×
17.06.2023
223.018.8172

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛИЧЕСКОГО СУЛЬФАТА НАТРИЯ ИЗ ЖИДКИХ ОТХОДОВ ЭЛЕКТРОЛИТИЧЕСКОГО ПРОИЗВОДСТВА АЛЮМИНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к электролитическому получению алюминия, в частности к технологии переработки жидких отходов, образующихся при очистке газов, и может быть использовано для кристаллизации сульфата натрия из растворов газоочистки электролитического производства алюминия. Способ включает охлаждение осветленного сульфатсодержащего раствора, предварительно очищенного от углеродсодержащих взвесей, вначале до температуры не менее 10°С в баке-мешалке 1, вынесенном за пределы здания, в режиме интенсивного непрерывного перемешивания, с образованием мелкодисперсных кристаллов сульфата натрия, а затем охлаждение до температуры +4-(-1)°С в сгустителе-сепараторе 3, размещенном внутри здания, в режиме интенсивного непрерывного перемешивания, с нагнетанием по всему объему раствора холодного атмосферного воздуха под давлением, с образованием крупных кристаллов сульфата натрия, направляемых на фильтрацию 6 и сушку, и обессульфаченного раствора, направляемого в реактор варки вторичного регенерационного криолита. Техническим результатом изобретения является снижение времени на охлаждение растворов и энергетических затрат на процесс кристаллизации сульфата натрия, повышение производительности процесса, получение товарного продукта с содержанием основного вещества – кристаллического сульфата натрия от 95,3 до 96,9 мас.% и с незначительным содержанием примесей: фтора менее 0,4 мас %, твердого остатка не более 0,9 мас.%. 3 з.п. ф-лы, 1 ил., 3 табл., 2 пр.

Область техники, к которой относится изобретение

Изобретение относится к электролитическому получению алюминия, в частности, к способу переработки жидких отходов, образующихся при очистке газов, и может быть использовано для кристаллизации сульфата натрия из растворов газоочистки электролитического производства алюминия.

Уровень техники

В настоящее время очистка анодных газов при электролитическом производстве алюминия на алюминиевом заводе осуществляется абсорбционным способом путем взаимодействия газовой фазы с раствором кальцинированной соды. Это осуществляется в пенном аппарате, где за счет противотока содового раствора и газовой фазы, содержащей окислы серы и фтористый водород, в результате химической реакции образуется сульфат и фторид натрия в насыщенном растворе газоочистки.

Смешанный раствор – свежий содовый с добавлением маточного раствора постоянно циркулирует в системе газоочистки по схеме: узел приготовления растворов – газоочистные установки завода. Потери раствора постоянно восполняются свежим содовым раствором с концентрацией Na2СO3 200÷250 г/л. Концентрация сульфата натрия в пересчете на SO4 регламентируется (не более 50 г/л). Если концентрация Na2SO4 выше 50 г/л в смешанном растворе, происходит отложение содосульфатного осадка в трубопроводах и на решетках пенных аппаратов, что снижает пропускную способность транспортной линии и степень очистки анодных газов при абсорбции во второй ступени схемы газоочистки.

Накопление сульфата натрия в системе газоочистки, с одной стороны, приводит к потерям такого ценного продукта, как NaF, который выделяется в осадок в виде двойной соли NaF*Na2SO4, с другой стороны – снижает качество вторичного регенерационного криолита, который кристаллизуется из растворов газоочистки. Установлено, что при понижении температуры насыщенного раствора происходит кристаллизация сульфата натрия с минимальным содержанием кристаллов NaF, который является отрицательной примесью в кристаллическом сульфате натрия – товарной продукции.

Известен способ кристаллизации солей из растворов (патент РФ № 2102107, B01D 9/02, опубл. 20.01.1998 г.), включающий контактное охлаждение исходного раствора путем введения в него охлаждающего агента, в качестве которого используют частично или полностью замороженный исходный раствор солей.

Известен способ выделения сульфата натрия из растворов газоочистки электролитического производства алюминия (патент РФ № 2064891, C01D 5/00), включающий насыщение растворов сульфатом, карбонатом и бикарбонатом натрия, охлаждение полученного раствора в течение не менее 2 ч, отделение и обезвоживание образовавшегося осадка, причем охлаждение раствора осуществляют в каскадно расположенных кристаллизаторах при температуре от 7 oС до -5oС, причем температуру каждого последующего кристаллизатора поддерживают на 4÷6oС ниже предыдущего.

