×
27.01.2013
216.012.20bb

СПОСОБ ОПРЕДЕЛЕНИЯ МОДУЛЯ УПРУГОСТИ БЕТОНА В УПРУГИХ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЯХ БАЛОЧНОГО ТИПА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области строительства и предназначено для диагностики и контроля качества железобетонных конструкций балочного типа вибрационным методом. Сущность: устанавливают конструкцию на стенде, закрепляют концы по схеме шарнирного опирания, нагружают и измеряют физические параметры, с помощью которых по аналитическим зависимостям подсчитывают значение модуля упругости бетона конструкции. Для конструкций определенного типа изготавливают 5…8 эталонных изделий, модуль упругости которых изменяется в определенном диапазоне значений. В каждом из эталонных изделий возбуждают свободные поперечные (или продольные) колебания на основной частоте (или вынужденные колебания на первой резонансной частоте), измеряют эту частоту и по полученным значениям строят аналитическую зависимость «модуль упругости бетона - частота колебаний». При диагностике изделия серийного изготовления определяют его основную (или первую резонансную) частоту колебаний и по полученной аналитической зависимости подсчитывают модуль упругости бетона. Технический результат: снижение трудоемкости. 3 ил., 2 табл.
Основные результаты: Способ определения модуля упругости бетона в упругих железобетонных конструкциях балочного типа, заключающийся в установке их на стенде, закреплении концов по схеме шарнирного опирания, нагружении и измерении физических параметров, с помощью которых по аналитическим зависимостям подсчитывают значение модуля упругости бетона конструкции, отличающийся тем, что для конструкций определенного типа изготавливают 5…8 эталонных изделий, модуль упругости которых изменяется в определенном диапазоне значений, в каждом из эталонных изделий возбуждают свободные поперечные (или продольные) колебания на основной частоте (или вынужденные колебания на первой резонансной частоте), измеряют эту частоту, и по полученным значениям строят аналитическую зависимость «модуль упругости бетона - частота колебаний»; при диагностике изделия серийного изготовления определяют его основную (или первую резонансную) частоту колебаний и по полученной аналитической зависимости подсчитывают модуль упругости бетона.
Реферат Свернуть Развернуть

Изобретение относится к области строительства и предназначено для диагностики и контроля качества железобетонных конструкций балочного типа вибрационным методом.

Известен способ определения модуля упругости бетона в железобетонной конструкции путем испытания образцов (кубиков), специально изготавливаемых одновременно с бетонированием конструкции либо в заводских условиях, либо на стройплощадке (см. ГОСТ 10180-90 Бетоны. Методы определения прочности по контрольным образцам).

Этот способ имеет недостаток, который заключается в том, что со временем физико-механические свойства бетона изменяются в зависимости от условий эксплуатации и в случае необходимости для определения модуля упругости бетона следует прибегать к другим методам.

Известен также способ определения модуля упругости бетона в упругих железобетонных балках по максимальному прогибу w0, который следует из известной формулы из курса железобетонных конструкций для шарнирно опертой балки, нагруженной равномерно распределенной нагрузкой q (см. Байков В.Н., Сигалов Е.Е. Железобетонные конструкции. - М.: Стройиздат, 1984. - С.245):

где ℓ - пролет балки; Eb - модуль упругости бетона; Ired - приведенный момент инерции сечения балки. Согласно этому способу контролируемую балку загружают некоторой равномерно распределенной нагрузкой, не вызывающей появления пластических деформаций в конструкции, измеряют максимальный прогиб и по второй формуле из (1) подсчитывают значение модуля упругости.

Этот способ обладает большой трудоемкостью из-за необходимости выполнения операции загружения конструкции.

Задача, на решение которой направлено изобретение, состоит в снижении трудоемкости способа определения модуля упругости бетона в железобетонных конструкциях балочного типа как в заводских условиях при их изготовлении, так и находящихся в условиях эксплуатации.

