×
20.03.2013
216.012.3028

Результат интеллектуальной деятельности: ИНТЕГРАЛЬНЫЙ МИКРОМЕХАНИЧЕСКИЙ ГИРОСКОП-АКСЕЛЕРОМЕТР

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной техники и микросистемной техники, а более конкретно к интегральным измерительным элементам величин угловой скорости и ускорения. В устройство, содержащее полупроводниковую подложку с двумя опорами, инерционную массу, два торсиона, две упругие балки и подвижный электрод, введены восемь дополнительных опор, внутренняя рамка, выполненная из полупроводникового материала и расположенная с зазором относительно подложки, два дополнительных торсиона, расположенных с зазором относительно полупроводниковой подложки, три дополнительных подвижных электрода, двенадцать дополнительных упругих балок, расположенных с зазором относительно полупроводниковой подложки, четыре неподвижных электрода с гребенчатыми структурами с одной стороны, выполненные из полупроводникового материала и расположенные непосредственно на подложке, причем подвижные электроды выполнены с гребенчатыми структурами с одной стороны и образуют конденсаторы с неподвижными электродами с гребенчатыми структурами с одной стороны в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенками электродов. Изобретение обеспечивает возможность измерения величин угловой скорости вдоль оси Z, направленной перпендикулярно плоскости подложки, и ускорения вдоль осей X, Y, расположенных в плоскости подложки гироскопа-акселерометра. 3 ил.
Основные результаты: Интегральный микромеханический гироскоп-акселерометр, содержащий полупроводниковую подложку с расположенными на ней двумя опорами, выполненными из полупроводникового материала, инерционную массу, выполненную из полупроводникового материала и расположенную с зазором относительно подложки, два торсиона, выполненные из полупроводникового материала и расположенные с зазором относительно подложки, подвижный электрод, выполненный из полупроводникового материала и расположенный с зазором относительно подложки, две упругие балки, выполненные из полупроводникового материала и расположенные с зазором относительно подложки, отличающийся тем, что в него введены восемь дополнительных опор, выполненных из полупроводникового материала и расположенных непосредственно на полупроводниковой подложке, внутренняя рамка, выполненная из полупроводникового материала и расположенная с зазором относительно полупроводниковой подложки, два дополнительных торсиона, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, три дополнительных подвижных электрода, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, двенадцать дополнительных упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, четыре неподвижных электрода с гребенчатыми структурами с одной стороны, выполненных из полупроводникового материала и расположенных непосредственно на полупроводниковой подложке, причем подвижные электроды выполнены с гребенчатыми структурами с одной стороны и образуют конденсаторы с неподвижными электродами с гребенчатыми структурами с одной стороны в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенками электродов.

Предлагаемое изобретение относится к области измерительной техники и микросистемной техники, а более конкретно к интегральным измерительным элементам величин угловой скорости и ускорения.

Известен интегральный микромеханический гироскоп [В.П.Тимошенков, С.П.Тимошенков, А.А.Миндеева, Разработка конструкции микрогироскопа на основе КНИ-технологии, Известия вузов. Электроника, №6, 1999, стр.49, рис.2], содержащий диэлектрическую подложку с напыленными на ней четырьмя электродами и инерционную массу, расположенную с зазором относительно диэлектрической подложки, выполненную в виде пластины из полупроводникового материала, образующую с парой напыленных на подложку электродов плоский конденсатор и связанную с внутренней колебательной системой с помощью упругих балок, выполненных из полупроводникового материала, которые одними концами жестко прикреплены к инерционной массе, а другими - к внутренней колебательной системе, выполненной из полупроводникового материала, образующей с другой парой напыленных на подложку электродов плоский конденсатор, используемый в качестве электростатического привода, причем колебательная система соединена с внешней рамкой с помощью упругих балок, выполненных из полупроводникового материала, которые одними концами прикреплены к внутренней колебательной системе, а другими - к внешней рамке, выполненной из полупроводникового материала и расположенной непосредственно на диэлектрической подложке.

Данный гироскоп позволяет измерять величину угловой скорости при вращении его вокруг оси Z, направленной перпендикулярно плоскости подложки гироскопа.