Известен способ выделения сульфата натрия из растворов газоочистки электролитического производства алюминия (патент РФ № 2243938, C01D 5/00, опубл. 10.01.2005 г.), включающий насыщение раствора газоочистки сульфатом натрия, охлаждение полученного раствора охлаждающим агентом и отделение образовавшегося осадка, где

охлаждение сульфатсодержащих растворов до t=8÷12 °C осуществляют в охлаждающих устройствах через стенку, а охлаждение сульфатсодержащих растворов до t=0÷(-2) °C осуществляют путем прямого контакта с охлаждающим агентом.

Наиболее близким аналогом изобретения является способ кристаллизации сульфата натрия из раствора газоочистки электролитического производства алюминия (патент РФ № 2215689, С01D 5/00, С01D 7/00, опубл. 10.11.2003 г.), включающий охлаждение раствора сульфата натрия холодным атмосферным воздухом в осенне-зимний период в трубопроводах, вынесенных за пределы здания, в режиме рециркуляции, затем в кристаллизаторах.

Описанные выше способы требуют высоких энергетических затрат и времени для охлаждения растворов.

Раскрытие сущности изобретения

Техническим результатом изобретения является снижение времени на охлаждение растворов и энергетических затрат на процесс кристаллизации сульфата натрия, повышение производительности аппаратурно-технологической схемы обессульфачивания растворов газоочистки, получение товарного продукта – кристаллического сульфата натрия с содержанием фтора менее 0,4 мас %.

Технический результат достигается за счет того, что в способе получения кристаллического сульфата натрия из жидких отходов электролитического производства алюминия, включающем охлаждение раствора в период холодного времени года холодным атмосферным воздухом до температуры кристаллизации, отделение и обезвоживание образовавшегося осадка, новым является то, что проводят охлаждение осветленного сульфатсодержащего раствора, предварительно очищенного от углеродсодержащих взвесей, вначале до температуры не менее 10 °С в баке-мешалке, вынесенном за пределами здания, в режиме интенсивного непрерывного перемешивания, с образованием мелкодисперсных кристаллов сульфата натрия, а затем охлаждение до температуры +4÷(-1) °С в сгустителе-сепараторе, размещенном внутри здания, в режиме интенсивного непрерывного перемешивания, с нагнетанием по всему объему раствора холодного атмосферного воздуха под давлением, с образованием крупных кристаллов сульфата натрия, направляемых на фильтрацию и сушку, и обессульфаченного раствора, направляемого в реактор варки вторичного регенерационного криолита.

Значительно ускоряются процессы обезвоживания, что позволяет легко отделить кристаллы сульфата натрия от раствора и после сушки направить на склад для отправки потребителю.

Предлагаемый способ дополняют частные случаи его реализации. Так, используют сульфатсодержащий раствор с концентрацией сульфата натрия более 60 г/дм3, фторида натрия до 23 г/дм3, соды кальцинированной до 15 г/дм3 и бикарбоната натрия до 35 г/дм3. Атмосферный воздух подают в сгуститель-сепаратор под давлением 0,1÷0,2 МПа с возможностью регулирования объема воздуха. Кристаллизацию сульфата натрия и укрупнение кристаллов проводят с одновременным разделением твердой и жидкой фазы.

В результате получается товарный кристаллический сульфат натрия, вторичный регенерационный криолит с регламентируемым содержанием сульфатов.

Краткое описание чертежей

На фиг. 1 показана технологическая схема получения кристаллического сульфата натрия из жидких отходов электролитического производства алюминия в ходе опытно-промышленных испытаний, где:

1 Бак-мешалка;

2 Насос;

3 Сгуститель-сепаратор;

4 Сгуститель для приема обессульфаченного раствора;

5 Вентилятор для подачи холодного атмосферного воздуха;

6 Фильтр для обезвоживания кристаллического сульфата натрия.

