×
13.01.2017
217.015.740f

ИНТЕГРАЛЬНЫЙ МИКРОМЕХАНИЧЕСКИЙ ГИРОСКОП-АКСЕЛЕРОМЕТР

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области измерительной техники и микросистемной техники. Сущность изобретения заключается в том, что в устройство дополнительно введены четыре дополнительных неподвижных электрода емкостных преобразователей перемещений, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные непосредственно на полупроводниковой подложке так, что они образуют конденсатор с подвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, четыре дополнительных неподвижных электрода электростатических приводов, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные непосредственно на полупроводниковой подложке так, что они образуют конденсаторы с подвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, восемь дополнительных опор, выполненные из полупроводникового материала и расположенные непосредственно на полупроводниковой подложке, восемь дополнительных «П»-образных систем упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, причем четыре подвижных электрода емкостных преобразователей перемещений выполнены в виде «Т»-образных пластин с перфорацией с гребенчатыми структурами с трех сторон, четыре неподвижных электрода емкостных преобразователей перемещений объединены в один, а инерционная масса выполнена с перфорацией. Технический результат - возможность измерения величин угловой скорости и линейного ускорения вдоль осей Z, направленной перпендикулярно плоскости подложки гироскопа-акселерометра, и X, Y, расположенных в плоскости подложки устройства. 2 ил.
Реферат Свернуть Развернуть

Предлагаемое изобретение относится к области измерительной техники и микросистемной техники, а более конкретно к интегральным измерительным элементам величин угловой скорости и линейного ускорения.

Известен интегральный микромеханический акселерометр [A. Selvakumar, F. Ayazi, K. Najafi, A High Sensitivity Z-Axis Torsional Silicon Accelerometer, Digest, IEEE International Electron Device Meeting (IEDM′96), San Francisco, CA, December 1996, p. 765, fig. 1a], содержащий диэлектрическую подложку и инерционную массу, расположенную с зазором относительно диэлектрической подложки, выполненную в виде пластины с гребенчатой структурой с одной стороны из полупроводникового материала и связанную с подложкой с помощью упругих балок, выполненных из полупроводникового материала, которые одними концами жестко соединены с инерционной массой, а другими - с опорами, выполненными из полупроводникового материала и расположенными непосредственно на диэлектрической подложке, неподвижный электрод емкостного преобразователя перемещений с гребенчатой структурой с одной стороны, выполненный из полупроводникового материала и расположенный на диэлектрической подложке с зазором относительно инерционной массы так, что образует конденсатор в плоскости ее пластины через боковые зазоры и взаимопроникающие друг в друга гребенки электродов.

Данный акселерометр позволяет измерять величину линейного ускорения вдоль оси Z, направленной перпендикулярно плоскости подложки акселерометра.

Признаками аналога, совпадающими с существенными признаками, являются инерционная масса, упругие балки, выполненные из полупроводникового материала и расположенные с зазором относительно подложки, опоры, выполненные из полупроводникового материала и расположенные непосредственно на подложке, неподвижный электрод емкостного преобразователя перемещений с гребенчатой структурой с одной стороны, выполненный из полупроводникового материала и расположенный непосредственно на подложке.

Недостатком конструкции акселерометра является невозможность измерения величин линейного ускорения вдоль двух взаимно перпендикулярных осей X и Y, расположенных в плоскости подложки и величин угловой скорости.

Функциональным аналогом заявляемого объекта является интегральный микромеханический акселерометр [M.A. Lemkin, B.E. Boser, D. Auslander, J.H. Smith, A 3-Axis Force Balanced Accelerometer Using a Single Proof-Mass, International Conference on Solid-State Sensors and Actuators (Transducers′97), Chicago, June 16-19, 1997, p. 1186, fig. 1], содержащий полупроводниковую подложку с расположенным на ней неподвижным электродом, выполненным из полупроводникового материала, и инерционную массу, расположенную с зазором относительно подложки, выполненную в виде пластины из полупроводникового материала, образующую с неподвижным электродом плоский конденсатор за счет их полного перекрытия, используемый в качестве емкостного преобразователя перемещений, и связанную с полупроводниковой подложкой с помощью упругих балок, выполненных из полупроводникового материала, которые одними концами жестко соединены с инерционной массой, а другими - с опорами, выполненными из полупроводникового материала и расположенными непосредственно на подложке, и неподвижные электроды, выполненные из полупроводникового материала с гребенчатыми структурами и расположенные непосредственно на подложке с зазором относительно инерционной массы так, что образуют конденсаторы в плоскости ее пластины через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, используемые в качестве емкостных преобразователей перемещений.

