×
21.05.2023
223.018.6837

Результат интеллектуальной деятельности: Способ оценки длины волокна заготовки при плоском деформированном состоянии

Вид РИД

Изобретение

Аннотация: Изобретение относится к области обработки металлов давлением, а именно к способу оценки длины волокна при плоском деформированном состоянии. Способ оценки длины волокна заготовки при плоском деформированном состоянии заключается в том, что осуществляют деформацию заготовки в рамках исследуемого процесса обработки металлов давлением. При этом фиксируют основные параметры исследуемого процесса: скорость перемещения и/или вращения деформирующего и вспомогательного инструмента, размеры деформирующего и вспомогательного инструмента, температуру заготовки перед деформацией, размеры заготовки перед деформацией. Затем проводят испытания на растяжение образцов из материала недеформированной заготовки. После этого осуществляют компьютерное моделирование исследуемого процесса обработки металлов давлением в вычислительное среде конечно-элементного анализа с использованием данных. Затем с помощью автоматизированного компьютерного проектирования производят необходимые измерения длины волокна заготовки при плоском деформированном состоянии. Технический результат - повышение точности прогнозирования формоизменения и выявление его особенностей благодаря количественной оценке длины волокна заготовки и возможности оценки его формы на любой стадии исследуемого процесса обработки металлов давлением. 6 ил.

Изобретение относится к области обработки металлов давлением, а именно к способу оценки длины волокна при плоском деформированном состоянии.

Известен способ оценки изменения формы волокна при винтовой прокатке (Восканьянц А.А., Иванов А.В. Моделирование процесса поперечно-винтовой прокатки на основе эйлерова описания движения сплошной среды. Машиностроение и компьютерные технологии, №1, 2009 http://technomag.edu.ru/doc/113356.html). Неизвестно, возможно ли данным способом оценить длину волокна в заготовке в интересующий момент времени.

Известен способ оценки изменения формы волокна при штамповке (Н.В. Биба, С.А. Стебунов, Ю.А. Гладков, П.С. Мордвинцев. QForm - универсальная и эффективная программа для моделирования ковки и штамповки. Мир металла, январь-февраль 2011, с. 28-31. https://qform3d.ru/publications?page=1). Способ позволяет качественно оценить изменение формы волокон в процессе штамповки, однако не позволяет оценить длину волокна заготовки в интересующий момент времени.

Известен способ отображения изменения формы волокна заготовки в процессе штамповки (Конечно-элементное моделирование технологических процессов ковки и объемной штамповки: учебное пособие/[А.В. Власов и др.]; под ред. А.В. Власова. - Москва: Издательство МГТУ им. Н.Э. Баумана, 2019 - 383, [1] с: ил., с. 308-309). Данный способ наиболее близок предлагаемому изобретению. Способ позволяет качественно оценить изменение формы волокон в процессе штамповки, однако не позволяет оценить длину волокна заготовки в интересующий момент времени.

Техническим результатом является повышение эффективности существующих и разработки новых технологий обработки металлов давлением за счет повышения точности прогнозирования формоизменения и выявлении его особенностей благодаря количественной оценке длины волокна заготовки и возможности оценки его формы на любой стадии исследуемого процесса обработки металлов давлением.

Технический результат достигается тем, что сначала осуществляют деформацию заготовки в рамках исследуемого процесса обработки металлов давлением. При этом фиксируют основные параметры исследуемого процесса: скорость перемещения и/или вращения деформирующего и вспомогательного инструмента, размеры деформирующего и вспомогательного инструмента, температуру заготовки перед деформацией, размеры заготовки перед деформацией. Затем проводят испытания на растяжение образцов из материала недеформированной заготовки. После этого осуществляют компьютерное моделирование исследуемого процесса обработки металлов давлением в вычислительной среде конечно-элементного анализа с использованием данных о значениях основных параметров исследуемого процесса обработки металлов давлением и результатов испытаний на растяжение образцов из материала недеформированной заготовки. По окончании компьютерного моделирования исследуемого процесса обработки металлов давлением с помощью инструментария вычислительной среды конечно-элементного анализа в заготовке интересующее волокно выделяют линией и производят трассировку выбранного волокна за весь процесс формоизменения. В интересующий момент времени процесса деформации отображают контур заготовки и волокна. С помощью инструментария вычислительной среды конечно-элементного анализа сохраняют контур заготовки и волокна в файл в виде файла. Созданный файл открывают с помощью среды автоматизированного компьютерного проектирования. При открытии файла данных контура заготовки и волокна выбирают набор данных, соответствующих волокну. В результате открытия файла получают точки, последовательно соединенные прямыми линиями. С помощью инструментария среды автоматизированного компьютерного проектирования прямые линии удаляют, оставляя только точки. Через все точки проводят сплайн (сглаженную кривую) или несколько последовательно соединенных друг с другом сплайнов. Используя инструментарий среды автоматизированного компьютерного проектирования, определяют длину сплайна, если через точки проводили один сплайн, или суммарную длину сплайнов, если сплайнов было несколько. Полученное значение принимают за оценку длины волокна заготовки при плоском деформированном состоянии.