Решение этой задачи достигается тем, что в способе определения модуля упругости бетона в упругих железобетонных конструкциях балочного типа, заключающемся в установке их на стенде, закреплении концов по схеме шарнирного опирания, нагружении и измерении физических параметров, с помощью которых по аналитическим зависимостям подсчитывают значение модуля упругости бетона, согласно изобретению для конструкций определенного типа изготавливают 5…8 эталонных изделий, модуль упругости которых изменяется в определенном диапазоне значений, в каждом из эталонных изделий возбуждают свободные поперечные или продольные колебания на основной частоте (или вынужденные колебания на первой резонансной частоте), измеряют эту частоту и по полученным значениям строят аналитическую зависимость «модуль упругости бетона - частота колебаний»; при диагностике изделия серийного изготовления определяют его основную (или первую резонансную) частоту колебаний и по полученной аналитической зависимости подсчитывают модуль упругости бетона.

Сущность заявляемого способа поясняется чертежами, приведенными на фигурах 1…3.

На фиг.1 изображено прямоугольное поперечное сечение балки с указанием некоторых геометрических размеров, входящих в используемые расчетные формулы;

На фиг.2 представлена функциональная схема экспериментальной установки для определения первой резонансной частоты поперечных колебаний, где 1 - контролируемое изделие, 2 - излучатель механических колебаний, 3 - приемник механических колебаний, 4 - генератор синусоидальных колебаний, 5 - усилитель мощности, 6 - частотомер, 7 - цифровой вольтамперметр, 8 - предварительный усилитель, 9 - анализатор спектра, 10 - электронный осциллограф.

На фиг.3 представлены графики изменения модуля упругости в железобетонных балках в зависимости от основной частоты собственных поперечных колебаний (схема а) и основной частоты собственных продольных колебаний (схема б).

Физическую сущность предлагаемого способа можно пояснить следующими рассуждениями.

В работе Коробко В.И. Изопериметрический метод в строительной механике: Теоретические основы изопериметрического метода. - Т.1. - М.: Изд-во АСВ, 1997. - С.346-349 для упругих балок получена фундаментальная закономерность, связывающая максимальный прогиб балок w0, нагруженных равномерно распределенной нагрузкой q, с их основной частотой колебаний в ненагруженном состоянии ω:

где m - погонная масса балки. В этой закономерности вместо основной частоты колебаний упругих балок может использоваться первая резонансная частота колебаний, так как из курса строительной механики хорошо известно, что эти характеристики незначительно отличаются друг от друга (см. Коробко В.И., Коробко А.В. Строительная механика: Динамика и устойчивость стержневых систем. - М.: Изд-во АСВ, 2008. - С.20-24). Как видно из выражения (3), произведение w0ω2 не зависит от вида граничных условий, поэтому оно справедливо и для балок, работающих в условиях эксплуатации с любыми неопределенными граничными условиями, а при изготовлении конструкций в заводских условиях можно моделировать на стенде только условия шарнирного опирания.

Из формулы (3) можно выразить максимальный прогиб через основную (или первую резонансную частоту колебаний):

Подставляя это выражение во вторую формулу из (1), получим:

Из этой формулы видно, что величина модуля упругости бетона функционально связана с основной (или первой резонансной) частотой поперечных колебаний.

В случае использования продольных колебаний формула (4) примет следующий вид:

где Ared - площадь приведенного сечения балки (см. Коробко В.И., Юров А.П. Применение продольных колебаний для диагностики железобетонных конструкций / Материалы Всероссийской научно-технической конференции «Диагностика веществ, изделий и устройств». - Орел, ОрелГТУ, 1999. - С.118-120).

Однако, как показали экспериментальные исследования, при использовании этих зависимостей для определения модуля упругости бетона по частоте колебаний получается довольно значительная погрешность. Это объясняется тем, что бетон обладает упругопластическими свойствами и пластическая составляющая оказывает свое влияние на результаты расчета по формулам (4) и (5), которые получены, исходя из предположения об идеальной упругости бетона. Поэтому функциональную связь

Eb-ω целесообразно получать для каждого типа конструкций, используя эталонные изделия, выполненные из бетона в определенном диапазоне значений модуля упругости при одинаковом их армировании.

