×
19.07.2019
219.017.b699

Способ уменьшения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Использование: для применения в процессорах с высокой плотностью функциональных элементов на основе сверхпроводящих нанопроводов. Сущность изобретения заключается в том, что способ уменьшения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное заключается во включении участков нормальных сопротивлений в наноразмерный сверхпроводник. Технический результат: обеспечеение возможности снижения энергопотребления и тепловыделения в электронных функциональных наноразмерных устройствах с высокой плотностью элементов. 3 ил.
Реферат Свернуть Развернуть

Изобретение относится к микроэлектронике и может быть использовано при создании функциональных переключаемых электронных устройств различного назначения, в том числе, для применения в процессорах с высокой плотностью функциональных элементов на основе сверхпроводящих нанопроводов.

Как известно, работа сверхпроводящих коммутаторов (СПК), основана на переводе токонесущего элемента из сверхпроводящего состояния в нормальное. При этом перевод осуществляется превышением одного из критических параметров сверхпроводящего токонесущего элемента (температуры, плотности тока, напряженности магнитного поля) или некоторой совокупности их. При использовании таких переключателей требуется повышенный расход энергии и связанное с ним тепловыделение, что ограничивает их использование в наноразмерных микросхемах.

Известен способ перевода сверхпроводящего ключа в нормальное состояние путем воздействия на него внешним магнитным полем, который предусматривает для увеличения эффективности перевода в нормальное состояние, одновременно с включением внешнего магнитного поля скачком увеличивают индуктивность сверхпроводящего ключа и наводят в нем ток, величина которого меньше критического значения, затем при постоянной величине индукции внешнего магнитного поля скачком уменьшают индуктивность сверхпроводящего ключа и одновременно скачком увеличивают до критического значения наведенный в ключе ток (RU 1623511 [1]). Недостатком является сложность реализации и ограниченность применения, заключающаяся в том, что он не может быть реализован в устройствах микроэлектроники.

Известен способ перевода сверхпроводника в электронных устройствах из сверхпроводящего состояния в нормальное путем его локального нагрева CN 104579280 [2] с использованием нагревательных стержней, окружающих переводимый в нормальное состояние сверхпроводник. Недостатком известного способа является достаточно длительный период возврата нагретого сверхпроводника из нормального состояние в сверхпроводящего. Кроме того, данный способ применим только для макрообъектов.

Известен способ перевода сверхпроводника в электронных устройствах из сверхпроводящего состояния в нормальное путем его локального нагрева JP 2013016664 [3] с использованием нагревательных элементов в виде меандра из фольги. Из-за ее малой теплоемкости и относительно большой площади обеспечивается как быстрый нагрев, так и быстрое охлаждение, что облегчает обратный перевод сверхпроводника из нормального состояние в сверхпроводящего. Этого достаточно для обеспечения работы тех аппаратов (МРТ), для которых этот способ используется в средствах аварийного отключения, но не применим в элементах логики, где требуется. Однако данный способ не обеспечивает снижения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное и высокое быстродействие. Кроме того, данный способ применим только для макрообъектов.

Известен способ перевода сверхпроводника в электронных устройствах из сверхпроводящего состояния в нормальное путем увеличения суммарного проходящего по нему тока до значений, превышающих величину критического (US 2015045228 [4]). Это достигается тем, что в дополнение к уже протекающему по сверхпроводнику току создается наведенный индукционный ток путем подачи тока управления на индукционную катушку, сформированную на поверхности сверхпроводника. Суперпозиция индуктивных токов и напряжения постоянного тока превышает критическую плотность тока материала сверхпроводника, который инициирует переход в нормальное состояние. Недостатками используемого метода является его неприменимость для микро и наноустройств с высокой плотностью функциональных элементов (например, процессоров) на основе сверхпроводников в связи с тем, что магнитное поле от используемой RF катушки захватывает большую площадь и объем существенно превышающие размеры функциональных элементов, что будет неизбежно вызывать ложные срабатывания многочисленных соседних, по отношению к управляемому, элементу. Кроме того, способ не обеспечивает снижения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное, что приводит к повышенному энергопотреблению и тепловыделению.

