×
19.06.2023
223.018.81c4

Результат интеллектуальной деятельности: Способы определения координат морской шумящей цели

Вид РИД

Изобретение

№ охранного документа
0002797161
Дата охранного документа
31.05.2023
Аннотация: Использование: изобретение относится к области гидроакустики, а именно к способам и устройствам обнаружения морских целей по их шумоизлучению, а точнее к способам определения координат целей с использованием интерференционных максимумов в автокорреляционной функции шума цели. Сущность: в способе на выходе шумопеленгатора обнаруживается широкополосный сигнал цели, измеряется его автокорреляционная функция (АКФ), в которой обнаруживаются узкополосные интерференционные максимумы (ИМ), из которых выбирается ИМ с наибольшим уровнем и запоминается его абсцисса (т.е. положение на оси задержек). При известной дистанции до цели, для неё и набора глубин в диапазоне возможных глубин цели с помощью лучевой программы расчёта акустического поля источника рассчитывают лучевую структуру сигнала цели, с использованием которой вычисляют абсциссы одного-трёх ИМ с наибольшим уровнем в АКФ. В качестве глубины цели выбирают ту глубину из набора глубин, для которой абсцисса ИМ с наибольшим уровнем в измеренной АКФ оказалась наиболее близка к одной из вычисленных абсцисс ИМ. Технический результат: повышение точности определения координат шумящей цели. 8 ил.

Изобретение относится к области гидроакустики, а именно к способам и устройствам обнаружения морских целей по их шумоизлучению.

Одной из актуальных практических задач гидроакустики является определение координат морской шумящей цели (далее - цели) по данным шумопеленгаторной станции (далее - ШПС). Для решения этой задачи известно большое число способов, обзор которых приведён в [1].

Один из способов базируется на использовании измеренной автокорреляционной функции (далее - АКФ) широкополосного акустического сигнала (далее - сигнала) для определения координат (дистанции и глубины) источника сигнала [1-8]. Информация о координатах источника сигнала (цели) в измеренной АКФ заключена в расположении на оси абсцисс (времени) узкополосных интерференционных максимумов (далее - ИМ), обусловленных интерференцией коррелированных сигналов источника, пришедших на вход приёмной гидроакустической антенны (далее - антенны) ШПС по различным лучам. Каждой паре лучей в АКФ (при достаточном отношении сигнал/помеха - ОСП) соответствует один ИМ с шириной, равной обратной величине эффективной полосы частот сигнала на входе антенны, и положением на оси абсцисс, равным абсолютной величине разности времён распространения сигнала по интерферирующим лучам [9]. На фиг. 1 в качестве иллюстрации приведена АКФ сигнала источника, пришедшего на антенну по четырём акустическим лучам.

Определение координат источника сигнала рассматриваемым способом состоит в поиске такого положения источника сигнала по дистанции и глубине, для которого расчет параметров акустических лучей с использованием лучевой программы [10] показывает наличие в АКФ на выходе антенны ИМ, количество которых и расположение на оси абсцисс максимально близко количеству и расположению ИМ в измеренной АКФ.

Главным недостатком описанного способа является многозначность результата определения координат источника сигнала. Устранению этого недостатка посвящены изобретения [7, 8]. Однако они справляются с проблемой лишь в отдельных ограниченных условиях.

Проведённые исследования показали, что многозначность результата проявляется существенно реже, если известна одна из двух координат источника - дальность либо глубина. Этот факт иллюстрируется на фиг. 3, на которой для условий сплошной акустической освещённости в глубоком море с вертикальным распределением скорости звука, изображённым на фиг. 2, приведены зависимости от расстояния между источником и приёмником (ось абсцисс) и глубины источника (параметр графика в метрах) абсциссы наибольшего по уровню максимума в АКФ, обусловленной относительным запаздыванием (задержкой) прихода на антенну двух наиболее мощных лучей. За редким исключением, наибольший по уровню максимум в АКФ образуется вследствие интерференции прямого луча и луча, однократно отражённого от поверхности.

