×
16.05.2023
223.018.635b

Результат интеллектуальной деятельности: Способ мониторинга роста клеточных культур и устройство для его осуществления

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к области биотехнологии. Предложен способ, состоящий в том, что в культуральный матрас через боковую поверхность направляют горизонтальный луч лазера. При этом культуральный матрас размещают на панели с вертикальными отверстиями, расположенными по ходу луча лазера на одинаковом расстоянии друг от друга, через которые свет, рассеянный средой с клетками, попадает на плату с фотодиодами по числу отверстий панели для снятия сигналов бокового светорассеяния, и по зависимости сигнала бокового светорассеяния от расстояния вдоль лазерного луча оценивают концентрацию клеток. Способ реализуется устройством, включающим лазер для формирования излучения, пластину для размещения культурального матраса, плату с фотодиодами, связанную с усилителем, подключенным к аналоговым входам микроконтроллера, оцифровывающего сигнал с усилителя и осуществляющего управление устройством и передачу данных пользователю. Изобретение применяется для бесконтактной оценки концентрации клеток при росте культур в инкубаторе. 2 н.п. ф-лы, 4 ил., 2 пр.

Изобретение относится к области клеточной биологии и биотехнологии и может применяться для бесконтактной оценки концентрации клеток при росте культур в инкубаторе.

Клеточные культуры содержатся в стерильных условиях в специализированных сосудах, но в подавляющем большинстве методов для оценки концентрации клеток предполагается отбор части образца. Из-за этого возникают следующие трудности: 1) увеличивается риск заражения культуры 2) место отбора пробы может повлиять на результат, поскольку клетки могут быть неравномерно распределены по всему объему сосуда 3) взятие пробы приводит к уменьшению объема и может повлиять на другие параметры клеточной среды.

Так, 98% от всех автоматических счетчиков клеток, использующихся в лабораториях, основывается на методе Культера (согласно данным Beckman Coulter [1]). Данный метод базируется на изменении проводимости, которое возникает при прохождении клетки через отверстие в непроводящей перегородке. Еще одним прибором, считающим клетки по отдельности, является проточный цитометр. В этом случае измеряется не проводимость, а сигналы светорассеяния при прохождении клеток через лазерный луч. Оба метода требуют контакта с клеточной культурой и являются технически сложными и громоздкими, что делает их применение для мониторинга роста культур в инкубаторе невозможным.

Существуют портативные приборы для измерения импеданса образцов [2-4]. Для проведения измерений клетки культивируются в специальной камере с электродами. Было показано, что измеряемый сигнал позволяет проводить мониторинг роста клеточной культуры в реальном времени. В настоящий момент это исследовательские приборы, т.е. они не представлены на рынке.

Существуют методы оценки концентрации клеток с применением микроскопии, начиная от стандартной камеры Горяева до полностью оптимизированных для решения этой задачи портативных микроскопов [5]. Отдельно следует выделить приборы для наблюдения за ростом клеток непосредственно в культуральных матрасах в инкубаторе [6]. Культуральный матрас - сосуд, имеющий плоские прозрачные грани для визуального наблюдения за клетками. Микроскопия позволяет проводить бесконтактные измерения, однако все эти приборы передают данные через USB-кабели, что затрудняет применение внутри инкубатора.

Частично на рынке представлены и приборы, использующие турбидиметрический и нефелометрический методы. Разница двух этих методов заключается в том, что турбидиметрия основывается на измерении ослабления проходящего света, а нефелометрия - на измерении интенсивности рассеянного света [7]. В обоих случаях, основываясь на изменении проходящего света, можно сделать выводы о концентрации вещества в растворе.

Наиболее близким прибором является планшетный нефелометр для измерения мутности и светорассеяния NEPHELOstar Plus компании BMG LABTECH [8]. Нефелометр включает в себя лазерный диод и датчики, детектирующие рассеянное излучение, позволяет проводить измерения в культуральных планшетах и имеет встроенный инкубатор, позволяющий поддерживать температуру и атмосферу O2/СО2, а также подключить пользовательский источник газа.