Известно техническое решение, предусматривающее формирование составного проводника, часть которого состоит из сверхпроводящего материала, а часть из нормального (резистивного) (KR 20050010228 [5]). Задачей его является снижение сопротивления создаваемого соединения. Использовать его в микроэлектронике невозможно из-за макро размеров и технологических сложностей изготовления.

Известен используемый в микроэлектронике (для использования в логических элементах и цифровых схемах) способ перевода сверхпроводника из сверхпроводящего состояния в нормальное путем управления величиной критического тока известный из US 5831278 [6], который может быть выбран в качестве ближайшего аналога. Объектом управления является джозефсоновский переход, при этом между джозефсоновским переходом и линией управления должен быть изолирующий слой. Толщина этого слоя должна быть такой, чтобы линия управления была электрически изолирована от джозефсоновского перехода, но обеспечивала магнитную связь. Способ заключается в изменении величины тока до критического путем добавления индуцированной составляющей за счет прохождения тока по линии управления.

Соединение может быть возвращено в его сверхпроводящее состояние путем снятия управляющего тока, тем самым исключая магнитное поле, которое индуцируется за счет тока контроля и восстановления критического тока перехода к своему прежнему значению. К недостаткам данного способа можно отнести, во-первых, то, что таким способом можно управлять током через джозефсоновский переход, в то время как управление сверхпроводимостью сверхпроводников, не содержащих джозефсоновские переходы, требует существенно больших магнитных полей, которые не могут быть созданы таким способом. Во-вторых, размеры областей, охватываемые магнитным полем всегда существенно превышают размеры источников магнитного поля, что создает препятствия для формирования высокоплотных функциональных элементов на основе джозефсоновских переходов и их совокупностей (например, для процессоров) которые исключают ложные срабатывания при таком способе управления. Кроме того, способ не обеспечивает снижения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное, что приводит к повышенному энергопотреблению и тепловыделению.

Заявляемый способ уменьшения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное направлен на снижение энергопотребления и тепловыделения в электронных функциональных наноразмерных устройствах с высокой плотностью элементов.

Указанный результат достигается тем, что способ уменьшения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное осуществляется путем включения участков нормальных сопротивлений в наноразмерный сверхпроводник.

Способ уменьшения критического тока перевода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное заключается в том, что в наноразмерном сверхпроводнике создается резистивная область, которая находится в нормальном состоянии при рабочей температуре. Экспериментально было установлено, что при этом происходит уменьшение прямого критического тока перехода сверхпроводящего нанопроводника из сверхпроводящего состояния в нормальное до уровня тока обратного перехода. При этом такое уменьшение критического тока происходит примерно в 5-10 раз по сравнению со сверхпроводниками, в которых эта резистивная область отсутствует. Уменьшение величины критического тока обуславливает снижение энергопотребления в любых функциональных элементах, использующих интегрированные сопротивления, например, переключателях, логических устройствах и т.п.вплоть до двух порядков величины. Технология преобразования участков нанопроводов из сверхпроводящих в нормальные известна. См. RU 2541679, RU 2645167, RU 2476373, RU 2477902.

Сущность заявляемого способа поясняется примером реализации и графическими материалами. На фиг. 1 представлена принципиальная схема установки для измерения величины критического тока. На фиг. 2 вольт-амперная характеристика нанопроводника без встроенного резистивного элемента. На фиг.3 вольт-амперная характеристика нанопроводника с резистивным элементом.

В общем случае эксперимента по определению величины критического тока проводится с помощью установки, представленной на фиг. 1 следующим образом.

Исследуемый нанопроводник 1 помещается в жидкий гелий (температура 4.2К) или в другое устройство, позволяющее достичь рабочей температуры, ниже температуры сверхпроводящего перехода материала нанопроводника.