Технический результат достигается на примере оценки длины волокна заготовки при формовке на трехвалковой гибочной машине. Формовка трубной заготовки производилась на гибочной установке РВТ 25 в условиях научно-производственного центра кафедры ОМД НИТУ «МИСиС». На фиг.1 представлена схема расположения валков на установке РВТ 25: 1 - гибочный валок, 2,3 - опорные валки, 4 - листовая заготовка. Радиус гибочного валка составлял 137, 5 мм, радиус опорных валков составлял 97,5 мм. Для формовки использовали полосу из стали 20, толщиной 6 мм. В ходе гибки гибочный валок переместился вертикально вниз на величину 16 мм со скоростью 2 мм/с. Температура заготовки составляла 20°С. Провели испытания образцов из стали 20 на растяжение на испытательной машине Gleeble 3800 НИТУ «МИСиС». Испытания проводили при температуре 20°С при различных скоростях деформации: 0,01 с-1, 0,1 с-1, 1 с-1, 10 с-1, 100 с-1. На фиг.2 представлены графики изменения сопротивления деформации, полученные по результатам испытаний образцов из стали 20 на растяжение при температуре 20°С при различных скоростях деформации: 5 - 0,01 с-1, 6 - 0,1 с-1, 7 - 1 с-1, 8 - 10 с-1, 9 - 100 с-1. Используя параметры исследуемого процесса формовки и результаты испытаний на растяжение провели компьютерное моделирование исследуемого процесса формовки с помощью вычислительной среды конечно-элементного анализа QForm. Для формовки использовали заготовку толщиной 6 мм и длиной 1000 мм. Моделирование осуществляли с использованием параметров инструмента гибочной установки РВТ 25. Перед началом моделирования в SolidWorks создали эскиз, содержащий контуры верхнего и нижнего валков в виде окружностей соответствующих радиусов, равных радиусам валков гибочной установки РВТ 25 (фиг.3). Радиус гибочного валка составлял 137,5 мм, радиус опорных валков - 97,5 мм. Расстояние между центрами опорных валков составляло 200 мм. Расстояние от левого края заготовки до центра гибочного валка составляло 125 мм. Также создали контур продольного сечения заготовки в виде прямоугольника со сторонами 6 и 1000 мм. Созданный эскиз сохранили в формате.dxf и загрузили в QForm (фиг.4): 1 - гибочный валок, 2,3 -опорные валки, 4 - заготовка. Материал заготовки задали сталь 20 из библиотеки материалов QForm. Перемещение гибочного валка по вертикали задали равным 2 мм/с.Условия трения для всех трех роликов задавали, выбрав закон трения Кулона в меню QForm, а также величины коэффициента трения Кулона равным 0,8. Моделировали процесс без расчета теплообмена между полосой и валками. Для заготовки задавали граничное условие в виде адаптации сетки конечных элементов. При этом соблюдалось условие, что максимальный размер элемента в заготовке не превышает 0,1 мм, и моделирование велось без переразбиения сетки в процессе расчета. Граничное условие адаптации сетки для заготовки выполнялось для всей заготовки в процессе моделирования. Для всех валков задали граничное условие в виде адаптации сетки конечных элементов. При этом максимальный размер элемента для валков ограничивался только на поверхности инструмента и не превышал 0,1 мм. Температуру заготовки задали равной 20°С. Критерием остановки расчета являлось конечное перемещение гибочного валка на 16 мм.