Осуществление изобретения

Осветленный сульфатсодержащий раствор с температурой до 44 ºС из бака-сборника (не показан) поступает со скоростью 9÷12 м3/час в бак-мешалку 1, вынесенную за пределы здания. Раствор охлаждается атмосферным воздухом в осенне-зимне-весенний период до температуры не менее 10 °С в режиме интенсивного непрерывного перемешивания раствора. В этих условиях происходит образование мелкодисперсных кристаллов сульфата натрия равномерно во всем объеме раствора, что позволяет исключить инкрустацию – отложение солей на стенках аппарата. Далее раствор подается в сгуститель-сепаратор 3 посредством насоса 2 через систему трубопроводов. Охлаждение раствора в сгустителе-сепараторе 3 производится вентилятором 5, нагнетающим холодный атмосферный воздух под давлением 0,1÷0,2 МПа. Обеспечивается интенсивное непрерывное перемешивание раствора и его равномерное охлаждение до температуры +4÷(-1) °С, при которой образуются крупные кристаллы сульфата натрия, что в дальнейшем повышает эффективность обезвоживания пульпы. При этом объем холодного воздуха зависит от температуры атмосферного воздуха и контролируется таким образом, чтобы перепад температур охлаждаемого раствора составлял 2÷3°С от предыдущего значения. Эти условия позволят получать крупные кристаллы, которые далее подвергаются процессу обезвоживания и сушки. Обессульфаченный раствор переливом из сгустителя-сепаратора 3 самотеком поступает в сгуститель 4, где накапливается и затем транспортируется в реактор варки вторичного регенерационного криолита, а сульфат натрия после фильтрации и сушки отправляется потребителю.

Примеры осуществления способа

Цикл 1 (табл.1). Осветление сульфатсодержащего раствора производилось путем осаждения твердых углеродсодержащих взвесей в сгустителе, откуда осадок разгружался через нижний слив в мешалку, а через верхний слив самотеком осветленный сульфатсодержащий раствор с концентрацией сульфата натрия 64,6 г/дм3, фторида натрия 18,1 г/дм3, соды кальцинированной 14,8 г/дм3 и бикарбоната натрия 28,1 г/дм3 в объеме 5÷6 м3 с температурой до 44 °С накапливался в баке-сборнике (не показан) и поступал в бак-мешалку 1 со скоростью 10 м3/час, где происходило медленное охлаждение атмосферным воздухом с 44 °С до температуры не менее 10 °С при непрерывном перемешивании раствора механической мешалкой.

Из бака-мешалки 1, находящейся за пределами здания, насосом 2 со скоростью от 18 до 22 м3/час закачивался раствор, охлажденный до температуры 10 °С (процесс охлаждения длился в течение 50 часов, поскольку температура наружного воздуха составляла -13 °С) в сгуститель-сепаратор 3. Быстрое охлаждение раствора до температуры 4 °С происходило за счет нагнетания холодного атмосферного воздуха под давлением 0,1 МПа вентилятором 5 по всему объему. Обессульфаченный раствор с концентрацией сульфата натрия 41,2 г/дм3, фторида натрия 19,7 г/дм3, соды кальцинированной 14,3 г/дм3, бикарбоната натрия 34,4 г/дм3 переливом из сгустителя-сепаратора 3 самотеком поступал в сгуститель 4, где накапливался и затем транспортировался в реактор варки вторичного регенерационного криолита по действующей схеме (фиг.1). Из сгустителя-сепаратора 3 сгущенные кристаллы поступали на фильтр 6 в процесс обезвоживания, затем кристаллический сульфат натрия с содержанием F – 0,4 мас.%, Na2SO4 – 96,9 мас.%, Na2CO3 – 2,1 мас.% и твердого остатка – 0,42 мас.% транспортировался на узел сушки. Перекачка охлажденных растворов, фильтрация и доставка кристаллического сульфата натрия на узел сушки происходила в течение 2 часов. Степень извлечения кристаллического сульфата натрия из сульфатсодержащего раствора составила 36,2 мас.%.

Цикл 2 (табл.1). Осветленный сульфатсодержащий раствор с концентрацией сульфата натрия 82,4 г/дм3, фторида натрия 22,3 г/дм3, соды кальцинированной 10,7 г/дм3 и бикарбоната натрия 30,2 г/дм3 в объеме 5÷6 м3 с температурой 42 °С охлаждался до 10 °С в течение 48 часов (температура наружного воздуха составляла -17 °С) по той же схеме, как описано в цикле 1.