С помощью источника тока 2 через нанопроводник пропускается постоянный ток, который измеряется амперметром 3, при этом напряжение на нанопроводнике измеряется вольтметром 4.

Величина тока через нанопроводник медленно увеличивается до момента возникновения напряжения на нанопроводнике. В момент возникновения напряжения на нанопроводнике фиксируется величина тока, которая соответствует току прямого перехода нанопровода из сверхпроводящего состояния в нормальное.

Далее, величина тока через нанопровод медленно уменьшается до момента исчезновения напряжения на нанопроводнике. В момент исчезновения напряжения на нанопроводнике фиксируется величина тока, которая соответствует току обратного перехода нанопровода из нормального состояния в сверхпроводящее.

Таким образом измеряются прямой и обратный ток нанопроводника. Пример определения критического тока в чистом сверхпроводнике.

В качестве примера рассмотрим определение критических токов в нанопроводе из нитрида ниобия (NbN). Нанопроводник из нитрида ниобия длиной 1000 нм, шириной 200 нм и толщиной 4 нм изготавливается методами электронной литографии и плазмохимического травления на диэлектрической подложке из сапфира. Для подключения нанопроводника к схеме электрических измерений, к его концам методом взрывной фотолитографии формируются макроскопические металлические контакты из платины толщиной 20 нм с подслоем титана толщиной 10 нм. Нанопроводник на подложке помещается в жидкий гелий (температура 4.2 К) или в другое устройство, способное обеспечить достижение рабочей температуры 4.2 К, например, криогенную машину замкнутого цикла.

С помощью источника тока 2 через нанопроводник пропускается постоянный ток, который измеряется амперметром 3, при этом напряжение на нанопроводнике измеряется вольтметром 4.

Величина тока через нанопроводник медленно увеличивается до момента возникновения напряжения на нанопроводнике. В момент возникновения напряжения на нанопроводнике фиксируется величина тока, которая соответствует току прямого перехода нанопровода из сверхпроводящего состояния в нормальное.

Далее, величина тока через нанопровод медленно уменьшается до момента исчезновения напряжения на нанопроводнике. В момент исчезновения напряже-ния на нанопроводнике фиксируется величина тока, которая соответствует току обратного перехода нанопровода из нормального состояния в сверхпроводящее.

По результатам вышеописанных измерений напряжения на нанопроводе в зависимости от величины тока через него строится вольт-амперная характеристика нанопроводника, показанная на фиг. 2. Прямой ток нанопроводника I1 определяется в момент появления напряжения на нанопроводнике при увеличении тока, а обратный ток I2 определяется в момент исчезновения напряжения на нанопроводнике при уменьшении тока.

Пример определения критического тока в сверхпроводнике с резистивным участком.

В качестве примера рассмотрим определение критических токов в нанопроводе из нитрида ниобия (NbN) со сформированным резистивным участком. Нанопроводник из нитрида ниобия длиной 1000 нм, шириной 200 нм и толщиной 4 нм изготавливается методами электронной литографии и плазмохимического травления на диэлектрической подложке из сапфира. Для подключения нанопроводника к схеме электрических измерений, к его концам методом взрывной фотолитографии формируются макроскопические металлические контакты из платины толщиной 20 нм с подслоем титана толщиной 10 нм. Далее в нанопроводе формируется резистивный участок длиной 400 нм и шириной 200 нм и толщиной 4 нм полностью перекрывающий сечение нанопроводника. Резистивный участок формируется, например, за счет облучения выбранного участка нанопровода через окно в маске, созданной методом электронной литографии. Облучение проводится смешанным ионным пучком, состоящим из протонов и ионов ОН+ до дозы, достаточной для преобразования нитрида ниобия в металлическое состояние.

Нанопроводник с интегрированным резистивным участком на подложке помещается в жидкий гелий (температура 4.2 К) или в другое устройство, способное обеспечить достижение рабочей температуры 4.2 К, например, криогенную машину замкнутого цикла.

