×
20.07.2013
216.012.56e1

СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ ФАЗ СЛОИСТЫХ ТИТАНАТОВ S- И P-ЭЛЕМЕНТОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способам получения порошков фаз слоистых титанатов ряда s- и p-элементов (ВСПС), которые являются основой пьезоматериалов, широко применяющихся в современной аэрокосмической промышленности. Предлагаемый способ получения фаз слоистых титанатов типа BiABO (A=Na, Ca, Cr, Bi) и (B=Ti) состоит из трех этапов: а) синтез в процессе кислотного гидролиза титанатов натрия исходных нанокластеров полимерных гидроксидов титана (IV) при температурах <370K, пептизацию продукта гидролиза в 60% растворе азотной кислоты, а также осаждение нанокластеров из 0,1-0,3 М (по TiO) коллоидных растворов при рН 8±0,5 с помощью 5-10% раствора аммиака при температуре ниже 280K; б) взаимодействие нанокластеров при температурах ниже 280K с насыщенным раствором Bi(NO) при перемешивании; в) взаимодействие первичного промежуточного продукта с суспензией гидроксида висмута (III) при стандартных условиях и термическое разложение промежуточной фазы при температуре 600-700K, время изотермической обработки составляет от 20 до 30 минут. Для легирования ионами Cr в коллоидальный раствор гидроксидов Ti(IV) на этапе а) вводят рассчитанное количество ацетата хрома; для легирования висмут-титаната ионами NaCa в состав суспензии нитрата висмута вводятся гидроксиды натрия и кальция. Технический результат изобретения - снижение температуры синтеза фаз титанатов и повышение пьезопараметров материалов на их основе. 7 пр., 2 табл.
Основные результаты: Способ получения порошков фаз слоистых титанатов типа BiABC (A=Na, Ca, Cr, Bi) и (B=Ti), включающий а) синтез в процессе кислотного гидролиза титанатов натрия исходных нанокластеров полимерных гидроксидов титана (IV) при температурах <370 K, пептизацию продукта гидролиза в 60%-ном растворе азотной кислоты, а также осаждение нанокластеров из 0,1-0,3 М (по ТiO) коллоидных растворов при pH 8±0,5 с помощью 5-10%-ного раствора аммиака при температуре ниже 280 К, а для легирования ионами Сr в коллоидальный раствор гидроксидов Ti(IV) вводят рассчитанное количество ацетата хрома; б) взаимодействие нанокластеров при температурах ниже 280 К с насыщенным раствором Bi(NO) при перемешивании, для легирования висмут-титаната ионами Na Са в состав суспензии нитрата висмута вводятся гидроксиды натрия и кальция; в) взаимодействие первичного промежуточного продукта с суспензией гидроксида висмута (III) при стандартных условиях и термическое разложение промежуточной фазы при температуре 600-700 К время изотермической обработки составляет от 20 до 30 мин, где в качестве исходных компонентов используются гидроксиды титана, формирующиеся в процессе кислотного гидролиза титанатов натрия, а также суспензии нитрата и гидроксида висмута, которые последовательно (в два этапа) взаимодействуют с нанокластерами гидроксидов титана при перемешивании системы в стандартных условиях, что обеспечивает получение титанатов висмута заданного состава и строения.
Реферат Свернуть Развернуть

Изобретение относится к способу получения порошков фаз слоистых титанатов типа Bi2An-1BnO3n+3 (A=Ca, Na, Cr, Bi) и (B=Ti), у которых перовскитоподобная подрешетка В представляет собой совокупность октаэдров ЭО6 (Э - катионы s-, p-, d- и f-элементов с зарядом от +1 до +7), соединенных между собой вершинами, а катионы типа А заполняют кубооктаэдрические пустоты этой подрешетки. Слои со структурой типа перовскита разделены слоями (Bi2O2)z, состоящими из квадратных пирамид BiO4. Порошки фаз слоистых титанатов ряда s- и р-элементов (ВСПС) являются основой пьезоматериалов, широко применяющихся в современной аэрокосмической промышленности. Это объясняется тем, что они характеризуются рекордно высокой стабильностью пьезоэлектрических и диэлектрических параметров в широком интервале температур (70-900К) и давлений (0,001 Па - 300 мПа), благодаря тому, что точка Кюри (Те) слоистых титанатов состава Bi2An-1BnO3n+3 (A=Ca, Na, Cr, Bi) и (В=Ti) лежит выше 900К, что значительно превышает значения Те, находящих, в настоящее время наибольшее применение, фаз системы титанат-цирконат свинца. Сегнетоэлектрическими свойствами обладают фазы ВСПС с n=2, 3, 4, 5.

Известные способы получения порошков фаз слоистых титанатов ряда s- и р-элементов можно разделить на два типа: высокотемпературные и низкотемпературные.