Охлаждение раствора до температуры -1 °С происходило за счет холодного атмосферного воздуха под давлением 0,1 МПа вентилятором 5 по всему объему. Обессульфаченный раствор с концентрацией сульфата натрия 26,3 г/дм3, фторида натрия 22,5г/дм3, соды кальцинированной 10,6 г/дм3 и бикарбоната натрия 32,3 г/дм3 переливом из сгустителя-сепаратора 3 самотеком поступал в сгуститель 4, где накапливался и затем транспортировался в реактор варки вторичного регенерационного криолита по действующей схеме (фиг.1). Из сгустителя-сепаратора 3 сгущенные кристаллы поступали на фильтр 6 для обезвоживания, затем кристаллический сульфат натрия с содержанием F – 0,3 мас. %, Na2SO4 – 96,5 мас.%, Na2CO3 – 2,2 мас. % и твердого остатка – 0,22 мас.% транспортировался на узел сушки. Перекачка охлажденных обессульфаченных растворов, фильтрация и доставка кристаллического сульфата натрия на узел сушки происходила в течение 2 часов. Степень извлечения кристаллического сульфата натрия составила 68,1 мас.%.

Третий цикл охлаждения сульфатсодержащего раствора проводился по аналогичной схеме первого и второго циклов. Степень извлечения кристаллического сульфата натрия составила 40,6 мас. %.

В результате опытно-промышленных испытаний было проведено три цикла технологии кристаллизации сульфата натрия из сульфатсодержащих растворов. Получено три партии кристаллического продукта. Пробы исходных и полученных продуктов анализировались в ЦЗЛ ПАО «РУСАЛ Братск», также фиксировалась температура наружного воздуха и охлажденных растворов, время охлаждения раствора и фильтрации. Результаты опытно-промышленных испытаний представлены в таблице 1.

Таблица 1.

Наименование Определяемые параметры
Температура воздуха, 0С Температура раствора, 0С Время охлаждения, час Время цикла, час Na2CO3, г/дм3 NaHCO3, г/ дм3 NaF, г/ дм3 Na2SO4, г/ дм3 Взвеси, г/ дм3
Цикл 1
Осветленный раствор (исходный) -13 44 - - 14,8 28,1 18,1 64,6 0,35
Обес-сульфаченный раствор - 4 50 2 14,3 34,4 19,7 41,2 0,28
Цикл 2
Осветленный раствор (исходный) -17 42 - - 10,7 30,2 22,3 82,4 0,56
Обес-сульфаченный раствор - -1 48 2 10,6 32,3 22,5 26,3 0,11
Цикл 3
Осветленный раствор (исходный) -7 40 - - 8,5 26,5 18,5 71,7 1,3
Обес-сульфаченный раствор - 3,5 72 2 7,4 30,2 21,2 42,6 1,06

Результаты химического анализа обессульфаченных растворов показывают, что степень извлечения сульфата натрия из сульфатсодержащих растворов находится в пределах 36÷68 мас.% и зависит от температуры холодного атмосферного воздуха, концентрации сульфата натрия в исходном и обессульфаченном растворе. Состав осветленного раствора после кристаллизации сульфата натрия изменяется незначительно, концентрация основных химических элементов Na2CO3, NaHCO3, NaF соответствует регламенту осветленного раствора, направляемого в процесс кристаллизации вторичного регенерационного криолита.

Расчетным путем установлено, что расход атмосферного холодного воздуха растет в зависимости от скорости потока раствора, поступающего на охлаждение с последующей кристаллизацией сульфата натрия. При потоке 18 м3/ч суммарный расход атмосферного воздуха на охлаждение составит 80,4 тыс. нм3/ч, а при увеличении исходного потока раствора до 22 м3/ч – 130,4 тыс. нм3/ч. Результаты расчетов по охлаждению и кристаллизации сульфата натрия при изменяемом потоке раствора представлены в таблице 2.

Таблица 2.