Данный акселерометр позволяет измерять величины линейного ускорения вдоль осей X и Y, расположенных взаимно перпендикулярно в плоскости подложки, и оси Z, направленной перпендикулярно плоскости подложки.

Признаками аналога, совпадающими с существенными признаками, являются полупроводниковая подложка, инерционная масса, упругие балки, выполненные из полупроводникового материала и расположенные с зазором относительно подложки, опоры, выполненные из полупроводникового материала и расположенные непосредственно на подложке, неподвижные электроды емкостных преобразователей перемещений, выполненные из полупроводникового материала и расположенные на полупроводниковой подложке.

Недостатком конструкции акселерометра является невозможность измерения величин угловой скорости.

Из известных наиболее близким по технической сущности к заявляемому объекту является интегральный микромеханический акселерометр [Б.Г. Коноплев, И.Е. Лысенко, Интегральный микромеханический акселерометр-клинометр, патент РФ на изобретение №2279092, опубликовано 27.06.2006, Бюл. №18], содержащий полупроводниковую подложку с расположенными на ней четырьмя неподвижными электродами емкостных преобразователей перемещений, выполненными из полупроводникового материала, и четырьмя неподвижными электродами емкостных преобразователей перемещений, выполненных из полупроводникового материала с гребенчатыми структурами с одной стороны, четыре подвижных электрода емкостных преобразователей перемещений, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные с зазором относительно полупроводниковой подложки, образующие конденсаторы с неподвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенками электродов, и связанных с полупроводниковой подложкой с помощью упругих балок, выполненных из полупроводникового материала, которые одними концами жестко соединены с подвижными электродами емкостных преобразователей перемещений, а другими - с опорами, выполненными из полупроводникового материала и расположенными непосредственно на полупроводниковой подложке, инерционную массу, выполненную в виде пластины из полупроводникового материала, расположенную с зазором относительно полупроводниковой подложки, связанную с подвижными электродами емкостных преобразователей перемещений с помощью упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки.

Данный акселерометр позволяет измерять величины линейного ускорения вдоль осей X и Y, расположенных взаимно перпендикулярно в плоскости подложки, и оси Z, направленной перпендикулярно плоскости подложки.

Признаками прототипа, совпадающими с существенными признаками, являются полупроводниковая подложка, инерционная масса, упругие балки, подвижные электроды емкостных преобразователей перемещений, выполненные из полупроводникового материала и расположенные с зазором относительно подложки, опоры, неподвижные электроды емкостных преобразователей перемещений, выполненные из полупроводникового материала и расположенные на полупроводниковой подложке.

Недостатком конструкции акселерометра является невозможность измерения величин угловой скорости.

Задачей предлагаемого изобретения является возможность измерения величин угловых скоростей и линейного ускорения вдоль осей X и Y, расположенных взаимно перпендикулярно в плоскости подложки, и оси Z, направленной перпендикулярно плоскости подложки.

Технический результат, достигаемый при осуществлении предполагаемого изобретения, заключается в возможности измерения величин угловых скоростей и линейного ускорения вдоль осей X и Y, расположенных взаимно перпендикулярно в плоскости подложки, и оси Z, направленной перпендикулярно плоскости подложки.

Технический результат достигается за счет введения четырех дополнительных неподвижных электродов емкостных преобразователей перемещений, выполненных в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенных непосредственно на полупроводниковой подложки так, что он образует конденсатор с подвижными электродами емкостного преобразователя перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, четырех дополнительных неподвижных электродов электростатических приводов, выполненных в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенных непосредственно на полупроводниковой подложки, так, что они образуют конденсаторы с подвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, восьми дополнительных опор, выполненных из полупроводникового материала и расположенных непосредственно на полупроводниковой подложки, восьми дополнительных «П»-образных систем упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, причем четыре подвижных электрода емкостных преобразователей перемещений выполнены в виде «Т»-образных пластин с перфорацией с гребенчатыми структурами с трех сторон, четыре неподвижных электрода емкостных преобразователей перемещений объединены в один, а инерционная масса выполнена с перфорацией.