Признаками аналога, совпадающими с существенными признаками, являются два неподвижных электрода электростатических приводов с гребенчатыми структурами с одной стороны, четыре опоры, выполненные из полупроводникового материала и расположенные непосредственно на подложке, рамка, инерционная масса, выполненная из полупроводникового материала и расположенная с зазором относительно подложки, упругие балки, выполненные из полупроводникового материала и расположенных с зазором относительно подложки, электрод, расположенный непосредственно на подложке.

Недостатком конструкции гироскопа является невозможность измерения величин ускорения по осям X, Y.

Функциональным аналогом заявляемого объекта является микромеханический гироскоп [S.E.Alper, T.Akin, A Planar Gyroscope Using a Standard Surface Micromachining Process, The 14th European Conference on Solid-State Transducers (EUROSENSORS XIV), 2000, p.387, fig.1], содержащий подложку с расположенными на ней четырьмя электродами, выполненными из полупроводникового материала, инерционную массу, расположенную с зазором относительно подложки, выполненную в виде пластины из полупроводникового материала, образующую с парой расположенных на подложке электродов плоский конденсатор и связанную с внешним подвесом с помощью упругих балок, выполненных из полупроводникового материала, которые одними концами жестко прикреплены к инерционной массе, а другими - к внешнему подвесу, выполненного из полупроводникового материала и образующего с другой парой расположенных на подложке электродов плоский конденсатор, используемый в качестве электростатического привода, причем внешний подвес соединен с опорами с помощью упругих балок, выполненных из полупроводникового материала, которые одними концами жестко соединены с внешним подвесом, а другими - с опорами, выполненными из полупроводникового материала и расположенными непосредственно на подложке, и два электрода, выполненные из полупроводникового материала и расположенные непосредственно на подложке с зазором относительно внешнего подвеса так, что образуют плоские конденсаторы, используемые в качестве электростатических приводов.

Данный гироскоп позволяет измерять величину угловой скорости при вращении его вокруг оси Z, направленной перпендикулярно плоскости подложки гироскопа.

Признаками аналога, совпадающими с существенными признаками, являются два неподвижных электрода электростатических приводов с гребенчатыми структурами с одной стороны, четыре опоры, выполненные из полупроводникового материала и расположенные непосредственно на полупроводниковой подложке, рамка, инерционная масса, выполненная из полупроводникового материала и расположенная с зазором относительно подложки, неподвижный электрод емкостного преобразователя перемещений, выполненный из полупроводникового материала, расположенный на подложке, упругие балки, выполненные из полупроводникового материала и расположенные с зазором относительно подложки.

Недостатком конструкции гироскопа является невозможность измерения величин ускорения по осям X, Y.

Из известных наиболее близким по технической сущности к заявляемому объекту является интегральное микромеханическое устройство [V.Milanovic, M.Last, M.Palaniapan, K.S.J.Pister, Laterally actuated torsional micromirrors for large static deflection, IEEE Photonic technologies letters, vol.15, No. 2, February 2003, p.1, fig.1], содержащее полупроводниковую подложку с расположенными на ней двумя опорами, выполненными из полупроводникового материала, инерционную массу, выполненную из полупроводникового материала и расположенную с зазором относительно подложки, соединенную с опорами с помощью двух торсионов, выполненных из полупроводникового материала и расположенных с зазором относительно подложки, которые одними концами жестко прикреплены к инерционной массе, а другими - к опорам, подвижный электрод, выполненный из полупроводникового материала и расположенный с зазором относительно подложки, соединенный с инерционной массой с помощью двух упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно подложки, которые одними концами жестко прикреплены к подвижному электроду, а другими - к инерционной массе.

Данное устройство позволяет отклонять инерционную массу перпендикулярно плоскости подложки.

Признаками прототипа, совпадающими с существенными признаками, являются полупроводниковая подложка с расположенными на ней опорами, выполненными из полупроводникового материала, инерционная масса, выполненная из полупроводникового материала и расположенная с зазором относительно подложки, соединенная с опорами с помощью торсионов, выполненных из полупроводникового материала и расположенных с зазором относительно подложки, подвижный электрод, выполненный из полупроводникового материала и расположенный с зазором относительно подложки, соединенный с инерционной массой с помощью упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно подложки.

Причиной, препятствующей достижению технического результата, является невозможность измерения величин угловой скорости вокруг оси Z, расположенной перпендикулярно плоскости подложки, и ускорения по осям X, Y, расположенных в плоскости подложки.