С помощью источника тока 2 через нанопроводник пропускается постоянный ток, который измеряется амперметром 3, при этом напряжение на нанопроводнике измеряется вольтметром 4.

Величина тока через нанопроводник медленно увеличивается до момента возникновения скачка напряжения на нанопроводнике, сопровождающего переход сверхпроводящей части нанопроводника в нормальное состояние. В момент возникновения скачка напряжения на нанопроводнике фиксируется величина тока, которая соответствует току прямого перехода нанопровода с резистивным участком из сверхпроводящего состояния в нормальное.

Далее, величина тока через нанопровод с резистивным участком медленно уменьшается до обратного скачка напряжения, сопровождающего момента перехода сверхпроводящей части нанопроводника из нормального состояния в сверхпроводящее. В момент обратного скачка напряжения на фиксируется величина тока, которая соответствует току обратного перехода нанопровода с резистивным элементом из нормального состояния в сверхпроводящее.

По результатам вышеописанных измерений напряжения на нанопроводе с резистивным элементом в зависимости от величины тока через него строится вольт-амперная характеристика нанопроводника с резистивным элементом, показанная на фиг. 3.

Прямой ток нанопроводника I1R определяется в момент скачка напряжения на нанопроводнике с резистивным элементом при увеличении тока, а обратный ток I2R определяется в момент скачка напряжения на нанопроводнике с резистивным элементом при уменьшении тока.

Поскольку прямой ток нанопроводника с резистивным элементом I1R (фиг. 3) соответствует обратному току I2 без резистивного элемента (фиг. 2), введение резистивного элемента уменьшает величину прямого критического тока сверхпроводящего нанопроводника, что обеспечивает уменьшение энергопотребления устройства, поскольку выделяемая электрическая мощность пропорциональна квадрату протекающего тока.

Способ уменьшения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное, заключающийся во включении участков нормальных сопротивлений в наноразмерный сверхпроводник.
Способ уменьшения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное
Способ уменьшения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное
Способ уменьшения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное
Способ уменьшения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное
Источник поступления информации: Роспатент

Показаны записи 1-10 из 259.
10.01.2013
№216.012.1845

Способ осаждения мономолекулярных пленок фторфуллерена cf на подложку, устройство ввода подложки в вакуум и устройство для испарения фторфуллерена cf

Изобретение может быть использовано в нелинейной оптике и пироэлектрических устройствах. Перед осаждением пленки подготавливают подложку, отделяя от высокоориентированного пирографита тонкий слой с помощью двусторонней липкой ленты. Порошок CF загружают в испарительную ячейку, помещают в...
Тип: Изобретение
Номер охранного документа: 0002471705
Дата охранного документа: 10.01.2013
20.02.2013
№216.012.2632

Способ получения нанопорошков из различных электропроводящих материалов

Изобретение может быть использовано в химической, радиоэлектронной отраслях промышленности и энергетике. Из выбранного материала изготавливаются электропроводящие электроды. На электроды подают высоковольтное импульсное напряжение для генерации сильноточного разряда, происходит нагрев и...
Тип: Изобретение
Номер охранного документа: 0002475298
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.283c

Способ постоянного поэлементного дублирования в дискретных электронных системах (варианты)

Изобретения относятся к области вычислительной техники и электроники и более точно к способам поэлементного дублирования в дискретных электронных системах, в том числе в наноэлектронных системах, подвергающихся воздействию радиации и в первую очередь потока высокоэнергетических частиц....
Тип: Изобретение
Номер охранного документа: 0002475820
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.286d

Ядерный реактор с водой под давлением с активной зоной на основе микротвэлов и способ осуществления его работы