Для достижения необходимого технического результата в интегральный микромеханический акселерометр, содержащий полупроводниковую подложку с расположенными на ней четырьмя неподвижными электродами емкостных преобразователей перемещений, выполненными из полупроводникового материала, четыре неподвижных электрода емкостных преобразователей перемещений, выполненных из полупроводникового материала с гребенчатыми структурами с одной стороны и расположенные непосредственно на полупроводниковой подложке, четыре подвижных электрода емкостных преобразователей перемещений, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные с зазором относительно полупроводниковой подложки, образующие конденсаторы с неподвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенками электродов, и связанных с полупроводниковой подложкой с помощью упругих балок, выполненных из полупроводникового материала, которые одними концами жестко соединены с подвижными электродами емкостных преобразователей перемещений, а другими - с опорами, выполненными из полупроводникового материала и расположенными непосредственно на полупроводниковой подложке, инерционную массу, выполненную в виде пластины из полупроводникового материала, расположенную с зазором относительно полупроводниковой подложки, связанную с подвижными электродами емкостных преобразователей перемещений с помощью упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки введены четыре дополнительных неподвижных электрода емкостных преобразователей перемещений, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные непосредственно на полупроводниковой подложки так, что он образует конденсатор с подвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, четыре дополнительных неподвижных электрода электростатических приводов, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные непосредственно на полупроводниковой подложки, так, что они образуют конденсаторы с подвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, восемь дополнительных опор, выполненные из полупроводникового материала и расположенные непосредственно на полупроводниковой подложки, восемь дополнительных «П»-образных систем упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, причем четыре подвижных электрода емкостных преобразователей перемещений выполнены в виде «Т»-образных пластин с перфорацией с гребенчатыми структурами с трех сторон, четыре неподвижных электрода емкостных преобразователей перемещений объединены в один, а инерционная масса выполнена с перфорацией.

Сравнивая предлагаемое устройство с прототипом, видим, что оно содержит новые признаки, то есть соответствует критерию новизны. Проводя сравнение с аналогами, приходим к выводу, что предлагаемое устройство соответствует критерию «существенные отличия», так как в аналогах не обнаружены предъявляемые новые признаки.

На Фиг. 1 приведена топология предлагаемого интегрального микромеханического гироскопа-акселерометра и показаны сечения. На Фиг. 2 приведена структура предлагаемого интегрального микромеханического гироскопа-акселерометра.

Интегральный микромеханический гироскоп-акселерометр (Фиг. 1) содержит полупроводниковую подложку 1 с расположенными на ней восьмью неподвижными электродами емкостных преобразователей перемещений 2, 3, 4, 5, 6, 7, 8, 9, выполненными из полупроводникового материала с гребенчатыми структурами с одной стороны, неподвижный электрод емкостного преобразователя перемещений 10, выполненного из полупроводникового материала и расположенного непосредственно на подложке, четыре подвижных электрода емкостных преобразователей перемещений 11, 12, 13, 14, выполненные в виде «Т»-образных пластин с перфорацией с гребенчатыми структурами с трех сторон из полупроводникового материала и расположенные с зазором относительно полупроводниковой подложки 1, образующие конденсаторы с неподвижными электродами емкостных преобразователей перемещений 2, 3, 4, 5, 6, 7, 8, 9 в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенками электродов, и связанные с полупроводниковой подложкой 1 с помощью упругих балок 15, 16, 17, 18, 19, 20, 21, 22, выполненных из полупроводникового материала, которые одними концами жестко соединены с подвижными электродами емкостных преобразователей перемещений 11, 12, 13, 14, а другими - с опорами 23, 24, 25, 26, выполненными из полупроводникового материала и расположенными непосредственно на полупроводниковой подложке 1, и с помощью «П»-образных систем дополнительных упругих балок 27, 28, 29, 30, 31, 32, 33, 34, выполненных из полупроводникового материала, которые одними концами жестко соединены с подвижными электродами емкостных преобразователей перемещений 11, 12, 13, 14, а другими - с дополнительными опорами 35, 36, 37, 38, 39, 40, 41, 42, выполненными из полупроводникового материала и расположенными непосредственно на полупроводниковой подложке 1, четыре неподвижных электрода электростатических приводов 43, 44, 45, 46, выполненные из полупроводникового материала с гребенчатыми структурами с одной стороны и расположенные непосредственно на полупроводниковой подложки 1, образующие конденсаторы с подвижными электродами емкостных преобразователей перемещений 11, 12, 13, 14 в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенками электродов, инерционную массу 47, выполненную в виде пластины с перфорацией из полупроводникового материала, расположенную с зазором относительно полупроводниковой подложки 1, образующую с расположенным на полупроводниковой подложке 1 неподвижным электродом емкостного преобразователя перемещений 10 плоский конденсатор за счет их полного перекрытия, и связанную с подвижными электродами емкостных преобразователей перемещений 11, 12, 13, 14 с помощью упругих балок 48, 49, 50, 51, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки 1.