Задача предлагаемого изобретения - возможность измерения величин угловой скорости вдоль оси Z, направленной перпендикулярно плоскости подложки, и ускорения вдоль осей X, Y, расположенных в плоскости подложки гироскопа-акселерометра.

Технический результат, достигаемый при осуществлении предлагаемого изобретения, заключается в возможности измерения величин угловой скорости вдоль оси Z, направленной перпендикулярно плоскости подложки, и ускорения вдоль осей X, Y, расположенных в плоскости подложки гироскопа-акселерометра.

Технический результат достигается за счет введения восьми дополнительных опор, выполненных из полупроводникового материала и расположенных, непосредственно на полупроводниковой подложке, внутренней рамки, выполненной из полупроводникового материала и расположенной с зазором относительно полупроводниковой подложки, двух дополнительных торсионов, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, трех дополнительных подвижных электродов, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, двенадцати дополнительных упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, четырех неподвижных электродов с гребенчатыми структурами с одной стороны, выполненных из полупроводникового материала и расположенных непосредственно на полупроводниковой подложке, причем подвижные электроды выполнены с гребенчатыми структурами с одной стороны и образуют конденсаторы с неподвижными электродами с гребенчатыми структурами с одной стороны в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенками электродов.

Для достижения необходимого технического результата в интегральное микромеханическое устройство, содержащее полупроводниковую подложку с расположенными на ней двумя опорами, выполненными из полупроводникового материала, инерционную массу, выполненную из полупроводникового материала и расположенную с зазором относительно подложки, два торсиона, выполненные из полупроводникового материала и расположенные с зазором относительно подложки, подвижный электрод, выполненный из полупроводникового материала и расположенный с зазором относительно подложки, две упругие балки, выполненные из полупроводникового материала и расположенные с зазором относительно подложки, введены восемь дополнительных опор, выполненных из полупроводникового материала и расположенных непосредственно на полупроводниковой подложке, внутренняя рамка, выполненная из полупроводникового материала и расположенная с зазором относительно полупроводниковой подложки, два дополнительных торсиона, выполненные из полупроводникового материала и расположенные с зазором относительно полупроводниковой подложки, три дополнительных подвижных электрода, выполненные из полупроводникового материала и расположенные с зазором относительно полупроводниковой подложки, двенадцать дополнительных упругих балок, выполненные из полупроводникового материала и расположенные с зазором относительно полупроводниковой подложки, четыре неподвижные электрода с гребенчатыми структурами с одной стороны, выполненные из полупроводникового материала и расположенные непосредственно на полупроводниковой подложке, причем подвижные электроды выполнены с гребенчатыми структурами с одной стороны и образуют конденсаторы с неподвижными электродами с гребенчатыми структурами с одной стороны в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенками электродов.

Сравнивая предлагаемое устройство с прототипом, видим, что оно содержит новые признаки, то есть соответствует критерию новизны. Проводя сравнение с аналогами, приходим к выводу, что предлагаемое устройство соответствует критерию «существенные отличия», так как в аналогах не обнаружены предъявляемые новые признаки.

На Фиг.1 приведена топология предлагаемого интегрального микромеханического гироскопа-акселерометра и показаны сечения. На Фиг.2 приведена структура предлагаемого интегрального микромеханического гироскопа-акселерометра. На Фиг.3 показано место соединения инерционной массы с упругими балками и торсионами.