Изобретение относится к области атомной энергетики и может быть использовано в реакторах типа ВВЭР с активной зоной на основе микротвэлов, включающих тепловыделяющие сборки с поперечным течением теплоносителя. Для этого предложен ядерный реактор с водой под давлением с активной зоной на основе...
Тип: Изобретение
Номер охранного документа: 0002475869
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.289d

Система автоматической компенсации реактивной мощности и отклонения напряжения с широтно-импульсной модуляцией на высокой стороне трансформаторной подстанции

Использование: в области электротехники. Технический результат заключается в повышении качества напряжения и улучшении энергетических и массогабаритных показателей подстанций. Устройство содержит вольтодобавочный трансформатор, который включен на высокой стороне подстанции и управляется от...
Тип: Изобретение
Номер охранного документа: 0002475917
Дата охранного документа: 20.02.2013
10.03.2013
№216.012.2eec

Многоэлементный термоэмиссионный электрогенерирующий канал

Изобретение относится к энергетике и может быть использовано при создании энергетических установок прямого преобразования тепловой энергии в электрическую. Технический результат - повышение эффективности многоэлементных термоэмиссионных электрогенерирующих каналов. Для этого эмиттеры...
Тип: Изобретение
Номер охранного документа: 0002477543
Дата охранного документа: 10.03.2013
20.03.2013
№216.012.2f8a

Способ получения в графите графеновых ячеек с добавкой радиоактивных изотопов

Изобретение относится к области неорганического материаловедения, к способам получения материалов - бета-излучателей на основе ориентированного пиролитического графита. Процесс интеркаляции добавки трития в ориентированный графит с сечением захвата тепловых нейтронов около (4,5-6,0)10 барн...
Тип: Изобретение
Номер охранного документа: 0002477705
Дата охранного документа: 20.03.2013
20.03.2013
№216.012.304b

Ядерная паропроизводительная установка

Изобретение относится к высокотемпературной ядерной энергетике и может быть использовано для реновации блоков с органическим топливом. Ядерная паропроизводительная установка включает высокотемпературный реактор, снабженный парогенератором и промперегревателем. Для обеспечения паром необходимых...
Тип: Изобретение
Номер охранного документа: 0002477898
Дата охранного документа: 20.03.2013
20.03.2013
№216.012.304f

Способ формирования проводников в наноструктурах

Изобретение относится к технологии создания сложных проводящих структур и может быть использовано в нанотехнологии. Сущность изобретения: способ формирования проводников в наноструктурах включает нанесение на подложку исходного диэлектрического вещества, в молекулы которого входят атомы...
Тип: Изобретение
Номер охранного документа: 0002477902
Дата охранного документа: 20.03.2013
10.04.2013
№216.012.32e2

Способ извлечения гелия из природного газа

Изобретение относится к химической, нефтехимической, газовой промышленности и может быть использовано при извлечении или концентрировании гелия из природного газа. Способ извлечения гелия из природного газа включает получение гелиевого концентрата с последующей его низкотемпературной или...
Тип: Изобретение
Номер охранного документа: 0002478569
Дата охранного документа: 10.04.2013
Показаны записи 1-10 из 15.
27.02.2013
№216.012.2a5e

Способ изготовления сверхпроводниковых однофотонных детекторов

Изобретение относится к области получения сверхпроводящих соединений и изготовления нанопроводников и приборов на их основе, что может быть использовано в электротехнической, радиотехнической, медицинской и других отраслях промышленности, в частности для оптического тестирования интегральных...
Тип: Изобретение
Номер охранного документа: 0002476373
Дата охранного документа: 27.02.2013
20.03.2013
№216.012.304f

Способ формирования проводников в наноструктурах

Изобретение относится к технологии создания сложных проводящих структур и может быть использовано в нанотехнологии. Сущность изобретения: способ формирования проводников в наноструктурах включает нанесение на подложку исходного диэлектрического вещества, в молекулы которого входят атомы...
Тип: Изобретение
Номер охранного документа: 0002477902
Дата охранного документа: 20.03.2013
27.12.2013
№216.012.920f