Работает устройство следующим образом.

При возникновении линейного ускорения вдоль оси X, расположенной в плоскости полупроводниковой подложки 1, инерционная масса 47 под действием сил инерции начинает перемещаться вдоль оси X в плоскости полупроводниковой подложки 1, за счет изгиба упругих балок 17, 18, 21, 22, которые одними концами жестко соединены с подвижными электродами емкостных преобразователей перемещений 12, 14, а другими - с опорами 23, 24, 25, 26, соответственно, упругих балок 49, 51, и «П»-образных систем упругих балок 27, 28, 31, 32, которые одними концами жестко соединены с подвижными электродами емкостных преобразователей перемещений 12, 14, а другими - с опорами 35, 36, 39, 40. Разность напряжений, генерируемых на емкостных преобразователях перемещений, образованных неподвижными электродами емкостных преобразователей перемещений 4, 5, 8, 9 и подвижными электродами емкостных преобразователей перемещений 12, 14, соответственно, за счет изменения величины зазора между ними, характеризует величину линейного ускорения.

При возникновении линейного ускорения вдоль оси Y, расположенной в плоскости полупроводниковой подложки 1, инерционная масса 47 под действием сил инерции начинает перемещаться вдоль оси Y в плоскости полупроводниковой подложки 1, за счет изгиба упругих балок 15, 16, 19, 20, которые одними концами жестко соединены с подвижными электродами емкостных преобразователей перемещений 11, 13, а другими - с опорами 23, 24, 25, 26, соответственно, упругих балок 48, 50, и «П»-образных систем упругих балок 29, 30, 33, 34, которые одними концами жестко соединены с подвижными электродами емкостных преобразователей перемещений 11, 13, а другими - с опорами 37, 38, 41, 42. Разность напряжений, генерируемых на емкостных преобразователях перемещений, образованных неподвижными электродами емкостных преобразователей перемещений 2, 3, 6, 7 и подвижными электродами емкостных преобразователей перемещений 11, 13, соответственно, за счет изменения величины зазора между ними, характеризует величину линейного ускорения.

При возникновении линейного ускорения вдоль оси Z, направленной перпендикулярно плоскости полупроводниковой подложки 1, инерционная масса 47 под действием сил инерции начинает перемещаться перпендикулярно плоскости полупроводниковой подложки 1, за счет изгиба упругих балок 48, 49, 50, 51 и кручения упругих балок 15, 16, 17, 18, 19, 20, 21, 22. Напряжение, генерируемое на емкостном преобразователе перемещений, образованного неподвижным электродом емкостного преобразователя перемещений 10 и инерционной массой 47, соответственно, за счет изменения величины зазора между ними, характеризуют величину линейного ускорения.

При подаче на неподвижные электроды электростатических приводов с гребенчатыми структурами с одной стороны 43, 45 переменных напряжений, сдвинутых относительно друг друга по фазе на 180°, относительно подвижных электродов 14, 12 между ними возникает электростатическое взаимодействие, что приводит к возникновению колебаний инерционной массы 47 в плоскости полупроводниковой подложки 1 вдоль оси X, за счет изгиба упругих балок 17, 18, 21, 22, 49, 51, и «П»-образных систем упругих балок 27, 28, 31, 32.