Способ осуществляется следующим образом. Для конструкций определенного типа, например для железобетонных балок марки ПБ, изготавливают 5…8 эталонных изделий, класс бетона в которых (модуль упругости) постепенно возрастает от В-7,5 до В-30. Каждую из этих балок устанавливают на испытательном стенде, закрепляют ее концы по схеме шарнирного опирания и возбуждают в ней свободные поперечные или продольные колебания с помощью механического удара или внезапного снятия некоторой статической нагрузки (в случае поперечных колебаний). Используя какой-либо частотомер, например виброанализатор «Вибран-2», измеряют основную частоту колебаний.

Если используется режим воздействия вынужденными колебаниями, то на контролируемую балку 1 в средней части пролета закрепляют с одной стороны излучатель колебаний 2, например электродинамический вибровозбудитель поперечных колебаний, а с другой стороны - приемник механических колебаний 3 (первичный преобразователь виброперемещений). С помощью генератора синусоидальных колебаний 4 и усилителя мощности 5 возбуждают в конструкции колебания в требуемом диапазоне частот, поддерживая энергию этих колебаний строго на одном уровне. При этом частоту и амплитуду электрического сигнала, подаваемого на вход вибровозбудителя поперечных колебаний 2, контролируют частотомером 6 и цифровым вольтамперметром 7. Сигнал с приемника механических колебаний усиливается с помощью предварительного усилителя 8, а с помощью анализатора спектра 9 снимают амплитудно-частотную характеристику контролируемой конструкции, по которой определяют резонансную частоту колебаний. Кроме того, в схему включен электронный осциллограф 10 для визуализации колебательного процесса.

По полученным результатам строят аппроксимирующую функцию «модуль упругости бетона - частота колебаний».

Далее, при диагностике изделия серийного изготовления определяют ее основную (или первую резонансную) частоту колебаний и с помощью построенной аппроксимирующей функции находят действительный модуль упругости бетона.

Пример реализации способа.

Для проведения испытаний были изготовлены 5 железобетонных эталонных балок длиной 2,6 м с поперечным сечением 120×140 мм, балки армированы в нижней зоне одним арматурным стержнем ⌀12 мм A-III. Класс бетона балок был принят изменяющимся ступенчато от В-7,5 до В-30. Балки испытывались в режиме свободных затухающих поперечных и продольных колебаний. При этом возбуждение колебаний осуществлялось с помощью поперечного и продольного механического удара. После статистической обработки экспериментальных данных были получены следующие результаты:

Таблица 1
Результаты измерения основной частоты поперечных колебаний эталонных балок и отклонения экспериментальных значений от теоретических, полученных по формуле (4)
Частоты колебаний Класс бетона
В-7,5 В-15 В-20 В-22,5 В-30
ωпоп(эксп), с-1 161 182 188 192 184
ωпоп(теор), с-1 154 185 200 206 220
Отклонение, % 4,55 1,62 6 6,8 16,36

Таблица - 2
Результаты измерения основной частоты продольных колебаний эталонных балок и отклонения экспериментальных значений от теоретических, полученных по формуле (5)
Частоты колебаний Класс бетона
В-7,5 В-15 В-20 В-22,5 В-30
ωпр(эксп), с-1 3121 3705 4296 4390 4616
ωпр(теор), с-1 3159 3787 4101 4214 4496
Отклонение, с-1 38 82 195 176 120
Отклонение, % 1,2 2,17 4,75 4,18 2,67

Как видно из таблиц, лучшая сходимость экспериментальных и теоретических результатов достигается при использовании продольных колебаний. Это объясняется тем, что при продольных колебаниях по всей длине балок все поперечные сечения вовлекаются в работу и работают в одинаковых условиях, в то время как при поперечных колебаниях приопорные участки балок деформируются менее интенсивно, чем участки, прилежащие к средней их части.