Интегральный микромеханический гироскоп (Фиг.1) содержит полупроводниковую подложку 1 с расположенными на ней двумя неподвижными электродами с гребенчатыми структурами с одной стороны 2, 3, выполненными из полупроводникового материала, два неподвижных электрода с гребенчатыми структурами с одной стороны 4, 5, выполненных из полупроводникового материала и расположенных непосредственно на полупроводниковой подложке 1, два подвижных электрода электростатических приводов с гребенчатыми структурами с одной стороны 6, 7, выполненных в виде пластин из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки 1, образующих электростатическое взаимодействие с неподвижными электродами с гребенчатыми структурами с одной стороны 2, 3 в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенками электродов, и связанных с полупроводниковой подложкой 1 с помощью упругих балок 8, 9, 10, 11, выполненных из полупроводникового материала, которые одними концами соединены с подвижными электродами электростатических приводов 6, 7, а другими - с опорами 12, 13, 14, 15, выполненными из полупроводникового материала и расположенными непосредственно на полупроводниковой подложке 1, два подвижных электрода электростатических приводов с гребенчатыми структурами с одной стороны 16, 17, выполненных в виде пластин из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки 1, образующих электростатическое взаимодействие с неподвижными электродами с гребенчатыми структурами с одной стороны 4, 5 в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенками электродов, и связанных с полупроводниковой подложкой 1 с помощью упругих балок 18, 19, 20, 21, выполненных из полупроводникового материала, которые одними концами соединены с подвижными электродами электростатических приводов 16, 17, а другими - с опорами 22, 23, 24, 25, выполненными из полупроводникового материала и расположенными непосредственно на полупроводниковой подложке 1, внутреннюю рамку 26, выполненную из полупроводникового материала и расположенную с зазором относительно полупроводниковой подложки 1, соединенную с подвижными электродами 6, 7 с помощью четырех упругих балок 27, 28, 29, 30, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки 1, которые одними концами жестко прикреплены к внутренней рамке 26, а другими - к подвижным электродам 6, 7, и связанную с полупроводниковой подложкой 1 с помощью торсионных балок 31, 32, выполненных из полупроводникового материала, которые одними концами соединены с внутренней рамкой 26, а другими - с опорами 33, 34, инерционную массу 35, выполненную из полупроводникового материала и расположенную с зазором относительно полупроводниковой подложки 1, соединенную с подвижными электродами 16, 17 с помощью четырех упругих балок 36, 37, 38, 39, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки 1, которые одними концами жестко прикреплены к инерционной массе 35, а другими - к подвижным электродам 16, 17, и связанную с полупроводниковой подложкой 1 с помощью торсионных балок 40, 41, выполненных из полупроводникового материала, которые одними концами соединены с инерционной массой 35, а другими - с внутренней рамкой 26.

Работает устройство следующим образом.

При подаче на неподвижные электроды с гребенчатыми структурами с одной стороны 2, 3 переменных напряжений, сдвинутых относительно друг друга по фазе на 180°, относительно подвижных электродов с гребенчатыми структурами с одной стороны 6, 7 между ними возникает электростатическое взаимодействие, что приводит к возникновению колебаний последних в плоскости полупроводниковой подложки 1 (вдоль оси X), за счет s-образного изгиба упругих балок 8, 9, 10, 11, соединяющих подвижные электроды 6, 7 с опорами 12, 13, 14, 15. Колебания подвижных электродов 6, 7 передаются внутренней рамке 26, через упругие балки 27, 28, 29, 30, что вызывает колебания внутренней рамки 26 за счет кручения торсионных балок 31, 32, соединяющих внутреннюю рамку 26 с опорами 33, 34. Колебания прямоугольной рамки 26 передаются инерционной массе 35 через торсионные балки 40, 41.

При возникновении вращения полупроводниковой подложки 1 (угловой скорости) вокруг оси, расположенной перпендикулярно плоскости полупроводниковой подложки 1 (ось Z), инерционная масса 35 под действием сил инерции Кориолиса начинает совершать колебания в плоскости полупроводниковой подложки 1 (относительно оси X), за счет кручения торсионных балок 40, 41. Колебания инерционной массы 35 передаются подвижным электродам с гребенчатыми структурами с одной стороны 16, 17 через упругие балки 36, 37, 38, 39, что вызывает колебания подвижных электродов с гребенчатыми структурами с одной стороны 16, 17 в плоскости полупроводниковой подложки 1 (вдоль оси Y), за счет s-образного изгиба упругих балок 19, 20, 21, 22, соединяющие подвижные электроды с гребенчатыми структурами с одной стороны 16, 17 с опорами 22, 23, 24, 25. Разность напряжений, генерируемых на емкостных преобразователях перемещений, образованных неподвижными электродами с гребенчатыми структурами с одной стороны 4, 5 и подвижными электродами с гребенчатыми структурами с одной стороны 16, 17, соответственно, за счет изменения величины площади перекрытия между ними, характеризует величину угловой скорости.

