерах 1 и 2, только с тем отличием, что на подложку из кремния наносился слой нитрида ниобия толщиной 20 нм.

Пример 8. Способ осуществлялся по той же схеме, что и в примерах 1 и 2, только с тем отличием, что на подложку из сапфира наносился слой нитрида кремния толщиной 20 нм.

Пример 9. Способ осуществлялся по той же схеме, что и в примерах 1 и 2, только с тем отличием, что на подложку из кремния наносился слой гидрида лантана толщиной 20 нм, а первичное облучение проводилось ионами или атомами гелия.

Пример 10. Способ осуществлялся по той же схеме, что и в примерах 1 и 2, только с тем отличием, что на подложку из кремния наносился слой гидрида вольфрама толщиной 20 нм, а первичное облучение проводилось ионами или атомами гелия.

Таким образом, предлагаемый способ позволяет получать проводящие структуры с размерами элементов существенно меньшими, чем размеры отверстий в маске, с помощью которой осуществлялось их формирование в материалах различного химического состава.

Способ формирования проводников в наноструктурах, включающий нанесение на подложку исходного диэлектрического вещества, в молекулы которого входят атомы металла, полное удаление из него атомов неметалла в выбранных участках путем облучения диэлектрического вещества через маску пучком ускоренных частиц и повторное облучение этих же участков пучками ускоренных ионов или атомов неметаллов, входящих в состав исходного диэлектрического вещества с дозой, обеспечивающей уменьшение объема сформированных при первичном облучении металлических проводников.
СПОСОБ ФОРМИРОВАНИЯ ПРОВОДНИКОВ В НАНОСТРУКТУРАХ
Источник поступления информации: Роспатент

Показаны записи 201-210 из 263.
09.05.2019
№219.017.5097

Газовый сенсор для индикации оксидов углерода и азота

Изобретение может быть использовано при анализе воздуха на наличие в нем газообразных примесей, в частности оксидов азота и оксида углерода. Газовый сенсор для индикации оксидов углерода и азота включает выполненную из поликристаллического AlO подложку, диоксид олова в составе чувствительного к...
Тип: Изобретение
Номер охранного документа: 0002464554
Дата охранного документа: 20.10.2012
09.05.2019
№219.017.50a5

Устройство детектирования течей пароводяной смеси из трубопровода

Изобретение относится к области контроля за эксплуатацией технологического или иного оборудования, установленных в помещениях с притоком воздуха, например на АЭС, и направлено на повышение надежности и информативности измерений, что обеспечивается за счет того, что устройство для детектирования...
Тип: Изобретение
Номер охранного документа: 0002461807
Дата охранного документа: 20.09.2012
18.05.2019
№219.017.5a84

Способ получения метановодородной смеси

Изобретение относится к области химии и может быть использовано для получения метановодородной смеси, содержащей H и СН, для производства водорода, спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша, для переработки углеводородных газов, а также в хемотермических...
Тип: Изобретение
Номер охранного документа: 0002438969
Дата охранного документа: 10.01.2012
18.05.2019
№219.017.5a88

Способ и устройство локализации расплава активной зоны ядерного реактора

Изобретение относится к системам локализации аварии на АЭС для улавливания компонентов активной зоны ядерного реактора и их обломков из разрушенного корпуса. Способ локализации расплава включает в себя улавливание, выдерживание и охлаждение расплава в резервуаре, расположенном под реактором....
Тип: Изобретение
Номер охранного документа: 0002432628
Дата охранного документа: 27.10.2011
18.05.2019
№219.017.5ad7

Способ облучения минералов

Изобретение относится преимущественно к радиационным методам обработки ювелирных минералов для повышения их ювелирной ценности. Для этого в способе облучения минералов в нейтронном потоке реактора в контейнере предложено в процессе облучения облучаемые минералы экранировать от тепловых и...
Тип: Изобретение
Номер охранного документа: 0002431003
Дата охранного документа: 10.10.2011
18.05.2019
№219.017.5add

Способ хемотермической передачи тепловой энергии

Изобретение относится к способам передачи энергии, преимущественно от ядерных энергетических установок и при участии хемотермических систем, например, конверсии углеродсодержащего вещества. В предложенном способе хемотермической передачи тепловой энергии осуществляют эндотермическую реакцию...
Тип: Изобретение
Номер охранного документа: 0002431208
Дата охранного документа: 10.10.2011
18.05.2019
№219.017.5b19

Способ разработки залежи тяжелой нефти

Изобретение относится к разработке нефтяных месторождений, в частности к способам теплового воздействия на залежь, содержащую высоковязкую нефть. Технический результат - снижение расхода теплоносителя, уменьшение затрат на его прокачку и потери. В способе разработки залежи тяжелой нефти...
Тип: Изобретение
Номер охранного документа: 0002444618
Дата охранного документа: 10.03.2012
18.05.2019
№219.017.5b1a

Способ генерации энергии

Изобретение относится к способам преобразования энергии газообразного топлива (природный или синтез-газ, водород) в механическую (электрическую), преимущественно к транспортным энергетическим установкам и системам энергообеспечения на их основе и предназначено для транспортных средств,...
Тип: Изобретение
Номер охранного документа: 0002444637
Дата охранного документа: 10.03.2012
18.05.2019
№219.017.5b69