Графики зависимостей Eb-ω, построенные по табличным данным, приведены на фиг.3. Из рисунка видно, что эти зависимости носят функциональный характер и поэтому динамический параметр - основная (или первая резонансная) частота колебаний могут использоваться для определения модуля упругости бетона при диагностике железобетонных конструкций балочного типа.

По экспериментальным данным построены аппроксимирующие функции:

- при поперечных колебаниях

- при продольных колебаниях

Эти зависимости могут использоваться при диагностике конструкций рассмотренного типа серийного изготовления.

Для каждого типа железобетонных конструкций в виде балок необходимо построить свои аппроксимирующие функции. Это можно осуществить в заводских условиях при освоении выпуска определенного типа конструкций.

При реализации предлагаемого способа отпадает необходимость проведения статического нагружения конструкций.

Таким образом, технический результат - снижение трудоемкости осуществления способа определения модуля упругости бетона в железобетонных конструкциях балочного типа достигается за счет использования динамического параметра конструкции - основной (или первой резонансной) частоты поперечных (или продольных) колебаний в ненагруженном состоянии.

Способ определения модуля упругости бетона в упругих железобетонных конструкциях балочного типа, заключающийся в установке их на стенде, закреплении концов по схеме шарнирного опирания, нагружении и измерении физических параметров, с помощью которых по аналитическим зависимостям подсчитывают значение модуля упругости бетона конструкции, отличающийся тем, что для конструкций определенного типа изготавливают 5…8 эталонных изделий, модуль упругости которых изменяется в определенном диапазоне значений, в каждом из эталонных изделий возбуждают свободные поперечные (или продольные) колебания на основной частоте (или вынужденные колебания на первой резонансной частоте), измеряют эту частоту, и по полученным значениям строят аналитическую зависимость «модуль упругости бетона - частота колебаний»; при диагностике изделия серийного изготовления определяют его основную (или первую резонансную) частоту колебаний и по полученной аналитической зависимости подсчитывают модуль упругости бетона.
СПОСОБ ОПРЕДЕЛЕНИЯ МОДУЛЯ УПРУГОСТИ БЕТОНА В УПРУГИХ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЯХ БАЛОЧНОГО ТИПА
СПОСОБ ОПРЕДЕЛЕНИЯ МОДУЛЯ УПРУГОСТИ БЕТОНА В УПРУГИХ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЯХ БАЛОЧНОГО ТИПА
СПОСОБ ОПРЕДЕЛЕНИЯ МОДУЛЯ УПРУГОСТИ БЕТОНА В УПРУГИХ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЯХ БАЛОЧНОГО ТИПА
Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
27.01.2013
№216.012.20ba

Способ определения диаметра продольной арматуры в упругих железобетонных конструкциях балочного типа

Изобретение относится к области строительства и предназначено для диагностики и контроля качества железобетонных конструкций балочного типа вибрационным методом. Сущность: конструкцию устанавливают на стенде, закрепляют концы по схеме шарнирного опирания, нагружают и измеряют физические...
Тип: Изобретение
Номер охранного документа: 0002473879
Дата охранного документа: 27.01.2013
Показаны записи 1-10 из 17.
27.01.2013
№216.012.20ba

Способ определения диаметра продольной арматуры в упругих железобетонных конструкциях балочного типа

Изобретение относится к области строительства и предназначено для диагностики и контроля качества железобетонных конструкций балочного типа вибрационным методом. Сущность: конструкцию устанавливают на стенде, закрепляют концы по схеме шарнирного опирания, нагружают и измеряют физические...
Тип: Изобретение
Номер охранного документа: 0002473879
Дата охранного документа: 27.01.2013
27.03.2013
№216.012.30c7

Способ чистовой обработки с калиброванием и упрочнением металлических внутренних цилиндрических поверхностей деталей