Из рассмотрения фиг. 3 следует:

- при известной глубине источника имеет место взаимно однозначное соответствие между дистанцией до источника и абсциссой наибольшего по уровню максимума в АКФ;

- при известной дистанции до источника имеет место взаимно однозначное соответствие между глубиной источника и абсциссой наибольшего по уровню максимума в АКФ;

Этот факт делает возможным определение глубины источника, если известна дистанция до него и, наоборот, определение дистанции до источника, если известна его глубина.

В качестве способа-прототипа выберем изобретение [7]. На фиг. 4 приведена его блок-схема. Обработка поступающей информации ведется на вычислительном устройстве, подключённым к ШПС, по двум параллельным ветвям одновременно.

Первая (левая) ветвь включает в себя последовательно выполняемые операции обнаружения широкополосного сигнала цели на выходе антенны (блок 1.1); измерения набора АКФ обнаруженного широкополосного сигнала цели на интервалах времени, составляющих интервал анализа (блок 1.2); обнаружение в каждой измеренной АКФ из набора АКФ узкополосных ИМ и измерения их абсцисс (блок 1.3); объединение абсцисс ИМ, обнаруженных во всех измеренных АКФ интервала анализа, в единый массив (блок 1.4). Выполнение перечисленных операций обеспечивает формирование массива всех ИМ, измеренных на интервале анализа и готовых к сопоставлению с расчетными данными, формируемыми блоками второй ветви.

Вторая ветвь (правая) включает в себя определение класса источника, измерение давления его сигнала на выходе приёмного тракта ШПС и с их использованием определение области возможного местоположения цели в пространстве «дистанция - глубина» (блок 2.1); вычисления для каждой точки этой области с учетом текущих гидроакустических условий лучевой структуры сигнала на входе антенны ШПС (блок 2.2); вычисления для каждой точки этой области и для каждой пары лучей из вычисленной лучевой структуры значений абсциссы и ОСП расчётных ИМ, порождаемых этой парой лучей (блок 2.3) и операцию формирования для каждой точки области массива расчетных ИМ, для которых вычисленные ОСП превышают заданное пороговое значение для их обнаружения в АКФ (блок 2.4). Операции второй ветви могут быть выполнены однократно для текущего состояния гидрологических условий, определяющего лучевую структуру сигналов на входе антенны. Выполнение операций второй ветви обеспечивает формирование массива расчетных данных, готовых к сопоставлению с результатами измерений, сформированными первой ветвью.

Сопоставление выполняется последовательно расположенными блоками 3 и 4, выполняющими операции определения в массивах расчетных ИМ, сформированных для каждой точки пространства, количества ИМ, абсциссы которых с учетом точности их измерения равны абсциссам ИМ в объединенном массиве ИМ, обнаруженных во всём наборе АКФ, измеренных на интервале анализа (блок 3) и, наконец, операцию определения координат цели путем выбора координат той точки возможного местоположения цели в пространстве «дистанция - глубина», которой соответствует наибольшее количество расчетных ИМ, абсциссы которых равны абсциссам ИМ в объединенном массиве ИМ, обнаруженных во всём наборе измеренных АКФ (блок 4).

Недостатком способа-прототипа, несмотря на принятые меры, является высокая вероятность получения многозначного решения.

Решаемая техническая проблема - повышение эксплуатационных характеристик шумопеленгаторной станции.

Технический результат, обеспечиваемый изобретением - повышение точности определения координат морской шумящей цели.

Указанный технический результат достигается в случаях, когда известна одна из двух координат цели - дистанция либо глубина. Эти случаи достаточно распространены на практике. Например, дистанция до обнаруженной цели может быть определена в режиме гидролокации либо путём взаимного позиционирования по сигналам гидроакустической связи [11]. Глубина цели, как правило, известна при взаимодействии нескольких морских объектов в группе [12].

В результате заявляется 2 независимых способа:

- способ определения глубины морской шумящей цели, блок-схема которого приведена на фиг. 5;

- способ определения дистанции до морской шумящей цели, блок-схема которого приведена на фиг. 6.

В обоих способах, как и в способе-прототипе, обработка входного сигнала ведётся по двум параллельным ветвям. Первая (левая) ветвь, идентичная для обоих способов, включает в себя последовательно выполняемые операции:

- обнаружение широкополосного сигнала цели на выходе приёмного тракта ШПС (блок 1.1);

- измерение АКФ обнаруженного широкополосного сигнала цели (блок 1.2);

- обнаружение в измеренной АКФ узкополосных ИМ и измерение их абсцисс и амплитуд (блок 1.3);

- выбор из массива обнаруженных ИМ, ИМ с наибольшей амплитудой, определение и запоминание его абсциссы (блок 1.4).