Указанный прототип не является портативным, то есть не позволяет проводить измерения непосредственно в инкубаторе, где находятся клетки. Хотя прибор имеет встроенный инкубатор, это приводит к необходимости вынимать клеточный матрас из стандартного инкубатора и переносить в данный прибор, что сопряжено с риском заражения культуры.

Прибор измеряет лишь один интегральный сигнал рассеяния в переднюю полусферу (до 80 градусов). Это не позволяет сделать вывод об общей интенсивности рассеянного света и связать сигнал с сечением рассеяния частиц, что затрудняет теоретическую интерпретацию.

Задачей изобретения является создание портативного прибора (сопоставимого по размерам с культуральным матрасом), предназначенного для бесконтактной оценки концентрации клеток в культуральном матрасе в стандартном СОг-инкубаторе.

Основной технический результат состоит в возможности бесконтактного мониторинга состояния культуры клеток с передачей измеренных данных непосредственно из инкубатора по беспроводному каналу связи, чтобы не нарушать условия культивирования.

Сущность заявляемого способа заключается в следующем:

В культуральный матрас через боковую поверхность направляют горизонтальный луч лазера с длиной волны 850 нм, при этом культуральный матрас размещают на панели с вертикальными отверстиями, расположенными по ходу луча лазера на одинаковом расстоянии друг от друга, через которые свет, рассеянный средой с клетками, попадает на плату с фотодиодами по числу отверстий панели для снятия сигналов бокового светорассеяния, и по зависимости сигнала бокового светорассеяния от расстояния вдоль лазерного луча оценивают концентрацию клеток.

Таким образом, измеряется рассеяние вбок из нескольких точек, расположенных вдоль лазерного луча. Такой способ позволяет, сохраняя высокую чувствительность, присущую нефелометрическим методам, измерить декремент затухания лазерного луча, связанный с рассеянием и/или поглощением (инфракрасный лазер используется для того, чтобы уменьшить поглощение биологическими средами, а также попасть в область максимальной чувствительности кремниевых фотодиодов). С другой стороны, использование нескольких датчиков позволяет уменьшить неточности, связанные с неоднородным распределением клеток в матрасе. Необходимо отметить, что способ применим для суспензионных культур клеток, которые при росте не прикрепляются к поверхности матраса, а находятся во взвешенном состоянии в жидкости.

Сущность заявляемого устройства заключается в следующем:

Прибор представляет собой портативное устройство (сопоставимого по размерам с культуральным матрасом), которое постоянно находится в инкубаторе и способно проводить измерения согласно вышеописанному способу в течение длительного времени и передавать данные через беспроводной канал Bluetooth.

Осуществление изобретения

Пример 1. Зависимость интенсивности рассеянного света от координаты вдоль лазерного луча использовали для вычисления оптической плотности раствора. На Фиг. 1 представлена зависимость сигнала бокового светорассеяния от номера датчика (расстояния вдоль луча лазера) в водном растворе молока. Полученный сигнал хорошо описывается экспоненциальной зависимостью, что позволяет с хорошей точностью определить декремент затухания лазерного луча в среде.

Полученный декремент затухания прямо пропорционален оптической плотности среды. Данный способ измерения позволяет провести измерения даже при малых значениях оптической плотности (когда прямой метод измерения ослабления проходящего света недостаточно чувствителен). Для некоторых микроорганизмов известны формулы для пересчета оптической плотности в концентрацию. Для произвольных клеток, если известно (например, рассчитано) сечение рассеяния, по полученной зависимости также можно вычислить их концентрацию. Однако для этого необходимо создать равномерное распределение клеток в образце, например, с помощью перемешивания.

Пример измерения бокового свторассеяния на приросте культуры клеток Jurkat в культуральном матрасе в СО2-инкубаторе приведен ниже при описании работы устройства.

Пример 2. Реализация портативного устройства показана на Фиг 2. Приведена 3D-модель (слева) и фотография собранного прибора с установленным на нем культуральным матрасом. Размеры устройства (ширина × глубину × высоту) составляют: 8.5 × 10.2 × 4.5 см. Размеры используемого стандартного культурального матраса составляют 5×9×3 см.