По окончании расчета выбрали первый шаг и на заготовке обозначили линией волокно, которое располагалось на равном расстоянии от верхней и нижней кромок заготовки (фиг.5). На фиг.3: 1 - гибочный валок, 2,3 - опорные валки, 4 - заготовка, 10 - волокно. С помощью инструментария QForm отобразили последний шаг расчета, левой кнопкой мыши выбрали заготовку, затем в меню QForm выбрали «Экспорт», затем «Экспорт в STL/DXF/XLS», сохранили контур заготовки и валок в формате «DXF». Полученный файл открыли в SolidWorks, импортировав его как двумерный эскиз. При импортировании в SolidWorks в меню слоев выбрали тот слой, который соответствовал волокну (фиг.6). Получили отображение волокна в виде последовательно соединенных прямых линий. На концы всех линий с помощью инструментария SolidSWorks нанесли точки, а затем прямые линии удалили. При этом в эскизе остались нанесенные точки. С помощью инструментария SolidWorks через точки провели последовательно соединенные сплайны, определили с помощью команды «Измерить» длину каждого сплайна. Все длины сложили и получили значение 1000,016 мм. Полученное значение приняли в качестве оценки длины волокна заготовки при плоском деформированном состоянии.

Способ оценки длины волокна заготовки при плоском деформированном состоянии, заключающийся в том, что сначала осуществляют деформацию заготовки в рамках исследуемого процесса обработки металлов давлением и фиксируют основные параметры исследуемого процесса: скорость перемещения и/или вращения деформирующего и вспомогательного инструмента, размеры деформирующего и вспомогательного инструмента, температуру заготовки перед деформацией, размеры заготовки перед деформацией, проводят испытания на растяжение образцов из материала недеформированной заготовки, осуществляют компьютерное моделирование исследуемого процесса обработки металлов давлением в вычислительное среде конечно-элементного анализа с использованием данных о значениях основных параметров исследуемого процесса обработки металлов давлением и результатов испытаний на растяжение образцов из материала недеформированной заготовки, выделение линией волокна в заготовке по результатам компьютерного моделирования, его трассировку за все время деформации, сохранение контуров заготовки и волокна в интересующий момент времени в файл, отличающийся тем, что файл с контуром заготовки и волокном открывают в среде автоматизированного компьютерного проектирования, при предварительном просмотре файла данных контура заготовки и волокна выбирают набор данных, соответствующих волокну, отображают выбранное на плоскости и получают набор точек, последовательно соединенных прямыми линиями, с помощью инструментария среды автоматизированного компьютерного проектирования удаляют прямые линии, соединяющие точки, оставляя только точки, через эти точки проводят сплайн или несколько сплайнов, с помощью инструментария среды автоматизированного компьютерного проектирования измеряют длину сплайна, если сплайнов несколько, то определяют длину каждого и суммируют полученные длины, величину длины сплайна, если он был один, или величину суммарной длины сплайнов, если их было несколько, принимают за оценку длины волокна заготовки при плоском деформированном состоянии.
Источник поступления информации: Роспатент

Showing 51-60 of 108 items.
29.12.2017
№217.015.f11f

Высокопрочная низколегированная азотосодержащая мартенситная сталь

Изобретение относится к области металлургии, а именно к высокопрочной низколегированной азотосодержащей мартенситной стали, используемой для изготовления высоконагруженных деталей и конструкций в машиностроении и железнодорожном транспорте. Сталь содержит, мас.%: углерод 0,05-0,10, кремний...
Тип: Изобретение
Номер охранного документа: 0002638873
Дата охранного документа: 18.12.2017
29.12.2017
№217.015.fd6a

Способ получения порошка карбонитрида титана

Изобретение относится к получению порошка карбонитрида титана. Способ включает генерирование потока термической плазмы в плазменном реакторе с ограниченным струйным течением, подачу в поток термической плазмы паров тетрахлорида титана, газообразного углеводорода и азота с обеспечением их...
Тип: Изобретение
Номер охранного документа: 0002638471
Дата охранного документа: 13.12.2017
19.01.2018
№218.015.ff1d