Параметр Е. изм. 1 2 3 4 5
Поток раствора м3 18 19 20 21 22
Температура раствора °C 35 35 35 35 35
Расчетная плотность раствора кг/м3 1139 1139 1139 1139 1139
1 стадия (охлаждение)
КТП Вт/м2/°C 43,2 43,2 43,2 43,2 43,2
Площадь теплопередачи м2 344,8 344,8 344,8 344,8 344,8
Темп. воздуха на входе 1 ст °C -6,5 -6,5 -6,5 -6,5 -6,5
Темп. воздуха на выходе 1 ст °C 21,1 19,32 17,5 15,6 13,6
Темп. раствора на выходе °C 20 20 20 20 20
Расход воздуха нм3 29133 32857 37246 42504 48928
2 стадия (переохлаждение)
КТП Вт/м2/°C 43,2 43,2 43,2 43,2 43,2
Площадь теплопередачи м2 862 862 862 862 862
Темп. воздуха на входе 2 ст °C -6,5 -6,5 -6,5 -6,5 -6,5
Темп. воздуха на выходе 2 ст °C 11,5 10,5 9,5 8,4 7,3
Темп. раствора на выходе °C 4 4 4 4 4
Расход воздуха нм3 51312 57296 64156 72110 81454
Всего по процессу
∑ расход воздуха нм3 80444 90153 101402 114613 130382

В таблице 3 представлен химический состав кристаллического сульфата натрия, который получен при разной концентрации химических соединений в растворе. Содержание основного вещества – сульфата натрия в продукте от 95,3 до 96,9 мас. %, что подтверждает возможность получения кристаллического сульфата натрия из растворов газоочистки за счет охлаждения атмосферным воздухом в холодное время года и устанавливает зависимость эффективности процесса кристаллизации от температуры раствора. К примесям в полученном продукте можно отнести незначительное содержание фтора не более 0,4 мас.% и твердого остатка не более 0,9 мас.%.

Таблица 3.

Наименование
Материала
Определяемые элементы, мас. %
F Na2SO4 Na2CO3 Твердый остаток
цикл 1 Na2SO4 0,4 96,9 2,1 0,42
цикл 2 Na2SO4 0,3 96,5 2,2 0,22
цикл 3 Na2SO4 0,3 95,3 2,9 0,9

Сопоставительный анализ предлагаемого решения с прототипом показывает, что заявляемое решение отличается тем, что:

в осенне-зимне-весенний период охлаждение раствора до температуры не менее 10 °С производится при непрерывном интенсивном перемешивании раствора в баке-мешалке, установленной за пределами здания, с образованием мелкодисперсных кристаллов сульфата натрия;

охлаждение раствора до температуры +4÷(-1) °С производится в сгустителе-сепараторе холодным атмосферным воздухом под давлением 0,1÷0,2 МПа, обеспечивающим непосредственный контакт холодного воздуха со всем объемом раствора за счет изменения объема холодного воздуха, обеспечив снижение температуры раствора на 2÷3 °С от 10°С до +4÷(-1) °С для получения крупных кристаллов сульфата натрия;

кристаллизация сульфата натрия осуществляется одновременно со сгущением кристаллического продукта в сгустителе-сепараторе;

обессульфаченный раствор направляется в реактор варки вторичного регенерационного криолита, который после обезвоживания и сушки направляется в процесс электролиза, а маточный раствор после обезвоживания вторичного регенерационного криолита направляется на приготовление смешанного раствора с добавлением свежего содового раствора для очистки анодных газов в системе газоочистки, исключается вывод раствора на шламовое поле.

сульфат натрия после фильтрации и сушки отгружается потребителю.

Источник поступления информации: Роспатент

Showing 11-20 of 230 items.
27.09.2013
№216.012.6f6c

Технологическая линия очистки отходящих газов электролитического производства алюминия в электролизерах, оснащенных системой автоматической подачи сырьевых сыпучих материалов

Изобретение относится к очистке отходящих газов электролизеров с обожженными анодами, снабженных системой автоматической подачи глинозема. Линия включает блок сухой очистки, содержащий бункер свежего глинозема, вертикальный реактор - адсорбер, соединенный линией подачи свежего глинозема с...
Тип: Изобретение
Номер охранного документа: 0002494175
Дата охранного документа: 27.09.2013
10.11.2013
№216.012.7e1d

Способ получения брикетов из фторуглеродсодержащих отходов

Изобретение относится к области цветной металлургии, к переработке фторуглеродсодержащих отходов электролитического производства алюминия, содержащих хвосты флотации угольной пены и отходы газоочистки, и может быть использовано для получения брикетов. Способ включает смешивание хвостов флотации...
Тип: Изобретение
Номер охранного документа: 0002497958
Дата охранного документа: 10.11.2013
27.12.2013
№216.012.9113