Первый из них осуществляется в процессе взаимодействия между кристаллическим оксидом висмута или солей его кислородных кислот с оксидом титана (IV) при температурах выше 1000К в течение от нескольких часов до нескольких суток - метод твердофазных реакций (далее по тексту МТФР) [4, 5, 10]. В качестве легирующих добавок, которые вводятся в исходную шихту в виде оксидов или карбонатов, используются соединения натрия, хрома, ниобия, кальция, бора и некоторых других [1-3]. Функциональные материалы, изготовленные с использованием порошков слоистых пьезофаз, синтезированных в рамках МТФР, характеризуются целым рядом недостатков, основными их которых являются: а) относительно низкая воспроизводимость ЭФП; б) значительная зависимость этих параметров от температуры; в) изменение значений параметров во времени (старение). Основной причиной указанных недостатков является невозможность точного воспроизведения макро- и микроструктуры керамики данного типа, изготавливаемой в рамках традиционных высокотемпературных технологий. В частности, используемый при синтезе фаз слоистых титанатов, МТФР, приводит к нарушению количественного состава целевых продуктов реакций за счет испарения из прессзаготовок (в процессе синтеза и спекания) Bi2O3, соединений натрия, калия и свинца, а также термического разложения ряда легирующих оксидов p- и d-элементов. В результате этого, в рамках указанного метода, формируются продукты реакций, имеющие высокую и неконтролируемую неравновесную дефектность, как в катионной, так и в анионной подрешетках. В свою очередь, рост концентрации неравновесных дефектов в частицах порошков способствует получению керамики и пленок с пониженными значениями пьезопараметров и точек Кюри, а также повышению их электропроводности. Последний факт не позволяет провести эффективную поляризацию изделий, что ведет к дальнейшему снижению их электрофизических параметров (далее по тексту ЭФП). Кроме этого, технология синтеза порошков пьезофаз, основанная на МТФР не обеспечивает их монодисперсность. Это стимулирует рост степени неконтролируемой вторичной рекристаллизации прессзаготовок в процессе их спекания и, следовательно, к получению образцов с различным сочетанием механических характеристик.

Попыткой устранить отдельные недостатки МТФР является использование активных прекурсоров, позволяющих несколько снизить энергию активации твердофазных реакций и, следовательно, сократить время синтеза целевой фазы, а, иногда, и снизить температуру процесса. Наиболее перспективными достижениями в этом направлении представляются: метод термического разложения солей [6] криохимический метод [7, 8] и метод совместного осаждения [15, 17-19], которые (с большим или меньшим успехом) применяются для синтеза фаз со структурой типа перовскита. Однако попытки использовать данные технологии для синтеза фаз слоистых титанатов не дали положительных результатов. Это связано с тем, что в системе Bi2O3 - TiO2 - AxOy одновременно формируются несколько фаз с различным числом перовскитоподобных слоев, т.е с различным числом n [20]. Например [21], в системе Bi2O3 - TiO2 - Fe2O3 формируются фазы состава Bim+1Fem-3Ti3O3n+3 (m может иметь как целочисленные, так и дробные значения в интервале от 3 до 12). При этом температурная стабильность фаз быстро снижается с ростом значений m. Распад ферротитанатов висмута сопровождается образованием оксидов железа или фаз системы (TiO2 - Fe2O3) наряду с фазами Ауривиллиуса с меньшим числом m.

Кроме этого к недостаткам этих методов относятся значительные энергозатраты, многостадийность, а в ряде случаев экологические проблемы, связанные с утилизацией растворителей или побочных продуктов реакций. Кроме этого, использование активных прекурсоров, решая одни проблемы МТФР (снижение температуры и времени синтеза), создает другие, связанные с высокой концентрацией неравновесной дефектности в продуктах реакций. Последний факт связан с тем, что продукт реакции в этом случае формируется в условиях высокодефектной реакционной зоны, т.е. в значительной степени сохраняет тип и высокую неравновесную концентрацию исходных фаз. При этом, как было показано в ряде работ [6, 7], влияние предыстории прекурсоров на неравновесную дефектность продуктов реакции может проявляться не только в первом, но и во втором «поколении».

В настоящее время не известны методы синтеза слоистых титанатов типа Bi2An-1BnO3n+3 (A=Ca, Na, Cr, Bi) и (В=Ti,), альтернативные МТФР.

Одним из способов решения данных проблем может быть технология, основанная на методе «химической сборки» предусматривающем снижение энергии активации процесса синтеза пьезофаз указанного типа, а также получение их порошков с заданной полосой и величиной дисперсности. Метод основан на использовании в качестве прекурсоров многоядерных полимерных комплексов титана (IV), имеющих сходное строение с подрешеткой (В) целевого продукта. Указанные комплексы в процессе синтеза играют роль матриц, заполняемых катионами, формирующими подрешетку (А) слоистой фазы. Как синтез прекурсоров, так и их заполнение, протекающее за счет процессов обмена или внедрения, могут быть осуществлены при стандартных условиях (с.у.). Это позволяет понизить температуру формирования целевого продукта реакции в среднем на 450-500°К и сократить время обжига шихты в 3-5 раз. Снижение энергии активации обсуждаемого процесса позволяет сохранять количественный состав целевых продуктов, что практически невозможно сделать в рамках традиционных технологий, основанных на методе твердофазных реакций. Изменяя условия синтеза исходных матриц, природу и концентрацию взаимодействующих с ними прекурсоров, а также условия термообработки первичных промежуточных фаз, можно целенаправленно изменять средний размер частиц синтезируемых порошков от 15-30 нм до 1500 нм, а также, в зависимости от поставленных задач, варьировать полосу их дисперсности от 150 до 1200 нм. Изготовление шихты заданного гранулометрического состава позволяет управлять процессами первичной и вторичной рекристаллизации, непосредственно, в процессе спекания прессзаготовок и, следовательно, формировать оптимальную (для определенного сочетания ЭФП) микроструктуру керамического каркаса.