Устройство включает в себя:

1) лазер DSP8503-6.510 с длиной волны 850 нм мощностью 3 мВт, предназначенный для формирования излучения;

2) панель с 8 сквозными отверстиями сечением 4 × 4.5 мм, на которой размещается культуральный матрас. Через отверстия рассеянный свет прохо4дит на датчики;

3) плату с 8 датчиками - фотодиодами BPW34 для снятия сигнала бокового светорассеяния;

4) восьмиканальный усилитель сигнала на базе микросхем LM358 с резисторами 2.2 кОм и 75 кОм в цепи обратной связи, а также отдельным каскадом для смещения уровня нуля на базе микросхемы LM358 и делителя напряжения (Фиг. 3).

На Фиг 3 приведена Принципиальная схема 8-канального усилителя. Слева приведен каскад для смещения уровня нуля на базе делителя напряжения и микросхемы LM-358 (включающей в себя два операционных усилителя, ОУ8 и ОУ9). В прямоугольниках показаны отдельные каналы усилителя (для простоты приведены только два канала, остальные аналогичны).

5) плату Arduino Nano v3 для общего управления установкой и оцифровки сигнала с датчиков;

6) Bluetooth адаптер НС-06 для приема и передачи данных.

Для питания устройства используется литий-ионный аккумулятор BESTON 9V емкостью 1000 мАч с микро-USB портом, через который может выполняться зарядка.

Установка работает следующим образом.

Через Bluetooth адаптер на плату-микроконтроллер Arduino Nano v3 передают команду «измерение». Микроконтроллер при получении данной команды выполняет ряд действий, первое из которых - измерение фонового сигнала на аналоговых входах А0-А7, куда через усилитель передается напряжение с фотодиодов согласно схеме (Фиг. 3). После этого микроконтроллер подает питание на лазер. Таким образом, лазер включается и его луч попадает в культуральный матрас, установленный на панели 2. Снова измерив сигналы с фотодиодов, микроконтроллер выключает питание лазера. Установка передает полученные данные на устройство пользователя, затем отключает Bluetooth адаптер и переходит в спящий режим на время, указанное пользователем, после чего вновь становится доступной для соединения по беспроводной связи.

В результате измерения пользователь, без каких-либо дополнительных действий, таких как: вход в стерильную зону, открытие стерильных сосудов, контакт со стерильной средой, получает на свое устройство восемь чисел, которые представляют собой зависимость сигнала бокового светорассеяния от координаты вдоль лазерного луча.

Полученные сигналы можно использовать как индикатор концентрации клеток. В качестве примера были выполнены измеренная на описываемом устройстве при росте суспензионной культуры клеток Jurkat (Т-лимфоциты) в культуральном матрасе в СО2-инкубаторе. На Фиг 4 представлено изменение интенсивности сигналов бокового светорассеяния в течение 30 часов после начала измерений (для простоты изображены графики для трех датчиков).

Видно, что в первые 5-6 часов наблюдается фаза бурного роста клеток, интенсивность на всех датчиках увеличивается. После фазы резкого роста сигнал практически перестает меняться, и можно судить о том, что клетки перешли в стационарную фазу. При этом можно заметить, что на начальном участке скорость роста сигнала максимальна у первого датчика, остальные растут медленнее, так как начинает проявляться экспоненциальная зависимость (чем больше света рассеивается на датчик, тем меньше доходит до места измерения следующим датчиком). После 15 часов можно видеть снижение сигнала на одном из датчиков, связанное с тем же эффектом.

Источники информации

1. Принцип Культера для измерения количества и размера частиц - Beckman Coulter [Electronic resource]. URL: https://www.mybeckman.ru/resources/fundamentals/history-of-flow-cytometry/the-coulter-principle (accessed: 26.03.2021).

2. Perez P. et al. Remote Sensing of Cell-Culture Assays // New Insights into Cell Culture Technology / ed. Gowder S.J.T. InTech, 2017.