Способ защиты катодных блоков со смачиваемым покрытием на основе диборида титана при обжиге электролизера

Изобретение относится к способу защиты смачиваемого покрытия на основе диборида титана катодных блоков алюминиевого электролизера от окисления при обжиге и пуске. Способ включает нанесение на смачиваемое покрытие защитного слоя, сохраняющего защитные свойства во всем интервале температур обжига...
Тип: Изобретение
Номер охранного документа: 0002502832
Дата охранного документа: 27.12.2013
27.01.2014
№216.012.9bf0

Ошиновка электролизера для получения алюминия

Изобретение относится к ошиновке электролизеров алюминия с любым подводом тока, размещенных в корпусе продольно в два ряда и соединенных друг с другом в последовательную электрическую цепь. Ошиновка содержит секционированную катодную ошиновку и анодную ошиновку, при этом анодная ошиновка...
Тип: Изобретение
Номер охранного документа: 0002505626
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9ec2

Система автоматической подачи сырья в электролизеры с самообжигающимися анодами

Изобретение относится к автоматической подаче сырья в электролизеры для получения алюминия с верхним токоподводом и самообжигающимся анодом для питания их глиноземом и фтористыми солями. Система содержит магистральный аэрожелоб, соединенный одним концом с узлом разгрузки глинозема из...
Тип: Изобретение
Номер охранного документа: 0002506350
Дата охранного документа: 10.02.2014
20.03.2014
№216.012.ac54

Анододержатель алюминиевого электролизера

Изобретение относится к анододержателю анодного устройства алюминиевых электролизеров. Анододержатель содержит кронштейн с двумя и более ниппелями, расположенными равномерно или с разным шагом вдоль продольной оси обожженного угольного блока и закрепленными в выполненных в нем ниппельных...
Тип: Изобретение
Номер охранного документа: 0002509831
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b02f

Катодная секция алюминиевого электролизера

Изобретение относится к конструкции катодной секции алюминиевого электролизера. Катодная секция содержит катодный углеродный блок, катодный токоведущий стержень с электропроводной частью из материала с высокой удельной электропроводностью, установленный во внутренней полости катодного...
Тип: Изобретение
Номер охранного документа: 0002510818
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b033

Способ изготовления комбинированных подовых блоков

Настоящее изобретение относится к способу производства комбинированных подовых блоков для алюминиевых электролизеров. Способ включает введение материала углеродистой подложки в форму и нанесение на нее слоя композиционного жаростойкого материала, содержащего борид металла, уплотнение...
Тип: Изобретение
Номер охранного документа: 0002510822
Дата охранного документа: 10.04.2014
20.05.2014
№216.012.c5e0

Способ замены четырехстоячной ошиновки на трехстоячную в алюминиевом электролизере содерберга

Изобретение относится к способу замены ошиновки алюминиевых электролизеров действующей электролизной серии. Способ включает сначала переключение крайнего гибкого спуска катодной шины, подключенной на входной анодный стояк с лицевой стороны последующего электролизера, на катодную шину, идущую на...
Тип: Изобретение
Номер охранного документа: 0002516415
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c5e1

Способ определения степени износа карбидокремниевых блоков для боковой футеровки кожуха алюминиевых электролизеров

Изобретение относится к определению степени износа в среде алюминиевых электролизеров образцов карбидокремниевых блоков, используемых для боковой футеровки кожуха алюминиевых электролизеров. Способ включает погружение закрепленных образцов карбидокремниевых блоков в электролит при температуре...
Тип: Изобретение
Номер охранного документа: 0002516416
Дата охранного документа: 20.05.2014
Showing 11-20 of 26 items.
25.08.2017
№217.015.ccce

Способ утилизации шламов алюминиевого производства

Изобретение относится к способу утилизации шламов алюминиевого производства. Способ включает отмывку шламов от сульфата натрия, сгущение, фильтрацию и сушку, удаление углерода в процессе окислительного обжига в реакторе при температуре 780-800°С, электролиз полученных материалов в электролизной...
Тип: Изобретение
Номер охранного документа: 0002620844
Дата охранного документа: 30.05.2017
26.08.2017
№217.015.e89d

Способ получения фторида кальция из фторуглеродсодержащих отходов алюминиевого производства