Листопрокатная клеть

Изобретение относится к прокатному производству, конкретно к конструкциям прокатных валков в клетях листопрокатных станов дуо, в том числе одноклетьевых. Комплект прокатных валков содержит пару валков с бочками цилиндрической формы, на которых выполнены геликоидальные выступы, имеющие форму...
Тип: Изобретение
Номер охранного документа: 0002629579
Дата охранного документа: 30.08.2017
20.01.2018
№218.016.184f

Способ получения композиционного металломатричного материала, армированного сверхупругими сверхтвердыми углеродными частицами

Изобретение относится к получению композиционного металломатричного материала, армированного сверхупругими сверхтвердыми углеродными частицами. Способ включает приготовление смеси порошков металла и фуллеритов и ее прессование при давлении 5-8 ГПа и температурах 800-1000°С с обеспечением...
Тип: Изобретение
Номер охранного документа: 0002635488
Дата охранного документа: 13.11.2017
20.01.2018
№218.016.1b8b

Реактор со стабилизированной высокотемпературной приосевой струей

Изобретение относится к области высокотемпературных аппаратов, используемых в химических и металлургических производствах, в частности к реактору со стабилизированной высокотемпературной приосевой струей периферийным вихревым потоком. Реактор включает корпус с рубашкой охлаждения,...
Тип: Изобретение
Номер охранного документа: 0002636704
Дата охранного документа: 27.11.2017
10.05.2018
№218.016.3971

Способ получения нанопорошка оксинитрида алюминия

Изобретение относится к получению нанопорошка оксинитрида алюминия. Тонкодисперсный порошок алюминия вводят в поток термической плазмы, в котором осуществляют взаимодействие паров алюминия с аммиаком в присутствии кислорода в количестве, отвечающем атомному соотношению элементов 1,16
Тип: Изобретение
Номер охранного документа: 0002647075
Дата охранного документа: 13.03.2018
09.06.2018
№218.016.5cf4

Рабочее вещество для термолюминесцентной дозиметрии рентгеновского и гамма-излучения

Изобретение относится к области радиоэкологического мониторинга и дозиметрии рентгеновского и гамма-излучения и может быть использовано в персональных и аварийных дозиметрах для определения дозозатрат персонала рентгеновских кабинетов, мобильных комплексов радиационного контроля, зон с...
Тип: Изобретение
Номер охранного документа: 0002656022
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5f85

Способ получения проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы

Изобретение относится к области металлургии, а именно к деформационно-термической обработке сплавов титан-ниобий-тантал-цирконий с эффектом памяти формы и может быть использовано в металлургии, машиностроении и медицине, в частности при изготовлении медицинских устройств типа «стент»,...
Тип: Изобретение
Номер охранного документа: 0002656626
Дата охранного документа: 06.06.2018
16.06.2018
№218.016.62ea

Способ получения биоцемента на основе карбоната кальция для заполнения костных дефектов

Изобретение относится к области медицины, а именно к керамическим и цементным материалам, и раскрывает способ получения биоцемента на основе карбоната кальция для заполнения костных дефектов. Способ характеризуется тем, что цементный раствор получают в результате последовательного добавления в...
Тип: Изобретение
Номер охранного документа: 0002657568
Дата охранного документа: 14.06.2018
12.07.2018
№218.016.700b

Способ повышения критической температуры сверхпроводящего перехода в поверхностном слое высокотемпературного сверхпроводника

Изобретение относится к способам повышения критической температуры сверхпроводящего перехода (Тс) в высокотемпературных сверхпроводниках (ВТСП) и может быть использовано для создания различного рода датчиков и счетчиков в сверхбыстродействующих электронных устройствах, криоэлектронных приборах,...
Тип: Изобретение
Номер охранного документа: 0002660806
Дата охранного документа: 10.07.2018
Showing 51-60 of 87 items.
20.01.2018
№218.016.15c8

Способ изготовления бесшовных труб диаметром менее 120 мм винтовой прокаткой

Изобретение относится к области изготовления бесшовных толстостенных труб диаметром менее 120 мм, используемых в машиностроении, атомной энергетике, строительстве. Способ включает нагрев заготовки, прошивку и прокатку в несколько проходов в калибре, образованном валками, линейками и короткой...
Тип: Изобретение
Номер охранного документа: 0002635207
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.1710