При возникновении угловой скорости вдоль оси Z, расположенной перпендикулярно плоскости полупроводниковой подложки 1, инерционная масса 47 и подвижные электроды емкостных преобразователей перемещений 11, 13 под действием сил инерции Кориолиса начинает совершать колебания в плоскости полупроводниковой подложки 1 вдоль оси Y, за счет изгиба упругих балок 15, 16, 19, 20, 48, 50 и «П»-образных систем упругих балок 29, 30, 33, 34. Разность напряжений, генерируемых на емкостных преобразователях перемещений, образованных неподвижными электродами емкостных преобразователей перемещений 2, 3, 6, 7 и подвижными электродами емкостных преобразователей перемещений 11, 13, соответственно, за счет изменения величины зазора между ними, характеризует величину угловой скорости.

При возникновении угловой скорости вдоль оси Y, расположенной в плоскости полупроводниковой подложки 1, инерционная масса 47 под действием сил инерции Кориолиса начинает совершать колебания перпендикулярно плоскости полупроводниковой подложки 1 вдоль оси Z, за счет изгиба упругих балок 48, 49, 50, 51 и кручения упругих балок 15, 16, 17, 18, 19, 20, 21, 22. Напряжение, генерируемое на емкостном преобразователе перемещений, образованного неподвижным электродом емкостного преобразователя перемещений 10 и инерционной массой 47, за счет изменения величины зазора между ними, характеризует величину угловой скорости.

При подаче на неподвижные электроды электростатических приводов с гребенчатыми структурами с одной стороны 44, 46 переменных напряжений, сдвинутых относительно друг друга по фазе на 180°, относительно подвижных электродов 11, 13 между ними возникает электростатическое взаимодействие, что приводит к возникновению колебаний инерционной массы 47 в плоскости полупроводниковой подложки 1 вдоль оси Y, за счет изгиба упругих балок 15, 16, 19, 20, 48, 50, и «П»-образных систем упругих балок 29, 30, 33, 34.

При возникновении угловой скорости вдоль оси Z, расположенной перпендикулярно плоскости полупроводниковой подложки 1, инерционная масса 47 и подвижные электроды емкостных преобразователей перемещений 12, 14 под действием сил инерции Кориолиса начинает совершать колебания в плоскости полупроводниковой подложки 1 вдоль оси X, за счет изгиба упругих балок 17, 18, 21, 22, 49, 51 и «П»-образных систем упругих балок 27, 28, 31, 32. Разность напряжений, генерируемых на емкостных преобразователях перемещений, образованных неподвижными электродами емкостных преобразователей перемещений 4, 5, 8, 9 и подвижными электродами емкостных преобразователей перемещений 12, 14, соответственно, за счет изменения величины зазора между ними, характеризует величину угловой скорости.

При возникновении угловой скорости вдоль оси X, расположенной в плоскости полупроводниковой подложки 1, инерционная масса 47 под действием сил инерции Кориолиса начинает совершать колебания перпендикулярно плоскости полупроводниковой подложки 1 вдоль оси Z, за счет изгиба упругих балок 48, 49, 50, 51 и кручения упругих балок 15, 16, 17, 18, 19, 20, 21, 22. Напряжение, генерируемое на емкостном преобразователе перемещений, образованного неподвижным электродом емкостного преобразователя перемещений 10 и инерционной массой 47, за счет изменения величины зазора между ними, характеризует величину угловой скорости.

Опоры 23, 24, 25, 26 выполняют роль ограничителя движения инерционной массы 47 в плоскости полупроводниковой подложки 1.

Таким образом, предлагаемое устройство представляет собой интегральный микромеханический гироскоп-акселерометр, позволяющий измерять величины угловой скорости и ускорения вдоль осей X, Y, расположенных в плоскости подложки, и оси Z, направленной перпендикулярно плоскости подложки.