Наиболее близким по сущности совокупности признаков к заявляемому изобретению является способ получения титаната бария [23], включающий в себя перемешивание алкоксида титана и воды (с возможным добавлением в систему алкоксидов других металлов, например висмут), осаждение оксидов титана из растворов при температуре менее 370К, взаимодействие их с гидроксидом бария с последующим термическим разложением промежуточной фазы. В результате проведения указанных технологических операций получают порошок целевой фазы со средним размером частиц менее 0,45 мкм. Эти порошки обладают узким интервалом распределения частиц по размерам и спекаются в плотную керамику.

Недостатком данного способа является суммарное время процесса синтеза, составляющее 1,5-3 часа, температура процесса 60-80°C, что составляет 333-353К. А так же использование прекурсора (алкоксид титана) снижающего выход Bi4Ti3O12 и Na0,5Bi4,5Ti4O15, что приводит к образованию примесных фаз и уменьшению значения пьезопараметров материалов, создаваемых на основе порошков этого типа.

Заявляемый в качестве изобретения способ позволяет снизить температуру синтеза фаз, указанного типа в среднем на 500К, повысить пьезопараметры материалов на их основе.

Технический результат достигается тем, что необходимая по составу и структуре фаза формируется при температуре ниже 280К за счет, разделенных по времени химических процессов, первый из которых заключается во взаимодействии насыщенных растворов нитратов элементов, формирующих подрешетку А целевой фазы, с предварительно синтезированными нанокластерами, имеющими сходное строение и состав с подрешеткой В целевой фазы. На втором этапе полученный промежуточный продукт, в необходимом количественном соотношении, смешивается с насыщенным раствором гидроксида висмута (III) при интенсивном механическом перемешивании смеси. Отличными признаками является то, что в качестве прекурсоров (нанокластеров) в данном процессе используются полимерные формы гидроксидов титана, образованные цепочками из заданного числа титано-кислородных октаэдров, которые могут быть получены в процессе гидролиза различных по составу титанатов натрия при T≤370К, степень которого увеличивают за счет введения в систему 5 М раствора азотной кислоты. Пептизация продуктов гидролиза осуществляется с помощью 60% водного раствора HNO3. Для получения полимерных форм гидроксидов титана оптимального строения их осаждение осуществляется из 0,1-0,3 М (по TiO2) коллоидного раствора при температуре 270-280К 5-10%-ным раствором аммиака до pH 8±0,5 причем, для легирования ионами Cr3+ на первом этапе, в коллоидный раствор гидроксидов Ti(IV) вводят рассчитанное количество ацетата хрома. На втором этапе, полученные нанокластеры вводятся во взаимодействие с насыщенными растворами нитратов различных элементов состава MeNO3, Me(NO3)2 и Me(NO3)3 при температурах ниже 280К. По окончании процесса в полученный промежуточный продукт при температуре 280-298К и атмосферном давлении, и перемешивании вводится насыщенный раствор гидроксида висмута (III), где для легирования висмут титаната ионами Na+ и Са2+ в состав суспензии нитрата висмута, на втором этапе процесса, вводятся гидроксиды натрия и кальция. Формирующаяся в системе аморфная фаза при температуре 600-700К, время изотермической обработки 20-30 минут, разлагается с образованием целевого продукта реакции.

В примере 7 будет показано, что использование предлагаемого в прототипе прекурсора снижает выход Bi4Ti3O12 и Na0,5Bi4,5Ti4O15, приводит к образованию примесных фаз и уменьшает значения пьезопараметров материалов, создаваемых на основе порошков этого типа.

Сущность изобретения поясняется примерами 1-7 и таблицей 1 - Параметры процесса синтеза фазы Bi4Ti3O12, а также таблицей 2 - ЭФП пьезокерамики, изготовленной из шихты, синтезированной с использованием различных прекурсоров.

Пример 1. На первом этапе, порошок Na2Ti3O7, полученный сплавлением кристаллических Na2CO3 и TiO2, не извлекая из тигля, обрабатывают 5М раствором азотной кислоты в течение 2-3 часов при Т≤370К. Образовавшуюся суспензию разделяют методом фильтрования и промывают дистиллированной водой до отрицательной реакции на ионы натрия (метод пламенной фотометрии). К полученному осадку добавляют избыток 60% HNO3, что вызывает его пептизацию. В полученном коллоидном растворе, гравиметрическим методом, определяли концентрацию соединений титана (в пересчете на TiO2). 100 мл 0,3 М (по TiO2) этого раствора нейтрализовали при температуре 270-280К 5%-ным раствором аммиака до pH 8. Образовавшуюся форму гидроксида Ti(IV) отделяют от маточного раствора центрифугированием и переносили в реактор, охлажденный до 270К.