Способ генерации энергии в гибридной энергоустановке

Способ генерации энергии в гибридной энергоустановке, в котором окислитель направляют в камеру сгорания теплового двигателя, а также в топливный элемент. В камеру сгорания подают основное топливо. В топливный элемент подают также вторичное топливо. По меньшей мере часть продуктов, выходящих из...
Тип: Изобретение
Номер охранного документа: 0002465693
Дата охранного документа: 27.10.2012
29.05.2019
№219.017.6259

Способ синхронизации устройств в накопительных электронных синхротронах источников синхротронного излучения

Изобретение относится к методам синхронизации для получения точных синхронизирующих импульсов для устройств, располагаемых по периметру кольца электронного синхротрона-накопителя, и может быть использовано в системах временной синхронизации множества разнесенных по периметру электронного...
Тип: Изобретение
Номер охранного документа: 0002689297
Дата охранного документа: 27.05.2019
Показаны записи 151-160 из 160.
13.02.2018
№218.016.264e

Тепловой узел установки для выращивания галоидных кристаллов методом горизонтальной направленной кристаллизации

Изобретение относится к области техники, связанной с выращиванием кристаллов из расплавов методом горизонтально направленной кристаллизации (ГНК), которые широко используются в качестве сцинтилляторов для детекторов ионизирующего излучения, лазерных кристаллов и элементов оптических приборов,...
Тип: Изобретение
Номер охранного документа: 0002643980
Дата охранного документа: 06.02.2018
17.02.2018
№218.016.2aa3

Устройство для стационарной генерации ионного пучка

Изобретение относится к области создания ионных источников, предназначенных для работы инжекторов быстрых атомов водорода в стационарном режиме (атомные пучки большой мощности - до 2 мегаватт), которые могут использоваться для нагрева плазмы в магнитных ловушках. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002642852
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.31b9

Способ создания интегрированного криогенного адаптера питания на одном чипе в одном технологическом процессе

Изобретение относится к области сверхпроводниковой микроэлектроники, в частности к способу создания интегрированного криогенного адаптера питания на одном чипе. Способ включает нанесение на подложку слоя сверхпроводника и формирование из него методом электронной литографии сверхпроводящих...
Тип: Изобретение
Номер охранного документа: 0002645167
Дата охранного документа: 16.02.2018
04.04.2018
№218.016.3482

Способ получения гранулированного биокатализатора на основе иммобилизованных клеток дрожжей для проведения реакции переэтерификации

Изобретение относится к области биохимии. Предложен способ получения гранулированного биокатализатора на основе иммобилизованных клеток дрожжей. Способ включает наращивание биомассы дрожжей Yarrowia lipolytica ВКПМ Y-3600, отделение биомассы, лиофильную сушку биомассы, приготовление суспензии...
Тип: Изобретение
Номер охранного документа: 0002646104
Дата охранного документа: 01.03.2018
06.12.2018
№218.016.a40f

Способ перевода сверхпроводника в элементах логики наноразмерных электронных устройств из сверхпроводящего состояния в нормальное

Использование: для создания функциональных переключаемых электронных устройств различного назначения. Сущность изобретения заключается в том, что способ перевода сверхпроводника в электронных функциональных наноразмерных устройствах из сверхпроводящего состояния в нормальное осуществляют путем...
Тип: Изобретение
Номер охранного документа: 0002674063
Дата охранного документа: 04.12.2018
20.02.2019
№219.016.bfec

Устройство энергонезависимой памяти

Изобретение к устройствам энергонезависимой электрически перепрограммируемой памяти, реализуемы с помощью методов микро- и нанотехнологии. Техническим результатом является снижение энергозатрат на считывание хранящейся информации и ее перезапись. Устройство содержит немагнитную матрицу и...
Тип: Изобретение
Номер охранного документа: 0002374704
Дата охранного документа: 27.11.2009
19.07.2019
№219.017.b665

Способ формирования сверхпроводящих функциональных элементов электронных устройств, имеющих области с различными значениями плотности критического тока

Использование: для создания функциональных переключаемых электронных устройств. Сущность изобретения заключается в том, что способ формирования сверхпроводящих функциональных элементов электронных устройств, имеющих области с различными значениями плотности критического тока, включает...
Тип: Изобретение
Номер охранного документа: 0002694800
Дата охранного документа: 16.07.2019
19.07.2019
№219.017.b699

Способ уменьшения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное

Использование: для применения в процессорах с высокой плотностью функциональных элементов на основе сверхпроводящих нанопроводов. Сущность изобретения заключается в том, что способ уменьшения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное...
Тип: Изобретение
Номер охранного документа: 0002694799
Дата охранного документа: 16.07.2019
10.10.2019
№219.017.d476

Сверхпроводниковый дискретный счетный компонент

Использование: для создания счетного компонента в наноразмерных цифровых устройствах в различных областях науки и техники. Сущность изобретения заключается в том, что сверхпроводниковый дискретный счетный компонент, характеризующийся дискретным набором равновесных состояний, содержит...
Тип: Изобретение
Номер охранного документа: 0002702402
Дата охранного документа: 08.10.2019
21.05.2023
№223.018.6922

Способ снижения величины гистерезиса по току перехода сверхпроводящих нанопроводов из сверхпроводящего состояния в нормальное и обратно

Изобретение относится к микроэлектронике и может быть использовано при создании функциональных переключаемых электронных устройств различного назначения, в том числе, для применения в процессорах с высокой плотностью функциональных элементов на основе сверхпроводящих нанопроводов. Способ...
Тип: Изобретение
Номер охранного документа: 0002794493
Дата охранного документа: 19.04.2023
+ добавить свой РИД