Введение четырех дополнительных неподвижных электродов емкостных преобразователей перемещений, выполненных в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенных непосредственно на полупроводниковой подложки так, что он образует конденсатор с подвижными электродами емкостного преобразователя перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, четырех дополнительных неподвижных электрода электростатических приводов, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные непосредственно на полупроводниковой подложки, так, что они образуют конденсаторы с подвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, восьми дополнительных опор, выполненных из полупроводникового материала и расположенных непосредственно на полупроводниковой подложки, восьми дополнительных «П»-образных систем упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, причем четыре подвижных электрода емкостных преобразователей перемещений выполнены в виде «Т»-образных пластин с перфорацией с гребенчатыми структурами с трех сторон, четыре неподвижных электрода емкостных преобразователей перемещений объединены в один, а инерционная масса выполнена с перфорацией, позволяет измерять величины угловой скорости и линейного ускорения вдоль осей Z, направленной перпендикулярно плоскости подложки гироскопа-акселерометра, и X, Y, расположенных в плоскости подложки, что позволяет использовать предлагаемое изобретение в качестве интегрального измерительного элемента величин угловой скорости и линейного ускорения.

Таким образом, по сравнению с аналогичными устройствами, предлагаемый интегральный микромеханический гироскоп-акселерометр позволяет сократить площадь подложки, используемую под размещение измерительных элементов величин угловой скорости и линейного ускорения, так как для измерения величин угловой скорости и линейного ускорения по осям X, Y, Z используется только один интегральный микромеханический сенсор.

Интегральный микромеханический гироскоп-акселерометр, содержащий полупроводниковую подложку с расположенными на ней четырьмя неподвижными электродами емкостных преобразователей перемещений, выполненными из полупроводникового материала, четырьмя неподвижными электродами емкостных преобразователей перемещений, выполненными из полупроводникового материала с гребенчатыми структурами с одной стороны, четыре подвижных электрода емкостных преобразователей перемещений, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные с зазором относительно полупроводниковой подложки, образующие конденсаторы с неподвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, связанные с полупроводниковой подложкой с помощью упругих балок, выполненных из полупроводникового материала, которые одними концами жестко соединены с подвижными электродами емкостных преобразователей перемещений, а другими - с опорами, выполненными из полупроводникового материала и расположенными непосредственно на полупроводниковой подложке, инерционную массу, выполненную в виде пластины из полупроводникового материала, расположенную с зазором относительно полупроводниковой подложки, связанную с подвижными электродами емкостных преобразователей перемещений с помощью упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, отличающийся тем, что в него введены четыре дополнительных неподвижных электрода емкостных преобразователей перемещений, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные непосредственно на полупроводниковой подложке так, что они образуют конденсатор с подвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, четыре дополнительных неподвижных электрода электростатических приводов, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные непосредственно на полупроводниковой подложке так, что они образуют конденсаторы с подвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, восемь дополнительных опор, выполненные из полупроводникового материала и расположенные непосредственно на полупроводниковой подложке, восемь дополнительных «П»-образных систем упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, причем четыре подвижных электрода емкостных преобразователей перемещений выполнены в виде «Т»-образных пластин с перфорацией с гребенчатыми структурами с трех сторон, четыре неподвижных электрода емкостных преобразователей перемещений объединены в один, а инерционная масса выполнена с перфорацией.
ИНТЕГРАЛЬНЫЙ МИКРОМЕХАНИЧЕСКИЙ ГИРОСКОП-АКСЕЛЕРОМЕТР
ИНТЕГРАЛЬНЫЙ МИКРОМЕХАНИЧЕСКИЙ ГИРОСКОП-АКСЕЛЕРОМЕТР
ИНТЕГРАЛЬНЫЙ МИКРОМЕХАНИЧЕСКИЙ ГИРОСКОП-АКСЕЛЕРОМЕТР
Источник поступления информации: Роспатент

Показаны записи 1-10 из 44.
20.03.2013
№216.012.3028

Интегральный микромеханический гироскоп-акселерометр

Изобретение относится к области измерительной техники и микросистемной техники, а более конкретно к интегральным измерительным элементам величин угловой скорости и ускорения. В устройство, содержащее полупроводниковую подложку с двумя опорами, инерционную массу, два торсиона, две упругие балки...
Тип: Изобретение
Номер охранного документа: 0002477863
Дата охранного документа: 20.03.2013
10.04.2013
№216.012.32dc

Способ изготовления полимерного композита с ориентированным массивом углеродных нанотрубок регулируемой плотности

Изобретение относится к области нано- и микросистемной техники и полимерных нанокомпозитов и может быть использовано для создания элементов наноэлектроники с регулируемым сопротивлением, защитных и теплоотводящих пленочных покрытий. Способ изготовления пленки, состоящей из полимерной матрицы,...
Тип: Изобретение
Номер охранного документа: 0002478563
Дата охранного документа: 10.04.2013
27.06.2014
№216.012.d781