Вторая ветвь (правая) для способа определения глубины морской шумящей цели включает в себя следующие операции (фиг. 5):

- определение дистанции до цели одним из известных [1, 11] способов (блок 2.1);

- вычисление для измеренной дистанции лучевой структуры сигнала для каждой из набора глубин в диапазоне возможных глубин цели (блок 2.2);

- вычисление АКФ для каждой глубины из набора глубин цели, обнаружение в вычисленных АКФ одного-трёх ИМ с наибольшей амплитудой и определение их абсцисс (блок 2.3).

В блоке 3 на фиг. 5 осуществляется сопоставление абсциссы наибольшего по уровню ИМ в измеренной АКФ с абсциссами ИМ в вычисленных АКФ для каждой глубины из набора глубин. В качестве глубины цели выбирается та глубина, для которой абсцисса ИМ с наибольшей амплитудой в измеренной АКФ наиболее близка к одной из абсцисс ИМ в вычисленной АКФ.

Вторая ветвь (правая) для способа определения дистанции до цели включает в себя следующие операции (фиг. 6):

- вычисление для известной глубины цели лучевой структуры сигнала для каждой из набора дистанций в диапазоне возможных дистанций до цели (блок 2.1);

- вычисление АКФ для каждой дистанции из набора дистанций, обнаружение в вычисленных АКФ одного-трёх ИМ с наибольшей амплитудой и определение их абсцисс (блок 2.2).

В блоке 3 на фиг. 6 осуществляется сопоставление абсциссы наибольшего по амплитуде ИМ в измеренной АКФ с абсциссами ИМ в вычисленной АКФ для каждой дистанции из набора дистанций. В качестве дистанции до цели выбирается та дистанция, для которой абсцисса ИМ с наибольшим уровнем в измеренной АКФ наиболее близка к одной из абсцисс ИМ в рассчитанной АКФ.

Примеры осуществления заявляемых способов:

1) при групповом использовании автономных необитаемых подводных аппаратов (например, в задаче поиска залежей углеводородов на морском дне [12]) необходимо постоянного контролировать взаимное расстояние между аппаратами. Поскольку глубины аппаратов в этом известны (заданы), заявляемый способ позволяет по измеренной абсциссе наибольшего по амплитуде максимума в АКФ шума определить дистанцию до аппарата;

2) при необходимости определить глубину погружения обнаруженного подводного источника шума измеряют дистанцию до него в активном режиме, а затем заявляемым способом определяют его глубину.

Заявляемый способ определения глубины объекта проверен экспериментально. Эксперимент проводился в условиях сплошной акустической освещённости с вертикальным распределением скорости звука, изображённым на фиг. 2. Источник широкополосного (в полосе 1-5 кГц) акустического сигнала находился на глубине 200 м. Приемная антенна ШПС располагалась на глубине 50 м. Горизонтальное расстояние между источником и приёмником составляло 1 км. ОСП на выходе приёмного тракта ШПС составляло 15 дБ.

Сигнал источника на выходе приёмного тракта ШПС подвергался автокорреляционному анализу. Измеренная АКФ приведена на графике фиг. 7, по оси абсцисс которого отложено время в мс, по оси ординат - уровень АКФ в относительных единицах. В измеренной АКФ выделялся наибольший по амплитуде ИМ, абсцисса которого равна 13,4 мс.

Для условий эксперимента был выполнен расчёт лучевой структуры поля сигнала и по его результатам вычислена абсцисса наибольшего по амплитуде ИМ в АКФ в зависимости от глубины источника, которая изображена на фиг. 8.

Войдя в график на фиг. 8 с абсциссой ИМ 13,4 мс в измеренной АКФ, получаем оценку глубины источника 200 м, что соответствует условиям эксперимента.

Таким образом, заявленный технический результат - повышение точности определения координат шумящей цели, - можно считать достигнутым.