При возникновении ускорения полупроводниковой подложки 1 вдоль оси X, расположенной в плоскости полупроводниковой подложки 1, подвижные электроды с гребенчатыми структурами с одной стороны 6, 7 под действием сил инерции начинают перемещаться вдоль оси Х в плоскости полупроводниковой подложки 1, за счет s-образного изгиба упругих балок 8, 9, 10, 11, соединяющих подвижные электроды 6, 7 с опорами 12, 13, 14, 15, внутренняя рамка 26 начинает совершать вращение перпендикулярно плоскости полупроводниковой подложки 1 за счет кручения торсионных балок 31, 32, соединяющих внутреннюю рамку 26 с опорами 33, 34. Разность напряжений, генерируемых на емкостных преобразователях перемещений, образованных неподвижными электродами с гребенчатыми структурами с одной стороны 2, 3 и подвижными электродами с гребенчатыми структурами с одной стороны 6, 7, соответственно, за счет изменения величины площади перекрытия между ними, характеризует величину ускорения.

При возникновении ускорения полупроводниковой подложки 1 вдоль оси Y, расположенной в плоскости полупроводниковой подложки 1, подвижные электроды с гребенчатыми структурами с одной стороны 16, 17 под действием сил инерции начинают перемещаться вдоль оси Y в плоскости полупроводниковой подложки 1, за счет s-образного изгиба упругих балок 18, 19, 20, 21, соединяющих подвижные электроды 16, 17 с опорами 19, 20, 21, 22, инерционная масса 35 начинает совершать вращение перпендикулярно плоскости полупроводниковой подложки 1 за счет кручения торсионных балок 40, 41, соединяющих инерционную массу 35 с внутренней рамкой 26. Разность напряжений, генерируемых на емкостных преобразователях перемещений, образованных неподвижными электродами с гребенчатыми структурами с одной стороны 4, 5 и подвижными электродами с гребенчатыми структурами с одной стороны 16, 17, соответственно, за счет изменения величины площади перекрытия между ними, характеризует величину ускорения.

Таким образом, предлагаемое устройство представляет собой интегральный микромеханический гироскоп-акселерометр, позволяющий измерять величины угловой скорости и ускорения вдоль осей X, Y, расположенных в плоскости подложки, и оси Z, направленной перпендикулярно плоскости подложки гироскопа-акселерометра.

Введение восьми дополнительных опор, выполненных из полупроводникового материала и расположенных непосредственно на полупроводниковой подложке, внутренней рамки, выполненной из полупроводникового материала и расположенной с зазором относительно полупроводниковой подложки, двух дополнительных торсионов, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, трех дополнительных подвижных электродов, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, двенадцати дополнительных упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, четырех неподвижных электродов с гребенчатыми структурами с одной стороны, выполненных из полупроводникового материала и расположенных непосредственно на полупроводниковой подложке, причем подвижные электроды выполнены с гребенчатыми структурами с одной стороны и образуют конденсаторы с неподвижными электродами с гребенчатыми структурами с одной стороны в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенками электродов, позволяет измерять величины угловой скорости вдоль оси Z, направленной перпендикулярно плоскости подложки гироскопа-акселерометра, и ускорения вдоль осей X, Y, расположенных в плоскости подложки, что позволяет использовать предлагаемое изобретение в качестве интегрального измерительного элемента величин угловой скорости и ускорения.

Таким образом, по сравнению с аналогичными устройствами, предлагаемый интегральный микромеханический гироскоп-акселерометр позволяет сократить площадь подложки, используемую под размещение измерительных элементов величин угловой скорости и ускорения, так как для измерения величин угловой скорости и ускорения по осям X, Y, Z используется только один интегральный микромеханический гироскоп-акселерометр.

Интегральный микромеханический гироскоп-акселерометр, содержащий полупроводниковую подложку с расположенными на ней двумя опорами, выполненными из полупроводникового материала, инерционную массу, выполненную из полупроводникового материала и расположенную с зазором относительно подложки, два торсиона, выполненные из полупроводникового материала и расположенные с зазором относительно подложки, подвижный электрод, выполненный из полупроводникового материала и расположенный с зазором относительно подложки, две упругие балки, выполненные из полупроводникового материала и расположенные с зазором относительно подложки, отличающийся тем, что в него введены восемь дополнительных опор, выполненных из полупроводникового материала и расположенных непосредственно на полупроводниковой подложке, внутренняя рамка, выполненная из полупроводникового материала и расположенная с зазором относительно полупроводниковой подложки, два дополнительных торсиона, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, три дополнительных подвижных электрода, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, двенадцать дополнительных упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, четыре неподвижных электрода с гребенчатыми структурами с одной стороны, выполненных из полупроводникового материала и расположенных непосредственно на полупроводниковой подложке, причем подвижные электроды выполнены с гребенчатыми структурами с одной стороны и образуют конденсаторы с неподвижными электродами с гребенчатыми структурами с одной стороны в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенками электродов.
ИНТЕГРАЛЬНЫЙ МИКРОМЕХАНИЧЕСКИЙ ГИРОСКОП-АКСЕЛЕРОМЕТР
ИНТЕГРАЛЬНЫЙ МИКРОМЕХАНИЧЕСКИЙ ГИРОСКОП-АКСЕЛЕРОМЕТР
ИНТЕГРАЛЬНЫЙ МИКРОМЕХАНИЧЕСКИЙ ГИРОСКОП-АКСЕЛЕРОМЕТР
Источник поступления информации: Роспатент