Интегральный инжекционный лазер с модуляцией частоты излучения посредством управляемой передислокации максимума амплитуды волновых функций носителей заряда

Изобретение относится к квантовой электронной технике. В интегральный инжекционный лазер введены верхняя управляющая область второго типа проводимости, примыкающая к верхнему волноводному слою, нижняя управляющая область второго типа проводимости, примыкающая к нижнему волноводному слою, нижняя...
Тип: Изобретение
Номер охранного документа: 0002520947
Дата охранного документа: 27.06.2014
20.10.2015
№216.013.844f

Устройство тестового контроля

Предлагаемое устройство относится к области вычислительной техники и может быть использовано в системах контроля и диагностики цифровых вычислительных устройств. Задачей заявляемого устройства является обеспечение возможности независимого оперативного переключения различных групп...
Тип: Изобретение
Номер охранного документа: 0002565474
Дата охранного документа: 20.10.2015
20.11.2015
№216.013.8f69

Устройство формирования линейно-частотно-модулированных сигналов

Изобретение относится к технике формирования радиосигналов и может быть использовано в радиолокации, защищенной связи, радиотомографии, георазведке. Технический результат изобретения заключается в увеличении девиации частоты линейно-частотно-модулированных (ЛЧМ) сигналов. Изобретение включает...
Тип: Изобретение
Номер охранного документа: 0002568329
Дата охранного документа: 20.11.2015
10.02.2016
№216.014.c31b

Масса для изготовления абразивного инструмента

Изобретение относится к области механической обработки материалов и может быть использовано при изготовлении абразивных инструментов для шлифования. Используют массу, включающую абразив, эпоксидную смолу, полиэтиленполиамин, высокопрочный ферритный чугун, древесную золу и дийодид хрома в...
Тип: Изобретение
Номер охранного документа: 0002574183
Дата охранного документа: 10.02.2016
20.04.2016
№216.015.3406

Способ лазерного управляемого термораскалывания сапфировых пластин

Изобретение относится к способам резки хрупких неметаллических материалов, в частности сапфировых пластин импульсным лазерным излучением с длиной волны 1064 нм. Изобретение может быть использовано в различных областях техники и технологий для безотходной и высокоточной резки (термораскалывания)...
Тип: Изобретение
Номер охранного документа: 0002582181
Дата охранного документа: 20.04.2016
20.05.2016
№216.015.3fd3

Акустооптический измеритель параметров радиосигналов с повышенным разрешением

Акустооптический измеритель параметров радиосигналов включает в себя последовательно по свету расположенные лазер, коллиматор, АО дефлектор, на электрический вход которого подается измеряемый радиосигнал, интегрирующую линзу, в фокальной плоскости которой расположено регистрирующее устройство,...
Тип: Изобретение
Номер охранного документа: 0002584182
Дата охранного документа: 20.05.2016
13.01.2017
№217.015.73c8

Четырехконтактный элемент интегрального коммутатора

Изобретение относится к области интегральной электроники, а именно - к элементам интегральных коммутаторов. Для увеличения быстродействия и расширения функциональных возможностей в четырехконтактный элемент интегрального коммутатора, содержащий полуизолирующую GaAs-подложку, области GaAs и...
Тип: Изобретение
Номер охранного документа: 0002597677
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7408

Интегральный туннельный акселерометр

Изобретение относится к области измерительной техники и микросистемной техники. Сущность изобретения заключается в том, что в устройство дополнительно введены четыре дополнительных неподвижных электрода, выполненные с гребенчатыми структурами из полупроводникового материала и расположенные...
Тип: Изобретение
Номер охранного документа: 0002597951
Дата охранного документа: 20.09.2016
Показаны записи 1-10 из 28.
10.04.2013
№216.012.32dc

Способ изготовления полимерного композита с ориентированным массивом углеродных нанотрубок регулируемой плотности

Изобретение относится к области нано- и микросистемной техники и полимерных нанокомпозитов и может быть использовано для создания элементов наноэлектроники с регулируемым сопротивлением, защитных и теплоотводящих пленочных покрытий. Способ изготовления пленки, состоящей из полимерной матрицы,...
Тип: Изобретение
Номер охранного документа: 0002478563
Дата охранного документа: 10.04.2013
27.06.2014
№216.012.d781