Источники информации:

1. Машошин А.И. Синтез оптимального алгоритма пассивного определения дистанции до цели // Морская радиоэлектроника. 2012. №2 (40). С. 30-34.

2. Hassab I. C. Contact Localization and Motion Analysis in the Ocean Environment: a Perspective // IEEE Journal of Oceanic Engineering. 1983. Vol. OE-8, №3. P.136-147.

3. Quazi A.H., Lerro D.T. Passive localization using time-delay estimates with sensor positional errors // JASA. 1985. Vol. 78, № 5. P.1664-1670.

4. Worthmann B.M., Song H.C., Dowling D.R. High frequency source localization in a shallow ocean sound channel using frequency difference matched field processing // Journal Acoust. Soc. Am. 2015. Vol. 138. P.3549.

5. Орлов Е.Ф., Фокин В.Н., Шаронов Г.А. Исследование параметров интерференционной модуляции широкополосного звука в глубоком океане // Акустический журнал. 1988. Т. 34, вып. 5. С. 902-907.

6. Лазарев В.А., Орлов Е.Ф., Фокин В.Н., Шаронов Г.А. Частотная зависимость параметров интерференционной модуляции широкополосного звука в мелком море // Акустический журнал. 1989. Том 35, вып. 4. С. 685-688.

7. Патент РФ №2690223.

8. Патент РФ №2724962.

9. Машошин А.И. Помехоустойчивость выделения максимумов в корреляционной функции широкополосного шумового сигнала морского объекта, обусловленных многолучевым распространением сигнала в водной среде // Акустический журнал. 2001. Том 47, № 6. С. 823-829.

10. Гидроакустические расчёты для станции шумопеленгования. Авторы Марасёв С.В., Машошин А.И. Свидетельство о регистрации № 2021617661 от 26.04.2021г. Заявка № 2021615792 от 22.04.2021 г. Дата гос. регистрации 26.04.2021 г. Правообладатель - Акционерное общество «Концерн «Центральный научно-исследовательский институт «Электроприбор».

11. Корякин Ю.А., Смирнов С.А., Яковлев Г.В. Корабельная гидроакустическая техника. Состояние и актуальные проблемы // СПб.: Наука, 2004.

12. Сахаров В.В., Чертков А.А., Тормашев Д.С. Алгоритм оптимального планирования группового взаимодействия роботов // Морской вестник. 2014. № 4 (52). С. 119-122.

Способ определения глубины морской шумящей цели, включающий обнаружение на выходе шумопеленгаторной станции широкополосного сигнала цели, измерение его автокорреляционной функции (АКФ), обнаружение в измеренной АКФ узкополосных интерференционных максимумов (ИМ), определение абсциссы ИМ с наибольшей амплитудой, отличающийся тем, что определяют дистанцию до цели одним из известных способов, для измеренной дистанции и набора глубин в диапазоне возможных глубин цели с помощью лучевой программы расчёта акустического поля источника рассчитывают лучевую структуру сигнала цели, с использованием которой вычисляют АКФ сигнала источника, в которой обнаруживают один-три ИМ с наибольшей амплитудой, определяют их абсциссы, из набора глубин цели выбирают глубину, для которой абсцисса ИМ с наибольшей амплитудой в измеренной АКФ наиболее близка к одной из абсцисс ИМ в вычисленной АКФ.
Способы определения координат морской шумящей цели
Способы определения координат морской шумящей цели
Способы определения координат морской шумящей цели
Способы определения координат морской шумящей цели
Способы определения координат морской шумящей цели
Источник поступления информации: Роспатент

Showing 1-10 of 87 items.
27.06.2015
№216.013.5a2b

Способ измерения физической неэлектрической величины

Изобретение относится к области приборостроения и может быть использовано при разработке и производстве измерительных преобразователей неэлектрических величин типа датчиков угловых скоростей, датчиков линейных, угловых ускорений и т.д. Согласно заявленному изобретению преобразуют измеряемую...
Тип: Изобретение
Номер охранного документа: 0002554624
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a2f

Способ выставки осевого зазора в газодинамическом подвесе оси вращения ротора гиромотора

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве гиромоторов с газодинамическим подвесом оси вращения ротора, состоящего из двух полусферических опорных узлов, каждый из которых содержит опору и фланец. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002554628
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a32