Показаны записи 1-7 из 7.
10.04.2013
№216.012.32dc

Способ изготовления полимерного композита с ориентированным массивом углеродных нанотрубок регулируемой плотности

Изобретение относится к области нано- и микросистемной техники и полимерных нанокомпозитов и может быть использовано для создания элементов наноэлектроники с регулируемым сопротивлением, защитных и теплоотводящих пленочных покрытий. Способ изготовления пленки, состоящей из полимерной матрицы,...
Тип: Изобретение
Номер охранного документа: 0002478563
Дата охранного документа: 10.04.2013
27.06.2014
№216.012.d781

Интегральный инжекционный лазер с модуляцией частоты излучения посредством управляемой передислокации максимума амплитуды волновых функций носителей заряда

Изобретение относится к квантовой электронной технике. В интегральный инжекционный лазер введены верхняя управляющая область второго типа проводимости, примыкающая к верхнему волноводному слою, нижняя управляющая область второго типа проводимости, примыкающая к нижнему волноводному слою, нижняя...
Тип: Изобретение
Номер охранного документа: 0002520947
Дата охранного документа: 27.06.2014
13.01.2017
№217.015.73c8

Четырехконтактный элемент интегрального коммутатора

Изобретение относится к области интегральной электроники, а именно - к элементам интегральных коммутаторов. Для увеличения быстродействия и расширения функциональных возможностей в четырехконтактный элемент интегрального коммутатора, содержащий полуизолирующую GaAs-подложку, области GaAs и...
Тип: Изобретение
Номер охранного документа: 0002597677
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7408

Интегральный туннельный акселерометр

Изобретение относится к области измерительной техники и микросистемной техники. Сущность изобретения заключается в том, что в устройство дополнительно введены четыре дополнительных неподвижных электрода, выполненные с гребенчатыми структурами из полупроводникового материала и расположенные...
Тип: Изобретение
Номер охранного документа: 0002597951
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.740f

Интегральный микромеханический гироскоп-акселерометр

Изобретение относится к области измерительной техники и микросистемной техники. Сущность изобретения заключается в том, что в устройство дополнительно введены четыре дополнительных неподвижных электрода емкостных преобразователей перемещений, выполненные в виде пластин с гребенчатыми...
Тип: Изобретение
Номер охранного документа: 0002597950
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.74c7

Интегральный микромеханический гироскоп-акселерометр

Изобретение относится к области измерительной техники и микросистемной техники. Сущность изобретения заключается в том, что в устройство дополнительно введены четыре дополнительных подвижных электрода емкостных преобразователей перемещений, выполненные в виде пластин с перфорацией с...
Тип: Изобретение
Номер охранного документа: 0002597953
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.89ed

Высокочувствительный преобразователь емкости в частоту

Изобретение относится к цифровой измерительной технике, а именно к устройствам преобразования емкости в частоту, и может быть использовано в устройствах первичной обработки информации емкостных преобразователей микромеханических гироскопов и акселерометров. Высокочувствительный преобразователь...
Тип: Изобретение
Номер охранного документа: 0002602493
Дата охранного документа: 20.11.2016
Показаны записи 1-10 из 18.
10.03.2013
№216.012.2ebe

Гидроакустическая навигационная система

Использование: в гидроакустических навигационных системах. Сущность: гидроакустическая навигационная система содержит навигационную базу из М гидроакустических приемоответчиков с различными частотами ответа, гидроакустический приемопередатчик, аппаратуру измерения временных интервалов...
Тип: Изобретение
Номер охранного документа: 0002477497
Дата охранного документа: 10.03.2013
27.06.2013
№216.012.51c8