На втором этапе, к гидроксиду Ti(IV) добавляют насыщенный раствор, содержащий 7,9 г Bi(NO3)3 в 10 мл 3% раствора HNO3. Образующуюся смесь перемешивают в течение 30 минут с помощью высокоскоростной лопастной мешалки.

На третьем этапе процесса в систему вводят суспензию, содержащую 0,02 моля гидроксида висмута (III), pH системы доводят до значения порядка 8 и повторяют процесс перемешивания.

После расслаивания системы, первичный продукт реакции состава Bi4Ti3O12 отделяют, от жидкой фазы методом центрифугирования с последующей декантацией. Первичный продукт сушат при температуре ≈ 330К в течение 30 минут и затем, для активации процесса первичной рекристаллизации, прокаливают при 600-700К (время изотермической обработки 20-30 минут). Выход кристаллического Bi4Ti3O12 11,54 г (более 98% от теоретически возможного). Время синтеза с учетом сушки и этапов отделения осадков от жидкой фазы 3,5-4,5 часа.

Пример 2. На первом этапе, порошок Na10Ti18O41 (Na2,2Ti4O9), полученный сплавлением кристаллических Na2CO3 и TiO2, не извлекая из тигля, обрабатывают 5 М раствором азотной кислоты в течении 2-3 часов при T≤370К. Образовавшуюся суспензию разделяют методом фильтрования и промывают дистиллированной водой до отрицательной реакции на ионы натрия (метод пламенной фотометрии). К полученному осадку добавляют избыток 60% НМО3, что вызывает его пептизацию. В полученном коллоидном растворе, гравиметрическим методом, определяли концентрацию соединений титана (в пересчете на TiO2). 134 мл 0,3 М (по TiO2) коллоидного раствора нейтрализовали при температуре 270-280К 10%-ным раствором аммиака до pH 8. Образовавшуюся форму гидроксида Ti(IV) отделяли от маточного раствора центрифугированием и переносили в реактор, охлажденный до 270К.

На втором этапе, к гидроксиду Ti(IV) добавляют насыщенный раствор, приготовленный смешиванием 9,875 г Bi(NO3)3 и 10 мл 0,5 М раствора NaOH. Образующуюся смесь перешивают в течение 30 минут с помощью высокоскоростной лопастной мешалки.

На третьем этапе процесса в систему вводят суспензию, содержащую 0,02 моля гидроксида висмута (III), pH системы доводят до значения порядка 8 и повторяют процесс перемешивания.

После расслаивания системы, первичный продукт реакции состава Na0,5Bi4,5Ti4O15 отделяют от жидкой фазы методом центрифугирования, с последующей декантацией. Первичный продукт сушат при температуре ≈330К в течение 30 минут и затем, для активации процесса первичной рекристаллизации, прокаливают при 600-700К (время изотермической обработки 20-30 минут). Выход кристаллического Na0,5Bi4,5Ti4O15 13,66 г (более 98% от теоретически возможного). Время синтеза с учетом сушки и этапов отделения осадков от жидкой фазы 3,5-4,5 часа.

Пример 3. На первом этапе, порошок Na10Ti18O41 (Na2,2Ti4O9), полученный сплавлением кристаллических Na2CO3 и TiO2, не извлекая из тигля, обрабатывают 5М раствором азотной кислоты в течение 2-3 часов при Т≤370К. Образовавшуюся суспензию разделяют методом фильтрования и промывают дистиллированной водой до отрицательной реакции на ионы натрия (метод пламенной фотометрии). К полученному осадку добавляют избыток 60% HNO3, что вызывает его пептизацию. В полученном коллоидном растворе, гравиметрическим методом, определяли концентрацию соединений титана (в пересчете на TiO2). К 134 мл 0,3 М (по TiO2) этого раствора добавляли 5 мл 0,2 М раствора ацетата хрома (III) и систему нейтрализовали при температуре 270-280К 8%-ным раствором аммиака до pH 8. Образовавшуюся форму смешанных гидроксидов Ti(IV) и Cr(III) отдели от маточного раствора центрифугированием и переносили в реактор, охлажденный до 270К.

На втором этапе, к гидроксиду Ti(IV) добавляют насыщенный раствор, приготовленный смешиванием 9,48 г Bi(NO3)3, и 10 мл раствора: 0,4 М по NaOH и 0,05 М по Ca(OH)2. Образующуюся смесь перешивают в течение 30 минут с помощью высокоскоростной лопастной мешалки.

На третьем этапе процесса в систему вводят суспензию, содержащую 0,02 моля гидроксида висмута (III), pH системы доводят до значения порядка 8 и повторяют процесс перемешивания.