Стенд для выработки угловых колебаний в двух плоскостях

Предложенное изобретение используется для оценки динамических погрешностей микромеханических и других малогабаритных инерциальных систем. Заявленный стенд предназначен для выработки угловых колебаний в двух плоскостях, изменяющихся по гармоническому закону в расширенном частотном диапазоне,...
Тип: Изобретение
Номер охранного документа: 0002554631
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5e5e

Устройство для напыления тонкопленочных покрытий на сферические роторы электростатического гироскопа

Изобретение относится к устройствам для напыления покрытий на сферические роторы электростатических гироскопов и может быть использовано в точном приборостроении. Устройство содержит вакуумную камеру, внутри которой размещены источник распыления и механизм вращения ротора в виде двух рамок,...
Тип: Изобретение
Номер охранного документа: 0002555699
Дата охранного документа: 10.07.2015
27.07.2015
№216.013.6863

Способ обнаружения и сопровождения целей циклически работающей системой наблюдения, состоящей из нескольких разнородных приемных каналов

Изобретение относится к области создания систем наблюдения, состоящих из нескольких разнородных приемных каналов. Существо предлагаемого изобретения состоит в том, что если условию идентичности наблюдаемой и комплексной цели удовлетворяет несколько комплексных целей, то из них выбирается та,...
Тип: Изобретение
Номер охранного документа: 0002558276
Дата охранного документа: 27.07.2015
20.08.2015
№216.013.72fc

Микромеханический вибрационный гироскоп

Изобретение относится к области точного приборостроения и может быть использовано при создании таких средств измерения угловой скорости движения основания, как вибрационные гироскопы. Микромеханический вибрационный гироскоп содержит основание, инерционный диск, имеющий одинаковую толщину и...
Тип: Изобретение
Номер охранного документа: 0002561006
Дата охранного документа: 20.08.2015
10.12.2015
№216.013.96cb

Способ определения погрешностей двухстепенного поплавкового гироскопа с газодинамическим подвесом ротора гиромотора

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных поплавковых гироскопов с газодинамическим подвесом оси вращения ротора гиромотора. Технический результат - повышение точности. Для этого в известном способе...
Тип: Изобретение
Номер охранного документа: 0002570223
Дата охранного документа: 10.12.2015
20.03.2016
№216.014.ca96

Способ бесплатформенной инерциальной навигации на микромеханических чувствительных элементах

Изобретение относится к навигационной технике, а именно к способам бесплатформенной инерционной навигации малогабаритных движущихся объектов. Способ бесплатформенной инерциальной навигации заключается в том, что на борту подвижного объекта устанавливают микромеханические гироскопы и...
Тип: Изобретение
Номер охранного документа: 0002577567
Дата охранного документа: 20.03.2016
10.06.2016
№216.015.4665

Способ изготовления ротора электростатического гироскопа

Изобретение относится к области прецизионного приборостроения и может быть использовано при производстве электростатических гироскопов. Способ изготовления ротора электростатического гироскопа содержит этапы, на которых: формируют из сплошной заготовки сферическую поверхность ротора, выполняют...
Тип: Изобретение
Номер охранного документа: 0002586396
Дата охранного документа: 10.06.2016
20.08.2016
№216.015.4bcf

Двухстепенной поплавковый гироскоп

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных поплавковых гироскопов. Двухстепенной поплавковый гироскоп содержит корпус с двумя торцевыми крышками, цилиндрическую поплавковую гирокамеру, установленную в...
Тип: Изобретение
Номер охранного документа: 0002594628
Дата охранного документа: 20.08.2016
Showing 1-10 of 37 items.
10.09.2013
№216.012.68ec

Способ обработки информации в гидроакустической антенне

Использование: изобретение относится к области гидроакустики, а именно к способу обработки информации в гидроакустической антенне. Сущность: рассматривается способ снижения структурной составляющей помехи в сигнале гидроакустического приемника, жестко закрепленного на корпусе антенны,...
Тип: Изобретение
Номер охранного документа: 0002492507
Дата охранного документа: 10.09.2013
10.11.2013
№216.012.7fa9