Способ прошивки в стане винтовой прокатки

Изобретение относится к области обработки металлов давлением и может быть использовано для получения бесшовных труб и полых трубных заготовок винтовой прошивкой. Способ включает прошивку круглой заготовки в стане винтовой прокатки. Уменьшение разностенности и овальности труб и гильз...
Тип: Изобретение
Номер охранного документа: 0002635685
Дата охранного документа: 15.11.2017
25.08.2018
№218.016.7f8f

Способ обработки магниевого сплава системы mg-al-zn методом ротационной ковки

Изобретение относится к сплавам на основе магния, в частности к способам деформационной обработки магниевых сплавов, и может быть использовано для получения изделий, применяемых в качестве конструкционных материалов в авиации, ракетной технике, транспорте и т.д. Способ обработки магниевого...
Тип: Изобретение
Номер охранного документа: 0002664744
Дата охранного документа: 22.08.2018
20.02.2019
№219.016.c080

Способ термической обработки магнитотвердых сплавов на основе железа

Изобретение относится к металлургии, в частности к производству магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в автоприборостроении, релейной технике, электромашиностроении, медицине и т.д. Для повышения магнитных свойств обрабатываемых постоянных магнитов на 3-5% и...
Тип: Изобретение
Номер охранного документа: 0002305710
Дата охранного документа: 10.09.2007
01.03.2019
№219.016.c940

Способ изоляции зон водопритока в скважине

Предложение относится к нефтегазодобывающей промышленности и предназначено для ремонтно-изоляционных работ в нефтяных и газовых скважинах. Технический результат - увеличение эффективности изоляционных работ за счет повышения вязкости обратной эмульсии и армирования каждой порции обратной...
Тип: Изобретение
Номер охранного документа: 0002283422
Дата охранного документа: 10.09.2006
11.03.2019
№219.016.da41

Способ винтовой прокатки заготовки

Способ предназначен для повышения качества и точности геометрических размеров гильз при винтовой прокатке с прошивкой заготовки. Способ включает подачу нагретой заготовки в калибр, образованный валками, развернутыми на угол подачи, и направляющими линейками, деформирование ее валками и прошивку...
Тип: Изобретение
Номер охранного документа: 0002309809
Дата охранного документа: 10.11.2007
29.03.2019
№219.016.eeba

Способ предотвращения замерзания устья водонагнетательной скважины в режиме циклического заводнения

Изобретение относится к нефтедобывающей отрасли, в частности к способу предотвращения замерзания труб устья водонагнетательной скважины в режиме циклического заводнения. Техническим результатом изобретения является предотвращение замерзания устья водонагнетательной скважины в периоды плановых...
Тип: Изобретение
Номер охранного документа: 0002278951
Дата охранного документа: 27.06.2006
29.03.2019
№219.016.f283

Способ изоляции водопритока и зоны поглощения в скважине

Изобретение относится к нефтедобывающей промышленности, в частности к способам изоляции водопритока и зоны поглощения в скважине, и может быть использовано для проведения ремонтно-изоляционных работ в условиях больших поглощений, в том числе для герметизации нарушений эксплуатационной колонны,...
Тип: Изобретение
Номер охранного документа: 0002378490
Дата охранного документа: 10.01.2010
29.03.2019
№219.016.f728

Способ ограничения водопритока в скважине

Изобретение относится к нефтегазодобывающей промышленности и предназначено для ремонтно-изоляционных работ в скважинах и может быть использовано с применением колтюбинга. Технический результат - повышение эффективности ремонтно-изоляционных работ за счет создания более стойкого к прорыву вод...
Тип: Изобретение
Номер охранного документа: 0002431735
Дата охранного документа: 20.10.2011
10.04.2019
№219.017.023b

Способ производства ремонтно-изоляционных работ в скважине

Изобретение относится к нефтедобывающей промышленности, в частности к способам доставки тампонажного материала в скважину для ремонтно-изоляционных работ, и предназначено для догерметизации эксплуатационных колонн. Способ включает установку цементного моста, теоретическое определение объема и...
Тип: Изобретение
Номер охранного документа: 0002342516
Дата охранного документа: 27.12.2008
+ добавить свой РИД