Изобретение может быть использовано в химической технологии. Способ получения фторида кальция из фторуглеродсодержащих отходов алюминиевого производства включает обработку фторсодержащих растворов гидроокисью кальция с последующим разделением раствора и пульпы и выделением фторида кальция,...
Тип: Изобретение
Номер охранного документа: 0002627431
Дата охранного документа: 08.08.2017
10.05.2018
№218.016.4da2

Козловой кран разборно-мобильный

Изобретение относится к подъемно-транспортному машиностроению, а именно к конструкциям козловых кранов. Козловой кран разборно-мобильный содержит однобалочный мост с двумя консолями, подкосы, связанные соответственно с консолями моста и опорами крана. Каждый подкос снабжен натяжным устройством...
Тип: Изобретение
Номер охранного документа: 0002652538
Дата охранного документа: 26.04.2018
28.06.2018
№218.016.67be

Способы кодирования и декодирования информации

Изобретение относится к области кодирования/декодирования информации. Технический результат - повышение эффективности помехоустойчивого кодирования/декодирования информации за счет увеличения объема передачи/приема информации при уменьшении количества используемых элементов. При выполнении...
Тип: Изобретение
Номер охранного документа: 0002659025
Дата охранного документа: 26.06.2018
20.02.2019
№219.016.c260

Горелочное устройство щелевого типа алюминиевого электролизера с самообжигающимся анодом

Изобретение относится к цветной металлургии, а именно к электролитическому получению алюминия, и предназначено для сжигания анодных газов в горелочных устройствах электролизеров с самообжигающимся анодом. В горелочном устройстве щелевого типа алюминиевого электролизера с самообжигающимся...
Тип: Изобретение
Номер охранного документа: 0002456383
Дата охранного документа: 20.07.2012
20.02.2019
№219.016.c264

Горелочное устройство алюминиевого электролизера с интенсивным смешиванием компонентов

Изобретение относится к цветной металлургии, а именно к электролитическому получению алюминия, и предназначено для сжигания анодных газов в горелочных устройствах электролизеров с самообжигающимся анодом. Горелочное устройство алюминиевого электролизера с интенсивным смешиванием компонентов...
Тип: Изобретение
Номер охранного документа: 0002456380
Дата охранного документа: 20.07.2012
29.03.2019
№219.016.eea4

Способ очистки регенерационного криолита от сульфата натрия

Изобретение относится к способам очистки регенерационного криолита от сульфата натрия. Способ включает загрузку криолита в промывную воду, отмывку при перемешивании и обезвоживание отмытого продукта. Отмывку проводят до остаточного содержания сульфата натрия в отмытом криолите 45-65% от его...
Тип: Изобретение
Номер охранного документа: 0002274606
Дата охранного документа: 20.04.2006
29.03.2019
№219.016.f51e

Способ переработки солевого шлака (пушонки), образующегося при отключении электролизера для производства алюминия в ремонт

Изобретение относится к электролитическому получению алюминия, в частности к способу переработки солевого шлака, образующегося при отключении электролизера для производства алюминия в ремонт. Способ включает дробление, измельчение и флотацию солевого шлака, солевой шлак на 1-72 часа...
Тип: Изобретение
Номер охранного документа: 0002425179
Дата охранного документа: 27.07.2011
29.03.2019
№219.016.f62e

Способ очистки регенерационного криолита от соединений серы

Изобретение относится к области цветной металлургии, в частности к способу очистки регенерационного криолита от соединений серы при электролитическом получении алюминия. Способ включает отмывку пульпы регенерационного криолита в конденсате, образующемся при нагревании в реакторе варки криолита....
Тип: Изобретение
Номер охранного документа: 0002401323
Дата охранного документа: 10.10.2010
18.05.2019
№219.017.5b9c

Устройство для сбора и эвакуации анодных газов из-под укрытия электролизера с обожженными анодами

Изобретение относится к цветной металлургии, в частности к получению алюминия в электролизерах с предварительно обожженными анодами, и может быть применено для улавливания выбросов при выполнении технологических операций, связанных с разгерметизацией укрытий. Устройство для сбора и эвакуации...
Тип: Изобретение
Номер охранного документа: 0002468127
Дата охранного документа: 27.11.2012
+ добавить свой РИД