Интегральный инжекционный лазер с модуляцией частоты излучения посредством управляемой передислокации максимума амплитуды волновых функций носителей заряда

Изобретение относится к квантовой электронной технике. В интегральный инжекционный лазер введены верхняя управляющая область второго типа проводимости, примыкающая к верхнему волноводному слою, нижняя управляющая область второго типа проводимости, примыкающая к нижнему волноводному слою, нижняя...
Тип: Изобретение
Номер охранного документа: 0002520947
Дата охранного документа: 27.06.2014
20.10.2015
№216.013.844f

Устройство тестового контроля

Предлагаемое устройство относится к области вычислительной техники и может быть использовано в системах контроля и диагностики цифровых вычислительных устройств. Задачей заявляемого устройства является обеспечение возможности независимого оперативного переключения различных групп...
Тип: Изобретение
Номер охранного документа: 0002565474
Дата охранного документа: 20.10.2015
20.11.2015
№216.013.8f69

Устройство формирования линейно-частотно-модулированных сигналов

Изобретение относится к технике формирования радиосигналов и может быть использовано в радиолокации, защищенной связи, радиотомографии, георазведке. Технический результат изобретения заключается в увеличении девиации частоты линейно-частотно-модулированных (ЛЧМ) сигналов. Изобретение включает...
Тип: Изобретение
Номер охранного документа: 0002568329
Дата охранного документа: 20.11.2015
10.02.2016
№216.014.c31b

Масса для изготовления абразивного инструмента

Изобретение относится к области механической обработки материалов и может быть использовано при изготовлении абразивных инструментов для шлифования. Используют массу, включающую абразив, эпоксидную смолу, полиэтиленполиамин, высокопрочный ферритный чугун, древесную золу и дийодид хрома в...
Тип: Изобретение
Номер охранного документа: 0002574183
Дата охранного документа: 10.02.2016
20.04.2016
№216.015.3406

Способ лазерного управляемого термораскалывания сапфировых пластин

Изобретение относится к способам резки хрупких неметаллических материалов, в частности сапфировых пластин импульсным лазерным излучением с длиной волны 1064 нм. Изобретение может быть использовано в различных областях техники и технологий для безотходной и высокоточной резки (термораскалывания)...
Тип: Изобретение
Номер охранного документа: 0002582181
Дата охранного документа: 20.04.2016
20.05.2016
№216.015.3fd3

Акустооптический измеритель параметров радиосигналов с повышенным разрешением

Акустооптический измеритель параметров радиосигналов включает в себя последовательно по свету расположенные лазер, коллиматор, АО дефлектор, на электрический вход которого подается измеряемый радиосигнал, интегрирующую линзу, в фокальной плоскости которой расположено регистрирующее устройство,...
Тип: Изобретение
Номер охранного документа: 0002584182
Дата охранного документа: 20.05.2016
13.01.2017
№217.015.73c8

Четырехконтактный элемент интегрального коммутатора

Изобретение относится к области интегральной электроники, а именно - к элементам интегральных коммутаторов. Для увеличения быстродействия и расширения функциональных возможностей в четырехконтактный элемент интегрального коммутатора, содержащий полуизолирующую GaAs-подложку, области GaAs и...
Тип: Изобретение
Номер охранного документа: 0002597677
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7408

Интегральный туннельный акселерометр

Изобретение относится к области измерительной техники и микросистемной техники. Сущность изобретения заключается в том, что в устройство дополнительно введены четыре дополнительных неподвижных электрода, выполненные с гребенчатыми структурами из полупроводникового материала и расположенные...
Тип: Изобретение
Номер охранного документа: 0002597951
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.74c7

Интегральный микромеханический гироскоп-акселерометр

Изобретение относится к области измерительной техники и микросистемной техники. Сущность изобретения заключается в том, что в устройство дополнительно введены четыре дополнительных подвижных электрода емкостных преобразователей перемещений, выполненные в виде пластин с перфорацией с...
Тип: Изобретение
Номер охранного документа: 0002597953
Дата охранного документа: 20.09.2016
+ добавить свой РИД