Способ совместного измерения частоты, амплитуды, фазы и начальной фазы гармонического сигнала

Изобретение относится к измерительной технике и может быть использовано для одновременного измерения частоты, амплитуды, фазы и начальной фазы непрерывного или импульсного гармонического сигнала по одному и тому же минимальному набору исходных данных. Способ включает в себя дискретизацию...
Тип: Изобретение
Номер охранного документа: 0002486529
Дата охранного документа: 27.06.2013
20.07.2013
№216.012.56e1

Способ получения порошков фаз слоистых титанатов s- и p-элементов

Изобретение относится к способам получения порошков фаз слоистых титанатов ряда s- и p-элементов (ВСПС), которые являются основой пьезоматериалов, широко применяющихся в современной аэрокосмической промышленности. Предлагаемый способ получения фаз слоистых титанатов типа BiABO (A=Na, Ca, Cr,...
Тип: Изобретение
Номер охранного документа: 0002487849
Дата охранного документа: 20.07.2013
20.11.2013
№216.012.8316

Способ контроля добротности пьезорезонаторов и устройство для его осуществления

Использование: для контроля добротности пьезорезонагоров. Сущность: возбуждают колебания пьезорезонатора в области резонанса путем воздействия на него электрическим синусоидальным напряжением с переменной частотой, одновременно выделяют активную составляющую проводимости и выполняют ее...
Тип: Изобретение
Номер охранного документа: 0002499234
Дата охранного документа: 20.11.2013
10.12.2013
№216.012.8813

Способ поверхностного пластического деформирования цилиндрических деталей

Изобретение относится к поверхностному пластическому деформированию цилиндрических деталей. Сообщают ролику движение подачи вдоль оси обрабатываемой детали. Создают колебательные движения ролику посредством линейного шагового привода относительно плоскости, перпендикулярной оси обрабатываемой...
Тип: Изобретение
Номер охранного документа: 0002500517
Дата охранного документа: 10.12.2013
10.04.2014
№216.012.b72a

Акустооптический спектроанализатор

Изобретение относится к радиоизмерительной технике и может быть использовано в качестве широкополосного измерителя частоты радиосигналов. Технический результат, заключающийся в расширении полосы рабочих частот, достигается тем, что в акустооптический спектроанализатор, содержащий в своем...
Тип: Изобретение
Номер охранного документа: 0002512617
Дата охранного документа: 10.04.2014
10.05.2014
№216.012.c222

Способ получения порошков фаз кислородно-октаэдрического типа, содержащих ионы свинца (ii) в позиции (а)

Изобретение может быть использовано в полупроводниковой, пьезоэлектрической и радиоэлектронной технике. Для получения порошков титаната, или цирконата, или ниобата свинца, или титаната-цирконата свинца из 0,1-0,3М растворов нитратных комплексов титана, циркония или ниобия при рН=8±0,5 осаждают...
Тип: Изобретение
Номер охранного документа: 0002515447
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c4cf

Способ модифицирования поверхности титана

Изобретение относится к области гальванотехники и может быть использовано в промышленности для формирования тонких слоев защитно-декоративных покрытий нитрида титана на поверхностях из титана и его сплавов. Способ электролитического формирования слоя нитрида титана на поверхности титана и его...
Тип: Изобретение
Номер охранного документа: 0002516142
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.cd7a

Радиолокационный уровнемер

Радиолокационный уровнемер относится к радиотехнике и может быть использован для построения высокоточных измерителей уровня жидкостей или сыпучих веществ в резервуарах и высотомеров малых высот. Радиолокационный уровнемер содержит высокостабильный генератор 1, делители 2 и 3 частоты, контроллер...
Тип: Изобретение
Номер охранного документа: 0002518373
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d37c

Рециркуляционный радиовысотомер

Изобретение относится к радиолокационной технике и может быть использовано при разработке бортовых средств измерения высоты полета летательных аппаратов. Рециркуляционный радиовысотомер содержит генератор старт-импульсов, генератор тактовых импульсов, два элемента И, два элемента ИЛИ, три...
Тип: Изобретение
Номер охранного документа: 0002519911
Дата охранного документа: 20.06.2014
+ добавить свой РИД