После расслаивания системы, первичный продукт реакции состава Na0,4Ca0,05Bi4,4Cr0,1Ti4O15 отделяют от жидкой фазы методом центрифугирования с последующей декантацией. Первичный продукт сушат при температуре ≈330К в течение 30 минут и затем, для активации процесса первичной рекристаллизации, прокаливают при 600-700К (время изотермической обработки 20-30 минут). Выход кристаллического Na0,4Ca0,05B4,4Cr0,1Ti4O15 13,54 г (более 97% от теоретически возможного). Время синтеза с учетом сушки и этапов отделения осадков от жидкой фазы 3,5-4,5 часа.

В примерах 4 и 5 синтез фазы Bi4Ti3O12 осуществлен способом, аналогичным примеру 1, но с измененными концентрациями исходного коллоидного раствора.

В примерах 6 и 7, по сравнению с примером 1, использованы формы гидроксида титана, осажденного из 0,3 М растворов H2[Ti(NO3)6] при 280К и образовавшегося в процессе гидролиза тетрабутилата Ti(VI), соответственно.

Использование предлагаемого в прототипе прекурсора снижает выход Bi4Ti3O12 и Na0,5Bi4,5Ti4O15, приводит к образованию примесных фаз и уменьшает значения пьезопараметров материалов, создаваемых на основе порошков этого типа.

Порошки пьезофаз, синтезированные по предлагаемому методу, были использованы для изготовления пьезокерамики по традиционной керамической технологии (спекание прессзаготовок при стандартном давлении, температурах 1100-1050° в течение 2 часов). Условия спекания прессзаготовок на основе фазы фиксированного качественного и количественного состава определялись экспериментально методом построения кривых плотность - режимы спекания. Плотность исследованных образцов, имевших форму дисков с диаметром 10 мм и высотой 1 мм, была не менее 92% от теоретически возможной. Серебряные электроды на параллельные поверхности образцов нанесены методом вжигания, поляризация пьезопреобразователей осуществлялась в силиконовом масле при 430-450К (напряженность поляризующего поля до 6 кV/мм). Условия поляризации образцов зависели от их состава, а их оптимальные значения определялись путем анализа стандартных кривых: параметры поляризации - свойства. Пьезоэлектрические и диэлектрические параметры пьезокерамики, а также ее точка Кюри определялись по ГОСТ 12379-80.

Условия проведения процесса синтеза пьезофазы, состав примесных фаз и выход продукта реакции приведены в таблице 1.

Таблица 1
Параметры процесса синтеза фазы Bi4Ti3O12
Пример Форма прекурсора См (по TiO2) Т1 процесса, К pHосаждения гидроксидов Ti % выхода целевой фазы Примесные фазы
1 Na2Ti3O7 0,3 270 8 99,6 -
4 Na2Ti3O7 0,5 270 8 90,1 NaBiTi2O6
5 Na2Ti3O7 0,1 270 8 94,8 Bi2Ti2O7
6 H2[Ti(NO3)6] 0,3 270 8 79,7 Bi2Ti2O7
7 Ti(C4H9O)4 0,3 270 8 88,1 Bi2Ti2O7

Электрофизические свойства пьезокерамики, изготовленной из шихты, полученной при одинаковых параметрах систем с использованием различных прекурсоров представлены в таблице 2.

Таблица 2
ЭФП пьезокерамики, изготовленной из шихты, синтезированной с использованием различных прекурсоров
Способ Фазовый состав Э ср. частиц шихты (нм) D ср.зерен керамики (нм) d33·1012 (Кл/Н) εT330
1 Bi4Ti3O12 28 820 10-12 85-90
2 Bi4Ti3O12 46 630 14-16 120-140
3 Bi4Ti3O12 87 490 17-19 150-160
1 Na0,5Bi4,5Ti4O15 22 980 22-24 110-130
2 Na0,5Bi4,5Ti4O15 35 690 24-27 120-140
3 Na0,5Bi4,5Ti4O15 79 510 33-38 160-190
МТФР [3, 22] Na0,5Bi4,5Ti4O15+Cr2O3 - - 28-29 106-110

(1) - осаждены из 0,3 М раствора H2[TiCl6],; (2) - образовались в процессе гидролиза тетрабутилата Ti(VI); (3) - осаждены из коллоидного раствора, формирующегося при кислотном гидролизе титанатов натрия.

Предложенный в качестве изобретения способ позволяет снизить температуру синтеза фаз, указанного типа в среднем на 500К и повысить пьезопараметры материалов на их основе

Источники информации

1. SU №1390223 от 30.07.1986, Пьезоэлектрический керамический материал. Шитца Д.А., Ривкин В.И., Борисова И.С., Фрейденфельд Э.Ж., Кочетыгов В.В., Новикова З.П.

2. RU №93030132 от 10.06.92 г. "Пьезоэлектрический керамический материал" / Панич А.Е., Минчина М.Г., Смотраков В.Г., Файнридер Д.Э., Полонская А.М

3. RU №98102096/03 от, 26.01.1998. Пьезоэлектрический керамический материал / Вусевкер Ю.А., Файнридер Д.Э., Панич А.Е., Гориш А.В., Злотников В.А.