Способ включает упругое нагружение поверхностного слоя заготовки деформирующе-режущим элементом инструмента с одновременным срезанием поверхностного слоя. Для расширения техноблогических возможностей перед срезанием поверхностный слой подвергают пластической деформации, посредством чередования...
Тип: Изобретение
Номер охранного документа: 0002478025
Дата охранного документа: 27.03.2013
10.04.2013
№216.012.3272

Инструмент для чистовой обработки с калиброванием металлических внутренних цилиндрических поверхностей деталей

Инструмент содержит деформирующе-режущие элементы, имеющие на наружной поверхности выполненные под углом к оси инструмента заборный и обратный конусы с расположенной между ними цилиндрической ленточкой. Для расширения технологических возможностей на деформирующе-режущих элементах, количество...
Тип: Изобретение
Номер охранного документа: 0002478457
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.344e

Установка для имитации и контроля запотевания стекол защитных очков

Изобретение направлено на определение основных защитных и эксплуатационных показателей защитных очков, применяемых при наличии запотевания смотровых стекол в условиях их реальной эксплуатации. Установка состоит из макета головы человека, системы подачи в нее увлажненного воздуха и...
Тип: Изобретение
Номер охранного документа: 0002478933
Дата охранного документа: 10.04.2013
20.04.2013
№216.012.377a

Пневмогидравлический аккумулятор

Изобретение относится к пневмогидравлическим аккумуляторам мембранным и может быть использовано в машиностроении, а, именно, в гидроприводах с переменным потреблением жидкости, нефтяной, химической и других отраслях промышленности для гашения пульсаций давления жидкости и обеспечения...
Тип: Изобретение
Номер охранного документа: 0002479755
Дата охранного документа: 20.04.2013
20.06.2013
№216.012.4b77

Способ гидротермической обработки зерна гречихи

Изобретение относится к мукомольно-крупяной промышленности и может быть применено, преимущественно, на гречезаводах. Способ гидротермической обработки зерна гречихи включает операции гидросепарирования и увлажнения, отжим влаги из отходов, сушку отходов, подсушивание и предварительный подогрев...
Тип: Изобретение
Номер охранного документа: 0002484901
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4d81

Устройство удаления влаги в вакууме

Изобретение относится к аппаратам пищевой промышленности, а именно к оборудованию для концентрирования жидких и получения сухих пищевых продуктов путем их выпаривания и сушки в вакууме, и может быть применено в условиях малых предприятий и фермерских хозяйств, лишенных пароснабжения. Устройство...
Тип: Изобретение
Номер охранного документа: 0002485423
Дата охранного документа: 20.06.2013
10.08.2013
№216.012.5dba

Комбинированный радиально-осевой газодинамический лепестковый подшипник скольжения

Изобретение относится к турбомашиностроению и может быть использовано в качестве опор высокоскоростных роторов машин и агрегатов, нагруженных радиальными и осевыми нагрузками, при необходимости обеспечить большую несущую способность при сохранении устойчивого положения ротора, в системах...
Тип: Изобретение
Номер охранного документа: 0002489615
Дата охранного документа: 10.08.2013
27.08.2013
№216.012.62ad

Способ производства кекса

Изобретение относится к пищевой промышленности и общественному питанию. Способ производства кекса включает сбивание рапсового рафинированного масла с сахаром-песком и постепенное введение меланжа в смеси с 3% гидролизата овса от массы меланжа, полученного из нешелушеного зерна овса, которое...
Тип: Изобретение
Номер охранного документа: 0002490898
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.62ae

Способ производства теста для масляного бисквита

Изобретение относится к пищевой промышленности. Способ предусматривает взбивание меланжа с сахарным песком и рапсовым рафинированным маслом до увеличения объема в 2,5 раза, введение рецептурных компонентов, замес теста, формование и выпечку. В качестве стабилизатора в тесто дополнительно вводят...
Тип: Изобретение
Номер охранного документа: 0002490899
Дата охранного документа: 27.08.2013
+ добавить свой РИД