Способ оценки полного профиля вертикального распределения скорости звука

Использование: изобретение относится к области гидроакустики и может быть применено при формировании оценки полного профиля вертикального распределения скорости звука (ВРСЗ) по его измеренному в некотором диапазоне глубин фрагменту. Сущность: в способе осуществляется достраивание полного...
Тип: Изобретение
Номер охранного документа: 0002498354
Дата охранного документа: 10.11.2013
27.11.2014
№216.013.0b10

Способ получения упругого и звукопоглощающего полимерного материала с термопластичными микросферами

Изобретение относится к технологии изготовления упругих, звукопоглощающих и звукоизолирующих композиций на основе полиуретанов и термопластичных микросфер. Способ получения композиции из полимерного материала и порошкообразного наполнителя содержит процессы смешения компонентов, удаления...
Тип: Изобретение
Номер охранного документа: 0002534240
Дата охранного документа: 27.11.2014
20.12.2014
№216.013.1078

Бескорпусная гидроакустическая антенна

Изобретение относится к области гидроакустики, а именно к гидроакустическим антеннам, и может быть использовано в гидроакустических донных или опускаемых станциях различного назначения. Задача изобретения - повышение эффективности работы гидроакустических станций. Сущность изобретения...
Тип: Изобретение
Номер охранного документа: 0002535639
Дата охранного документа: 20.12.2014
27.07.2015
№216.013.6863

Способ обнаружения и сопровождения целей циклически работающей системой наблюдения, состоящей из нескольких разнородных приемных каналов

Изобретение относится к области создания систем наблюдения, состоящих из нескольких разнородных приемных каналов. Существо предлагаемого изобретения состоит в том, что если условию идентичности наблюдаемой и комплексной цели удовлетворяет несколько комплексных целей, то из них выбирается та,...
Тип: Изобретение
Номер охранного документа: 0002558276
Дата охранного документа: 27.07.2015
10.05.2018
№218.016.4423

Способ определения координат (пеленга и дистанции) и параметров движения (курса и скорости) морской шумящей цели

Изобретение относится к области гидроакустики, а именно к пассивным способам определения координат (пеленга и дистанции) и параметров движения (курса и скорости) морской шумящей цели (далее КПДЦ) по информации шумопеленгаторных станций (далее ШПС), установленных на подвижных носителях...
Тип: Изобретение
Номер охранного документа: 0002649887
Дата охранного документа: 05.04.2018
10.05.2018
№218.016.4e8e

Шкаф радиоэлектронной аппаратуры

Изобретение относится к системам охлаждения радиоэлектронной аппаратуры (РЭА). Технический результат - сокращение количества деталей шкафа РЭА, соответственно, повышение технологичности его изготовления и эффективности его охлаждения. Достигается за счет того, что корпус образован боковыми...
Тип: Изобретение
Номер охранного документа: 0002650878
Дата охранного документа: 18.04.2018
29.05.2018
№218.016.56ff

Способ формирования характеристики направленности плоской, горизонтально расположенной многоэлементной излучающей антенны доплеровского лага

Изобретение относится к области кораблевождения, а именно к способам и устройствам измерения абсолютной скорости судна. Решаемая техническая проблема - уменьшение погрешности измерения собственной скорости судна и увеличение предельной глубины работы лага без увеличения цены и габаритов...
Тип: Изобретение
Номер охранного документа: 0002655020
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.570a

Способ измерения скорости судна доплеровским лагом

Изобретение относится к области кораблевождения, а именно к способам и устройствам измерения абсолютной скорости судна. Достигаемый технический результат - повышение надежности обнаружения эхосигналов, отраженных от морского дна, при наличии во входном сигнале, кроме эхосигналов, отраженных от...
Тип: Изобретение
Номер охранного документа: 0002655019
Дата охранного документа: 23.05.2018
05.07.2018
№218.016.6c3b

Способ измерения скорости судна доплеровским лагом

Изобретение относится к области кораблевождения, а именно к способам и устройствам измерения абсолютной скорости судна. Решаемая техническая проблема - увеличение надежности и точности работы доплеровского лага без значительного увеличения цены и габаритов аппаратуры. Достигаемый технический...
Тип: Изобретение
Номер охранного документа: 0002659710
Дата охранного документа: 03.07.2018
+ добавить свой РИД