4. Третьяков Ю.Д. Твердофазные реакции. - М.: «Химия», 1978. 360 с.

5. Кингери У.Д. Введение в керамику. - М.: Издательство по строительству, 1967. 500 с.

6. Лимарь Т.О., Борщ А.Н., Слатинская И.Г., Мудролюбова Л.П., Ненашева Е.А. Химические методы получения современных керамических конденсаторных материалов. М.: НИИТЭХИМ. 1998. 62 с.

7. Левин Б.Е., Третьяков Ю.Д., Летюк Л.М. Физико-химические основы получения, свойства и применение ферритов. - М.: Металлургия, 1979. - 470 с.

8. Третьяков Ю.Д., Олейников Н.Н., Можаев А.П. Основы криохимической технологии. М., "Высшая школа", 1987. 211 с.

9. Кнотько А.В., Пресняков И.А., Третьяков Ю.Д. Химия твердого тела. М.: Академия, 2006. - 304 с

10. Окадзаки К. Технология керамических диэлектриков. / Пер. с япон. М.: Энергия. 1976. С.336.

11. Лимарь Т.Ф., Барабанщикова P.M., Савоськина А.И., Величко Ю.Н. Сравнительная оценка титаната бария, полученного разными способами. // Электронная техника. Сер.8. «Радиодетали». 1971. Вып.2.(23). - С.33-41.

12. Bauer A., Buhling D., Gesemann H.-J., Heike G., Screckenbach W. Technologie und Anwendungen von Ferroelectrica. // Leipzig.: Academie Ferlagssgesellschaft Geest & Portig K.-G. 1976. S.548

13. Овраменко Н.А., Швец Л.И., Овчаренко Ф.Д., Корнилович Б.Ю. Кинетика гидротермального синтеза метатитаната бария. / Изв. АН СССР. Неорг. матер. 1979. Т.15, №11. - С.1982-1985.

14. Venigalla S., Clancy D.J., Miller D.V., Kerchner J.A., Costantino S.A. Hydrothermal BaTiO3 - based aqueous slurries. // Amer. Cer. Soc. Bull. V.78, №10. 1999. Р.51-54.

15. Беляев И.Н., Артамонова С.М. Исследование гидроокисей титана, циркония и совместно осажденных гидроокисей титана и свинца, циркония и свинца // Журн. неорган, химии. 1966. 11. №3. - С.464-467.

16. Нестеров А.А., Лупейко Т.Г., Нестеров А.А. / Труды международной научно-практической конференции «Фундаментальные проблемы пьезоэлектрического приборостроения». 1999. - С.254-261

17. Нестеров А.А., Лупейко Т.Г., Нестеров А.А., Пустовал Л.Е. Влияние способа синтеза на электрофизические свойства керамики состава Pb0,76Ca0,24Ti0,94(Cd0,5W0,5)0,06O3 Неорганические материалы. - 2004. - Т.40., №12. С.1530-1534

18. Забелина А.Э., Прилипко Ю.С. Особенности синтеза манганит лантановых перовскитов. // Сборник научных трудов "Вестник Донбасской национальной академии строительства и архитектуры". Донбас. 2007. 167 с.

19. Родионова Ю.М., Слюсаренко Е.М., Лунин В.В. Перспективы применения алкоксотехнологии в гетерогенном катализе // Успехи химии. 1996. 65. №9. - С.865-879.

20. Phanichphant S., Heimann R.B. Hydrothermal Synthesis of Submicron- to Nano-Sized Ferroelectric Powders: Properties and Characterization. CMU. Journal 2004). V.3(2). p.113 132

21. Ломанова Н.А., Уголков В.Л., Гусаров В.В. Термические свойства фаз Ауривиллиуса в системе Bi4Ti3O12 - BiFeO3. Фазовые переходы, упорядоченные состояния и новые материалы. 2006.05.09. c.1-4

22. Экнадиосянц Е.И., Проскуряков Л.М. Доменная структура, микроструктура, электрофизические свойства сегнетокерамики на основе Bi4Ti3O12. Пьезоэлектрические материалы и пьезопреобразователи. Ростов-на Дону. 1989. Вып.8. С.19-26.

23. RU 2039024, от 26.01.1994 Способ получения титаната бария, ООО "Солитон". Авторы: Голубко Л.А., Иванова Н.В., Вахлюева В.Б., Глушкова А.А., Румянцева Л.М., Яновская М.И., Ковсман Е.П.