Способ формирования монокристаллических нанопроводников в матрице из собственного оксида

Изобретение относится к технологии создания сложных проводящих структур и может быть использовано в нанотехнологии, микроэлектронике для создания сверхминиатюрных приборов, интегральных схем и запоминающих устройств. Изобретение направлено на обеспечение формирование монокристаллических...
Тип: Изобретение
Номер охранного документа: 0002503084
Дата охранного документа: 27.12.2013
27.02.2014
№216.012.a741

Способ прогнозирования степени охрупчивания теплостойких сталей

Изобретение относится к методам тепло-прочностных испытаний конструкционных материалов преимущественно при прогнозировании и оценке работоспособности необлучаемых конструктивных элементов в атомной технике. Для продления срока службы корпусов реакторов типа ВВЭР предварительно определяют уровни...
Тип: Изобретение
Номер охранного документа: 0002508532
Дата охранного документа: 27.02.2014
20.08.2014
№216.012.ec0c

Способ формирования магнитной паттернированной структуры в немагнитной матрице

Изобретение относится к технологии создания сложных структур с помощью потока ускоренных частиц и может быть использовано в нанотехнологии, микроэлектронике для создания сверхминиатюрных приборов, интегральных схем и запоминающих устройств. Изобретение обеспечивает уменьшение размеров магнитных...
Тип: Изобретение
Номер охранного документа: 0002526236
Дата охранного документа: 20.08.2014
20.02.2015
№216.013.27ee

Способ изготовления сверхпроводящих наноэлементов с туннельными или джозефсоновскими переходами

Использование: для изготовления сверхпроводниковых туннельных или джозефсоновских переходов. Сущность изобретения заключается в том, что способ изготовления сверхпроводящих наноэлементов с туннельными или джозефсоновскими переходами включает формирование нанопроводов из веществ, обладающих...
Тип: Изобретение
Номер охранного документа: 0002541679
Дата охранного документа: 20.02.2015
20.07.2015
№216.013.64ef

Способ восстановления физико-механических свойств внутрикорпусных устройств водо-водяного энергетического реактора ввэр-1000

Изобретение относится к восстановительной термической обработке узлов водо-водяных энергетических реакторов (ВВЭР) и направлено на повышение ресурса и обеспечение безопасной эксплуатации реакторов ВВЭР-1000. Указанный результат достигается тем, что способ восстановления физико-механических...
Тип: Изобретение
Номер охранного документа: 0002557386
Дата охранного документа: 20.07.2015
20.04.2016
№216.015.3472

Способ изготовления сверхпроводящих многосекционных оптических детекторов

Использование: для изготовления сверхпроводниковых датчиков излучения. Сущность изобретения заключается в том, что способ изготовления сверхпроводящих многосекционных оптических детекторов, включающий формирование отдельных секций из сверхпроводящих нанопроводов, образующих рисунок в виде...
Тип: Изобретение
Номер охранного документа: 0002581405
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3827

Способ изготовления сварного составного образца типа ст для испытаний на трещиностойкость облученного металла

Изобретение относится к методам испытаний металлов на трещиностойкость, в частности к способу изготовления сварного составного образца типа СТ для испытаний на трещиностойкость облученного металла по стандартным методикам. Обойму изготавливают из необлученного металла и вставку из облученного...
Тип: Изобретение
Номер охранного документа: 0002582626
Дата охранного документа: 27.04.2016
04.04.2018
№218.016.31b9

Способ создания интегрированного криогенного адаптера питания на одном чипе в одном технологическом процессе

Изобретение относится к области сверхпроводниковой микроэлектроники, в частности к способу создания интегрированного криогенного адаптера питания на одном чипе. Способ включает нанесение на подложку слоя сверхпроводника и формирование из него методом электронной литографии сверхпроводящих...
Тип: Изобретение
Номер охранного документа: 0002645167
Дата охранного документа: 16.02.2018
+ добавить свой РИД