Способ получения порошков фаз слоистых титанатов типа BiABC (A=Na, Ca, Cr, Bi) и (B=Ti), включающий а) синтез в процессе кислотного гидролиза титанатов натрия исходных нанокластеров полимерных гидроксидов титана (IV) при температурах <370 K, пептизацию продукта гидролиза в 60%-ном растворе азотной кислоты, а также осаждение нанокластеров из 0,1-0,3 М (по ТiO) коллоидных растворов при pH 8±0,5 с помощью 5-10%-ного раствора аммиака при температуре ниже 280 К, а для легирования ионами Сr в коллоидальный раствор гидроксидов Ti(IV) вводят рассчитанное количество ацетата хрома; б) взаимодействие нанокластеров при температурах ниже 280 К с насыщенным раствором Bi(NO) при перемешивании, для легирования висмут-титаната ионами Na Са в состав суспензии нитрата висмута вводятся гидроксиды натрия и кальция; в) взаимодействие первичного промежуточного продукта с суспензией гидроксида висмута (III) при стандартных условиях и термическое разложение промежуточной фазы при температуре 600-700 К время изотермической обработки составляет от 20 до 30 мин, где в качестве исходных компонентов используются гидроксиды титана, формирующиеся в процессе кислотного гидролиза титанатов натрия, а также суспензии нитрата и гидроксида висмута, которые последовательно (в два этапа) взаимодействуют с нанокластерами гидроксидов титана при перемешивании системы в стандартных условиях, что обеспечивает получение титанатов висмута заданного состава и строения.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 23.
10.03.2013
№216.012.2ebe

Гидроакустическая навигационная система

Использование: в гидроакустических навигационных системах. Сущность: гидроакустическая навигационная система содержит навигационную базу из М гидроакустических приемоответчиков с различными частотами ответа, гидроакустический приемопередатчик, аппаратуру измерения временных интервалов...
Тип: Изобретение
Номер охранного документа: 0002477497
Дата охранного документа: 10.03.2013
20.11.2013
№216.012.8316

Способ контроля добротности пьезорезонаторов и устройство для его осуществления

Использование: для контроля добротности пьезорезонагоров. Сущность: возбуждают колебания пьезорезонатора в области резонанса путем воздействия на него электрическим синусоидальным напряжением с переменной частотой, одновременно выделяют активную составляющую проводимости и выполняют ее...
Тип: Изобретение
Номер охранного документа: 0002499234
Дата охранного документа: 20.11.2013
10.12.2013
№216.012.8813

Способ поверхностного пластического деформирования цилиндрических деталей

Изобретение относится к поверхностному пластическому деформированию цилиндрических деталей. Сообщают ролику движение подачи вдоль оси обрабатываемой детали. Создают колебательные движения ролику посредством линейного шагового привода относительно плоскости, перпендикулярной оси обрабатываемой...
Тип: Изобретение
Номер охранного документа: 0002500517
Дата охранного документа: 10.12.2013
10.04.2014
№216.012.b72a

Акустооптический спектроанализатор

Изобретение относится к радиоизмерительной технике и может быть использовано в качестве широкополосного измерителя частоты радиосигналов. Технический результат, заключающийся в расширении полосы рабочих частот, достигается тем, что в акустооптический спектроанализатор, содержащий в своем...
Тип: Изобретение
Номер охранного документа: 0002512617
Дата охранного документа: 10.04.2014
10.05.2014
№216.012.c222

Способ получения порошков фаз кислородно-октаэдрического типа, содержащих ионы свинца (ii) в позиции (а)

Изобретение может быть использовано в полупроводниковой, пьезоэлектрической и радиоэлектронной технике. Для получения порошков титаната, или цирконата, или ниобата свинца, или титаната-цирконата свинца из 0,1-0,3М растворов нитратных комплексов титана, циркония или ниобия при рН=8±0,5 осаждают...
Тип: Изобретение
Номер охранного документа: 0002515447
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c4cf

Способ модифицирования поверхности титана

Изобретение относится к области гальванотехники и может быть использовано в промышленности для формирования тонких слоев защитно-декоративных покрытий нитрида титана на поверхностях из титана и его сплавов. Способ электролитического формирования слоя нитрида титана на поверхности титана и его...
Тип: Изобретение
Номер охранного документа: 0002516142
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.cd7a

Радиолокационный уровнемер

Радиолокационный уровнемер относится к радиотехнике и может быть использован для построения высокоточных измерителей уровня жидкостей или сыпучих веществ в резервуарах и высотомеров малых высот. Радиолокационный уровнемер содержит высокостабильный генератор 1, делители 2 и 3 частоты, контроллер...
Тип: Изобретение
Номер охранного документа: 0002518373
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d37c

Рециркуляционный радиовысотомер

Изобретение относится к радиолокационной технике и может быть использовано при разработке бортовых средств измерения высоты полета летательных аппаратов. Рециркуляционный радиовысотомер содержит генератор старт-импульсов, генератор тактовых импульсов, два элемента И, два элемента ИЛИ, три...
Тип: Изобретение
Номер охранного документа: 0002519911
Дата охранного документа: 20.06.2014
20.06.2014
№216.012.d37f

Импульсный радиовысотомер

Изобретение относится к радиолокационной технике и может быть использовано для измерения высоты полета летательного аппарата при малых и сверхмалых высотах его полета. Достигаемый технический результат - упрощение радиовысотомера, повышение его надежности и помехозащищенности и расширение...
Тип: Изобретение
Номер охранного документа: 0002519914
Дата охранного документа: 20.06.2014
20.06.2014
№216.012.d3a5

Радиовысотомер с частотно-модулированным зондирующим сигналом

Изобретение относится к радиолокации, а именно к радиовысотомерам с частотной модуляцией зондирующего сигнала. Достигаемый технический результат - упрощение устройства и повышение его надежности и помехозащищенности. Указанный результат достигается за счет того, что радиовысотомер с...
Тип: Изобретение
Номер охранного документа: 0002519952
Дата охранного документа: 20.06.2014
Показаны записи 1-10 из 32.
10.03.2013
№216.012.2ebe

Гидроакустическая навигационная система

Использование: в гидроакустических навигационных системах. Сущность: гидроакустическая навигационная система содержит навигационную базу из М гидроакустических приемоответчиков с различными частотами ответа, гидроакустический приемопередатчик, аппаратуру измерения временных интервалов...
Тип: Изобретение
Номер охранного документа: 0002477497
Дата охранного документа: 10.03.2013
20.03.2013
№216.012.3028

Интегральный микромеханический гироскоп-акселерометр

Изобретение относится к области измерительной техники и микросистемной техники, а более конкретно к интегральным измерительным элементам величин угловой скорости и ускорения. В устройство, содержащее полупроводниковую подложку с двумя опорами, инерционную массу, два торсиона, две упругие балки...
Тип: Изобретение
Номер охранного документа: 0002477863
Дата охранного документа: 20.03.2013
27.06.2013
№216.012.51c8

Способ совместного измерения частоты, амплитуды, фазы и начальной фазы гармонического сигнала

Изобретение относится к измерительной технике и может быть использовано для одновременного измерения частоты, амплитуды, фазы и начальной фазы непрерывного или импульсного гармонического сигнала по одному и тому же минимальному набору исходных данных. Способ включает в себя дискретизацию...
Тип: Изобретение
Номер охранного документа: 0002486529
Дата охранного документа: 27.06.2013
20.11.2013
№216.012.8316

Способ контроля добротности пьезорезонаторов и устройство для его осуществления

Использование: для контроля добротности пьезорезонагоров. Сущность: возбуждают колебания пьезорезонатора в области резонанса путем воздействия на него электрическим синусоидальным напряжением с переменной частотой, одновременно выделяют активную составляющую проводимости и выполняют ее...
Тип: Изобретение
Номер охранного документа: 0002499234
Дата охранного документа: 20.11.2013
10.12.2013
№216.012.8813

Способ поверхностного пластического деформирования цилиндрических деталей

Изобретение относится к поверхностному пластическому деформированию цилиндрических деталей. Сообщают ролику движение подачи вдоль оси обрабатываемой детали. Создают колебательные движения ролику посредством линейного шагового привода относительно плоскости, перпендикулярной оси обрабатываемой...
Тип: Изобретение
Номер охранного документа: 0002500517
Дата охранного документа: 10.12.2013
10.04.2014
№216.012.b72a

Акустооптический спектроанализатор

Изобретение относится к радиоизмерительной технике и может быть использовано в качестве широкополосного измерителя частоты радиосигналов. Технический результат, заключающийся в расширении полосы рабочих частот, достигается тем, что в акустооптический спектроанализатор, содержащий в своем...
Тип: Изобретение
Номер охранного документа: 0002512617
Дата охранного документа: 10.04.2014
10.05.2014
№216.012.c222

Способ получения порошков фаз кислородно-октаэдрического типа, содержащих ионы свинца (ii) в позиции (а)

Изобретение может быть использовано в полупроводниковой, пьезоэлектрической и радиоэлектронной технике. Для получения порошков титаната, или цирконата, или ниобата свинца, или титаната-цирконата свинца из 0,1-0,3М растворов нитратных комплексов титана, циркония или ниобия при рН=8±0,5 осаждают...
Тип: Изобретение
Номер охранного документа: 0002515447
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c4cf

Способ модифицирования поверхности титана

Изобретение относится к области гальванотехники и может быть использовано в промышленности для формирования тонких слоев защитно-декоративных покрытий нитрида титана на поверхностях из титана и его сплавов. Способ электролитического формирования слоя нитрида титана на поверхности титана и его...
Тип: Изобретение
Номер охранного документа: 0002516142
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.cd7a

Радиолокационный уровнемер

Радиолокационный уровнемер относится к радиотехнике и может быть использован для построения высокоточных измерителей уровня жидкостей или сыпучих веществ в резервуарах и высотомеров малых высот. Радиолокационный уровнемер содержит высокостабильный генератор 1, делители 2 и 3 частоты, контроллер...
Тип: Изобретение
Номер охранного документа: 0002518373
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d37c

Рециркуляционный радиовысотомер

Изобретение относится к радиолокационной технике и может быть использовано при разработке бортовых средств измерения высоты полета летательных аппаратов. Рециркуляционный радиовысотомер содержит генератор старт-импульсов, генератор тактовых импульсов, два элемента И, два элемента ИЛИ, три...
Тип: Изобретение
Номер охранного документа: 0002519911
Дата охранного документа: 20.06.2014
+ добавить свой РИД