3. Grossi M. et al. A Portable Sensor With Disposable Electrodes for Water Bacterial Quality Assessment // IEEE Sensors J. 2013. Vol. 13, №5. P. 1775-1782.

4. Grossi M. et al. An embedded portable biosensor system for bacterial concentration detection // Biosensors and Bioelectronics. 2010. Vol. 26, №3. P. 983-990.

5. Corning® Cell Counter | Automated Cell Counter | Corning [Electronic resource]. URL: https://www.corning.com/ru/ru/products/life-sciences/products/equipment/corning-cell-counter.html (accessed: 31.03.2021).

6. CytoSMART Lux2 [Electronic resource] // CytoSMART. URL: https://cytosmart.com/products/lux2 (accessed: 26.03.2021).

7. BD Phoenix1M automated identification and susceptibility testing system [Electronic resource]. URL: https://www.bd.com/en-us/offerings/capabilities/microbiology-solutions/identification-and-susceptibility-testing/bd-phoenix-automated-identification-and-susceptibility-testing-system (accessed: 31.03.2021).

8. NEPHELOstar Laser Based Microplate Nephelometer for Light Scattering Detection [Electronic resource]. URL: https://www.bmglabtech.com/fileadmin/06_Support/Download_Documents/Brochures/microplat e-reader-nephelostar-plus-brochure.pdf.

Источник поступления информации: Роспатент

Showing 1-10 of 59 items.
27.08.2016
№216.015.4d53

Способ создания термозависимой угольной пленочной оболочки

Изобретение относится к способу создания термозависимой угольной пленочной оболочки путем нанесения жидкой фазы на поверхности угля, при этом в качестве жидкой фазы используют «натриевое жидкое стекло» с силикатным модулем более 3,5, пленку наносят толщиной не более 250 мкм, после чего...
Тип: Изобретение
Номер охранного документа: 0002595344
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.89d7

Синхронно-накачиваемый рамановский полностью волоконный импульсный лазер на основе кварцевого оптоволокна, легированного оксидом фосфора

Изобретение относится к лазерной технике. Синхронно-накачиваемый рамановский полностью волоконный импульсный лазер на основе кварцевого оптоволокна, легированного оксидом фосфора, содержит линейный резонатор, образованный двумя брэгговскими решетками, одна брэгговская решетка резонатора...
Тип: Изобретение
Номер охранного документа: 0002602490
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.bf8f

Лекарственное средство, обладающее противовоспалительной активностью

Изобретение относится к лекарственному средству, обладающему противовоспалительной активностью, содержащему в качестве активного ингредиента N-(2-гидроксиэтил)-3β-гидроксиурс-12-ен-28-амид формулы Технический результат: получено новое эффективное лекарственное средство, обладающее...
Тип: Изобретение
Номер охранного документа: 0002617123
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.c61f

Волоконный импульсный лазер с нелинейным петлевым зеркалом

Изобретение относится к лазерной технике. Волоконный лазер содержит источник накачки и резонатор, выполненный полностью из элементов, сохраняющих поляризацию, и состоящий из двух волоконных петель - пассивной и активной, соединяющихся посредством сплавного волоконного четырехпортового...
Тип: Изобретение
Номер охранного документа: 0002618605
Дата охранного документа: 04.05.2017
25.08.2017
№217.015.d03a

Способ управления обтеканием сверхзвукового летательного аппарата

Изобретение относится к маневрирующим в атмосфере сверхзвуковым летательным аппаратам (ЛА). Управление обтеканием основывается на изменении направления набегающего воздушного потока со встречного на радиальное истечение относительно ЛА с использованием нагреваемой по команде газопроницаемой...
Тип: Изобретение
Номер охранного документа: 0002621195
Дата охранного документа: 01.06.2017
26.08.2017
№217.015.e196

Способ управления спектром пучка широкополосного терагерцевого излучения

Изобретение относится к области оптического приборостроения и касается способа управления спектром пучка широкополосного терагерцевого излучения. Способ включает в себя размещение на пути пучка излучения селективно поглощающего фильтра в виде поверхности проводящей пластины, придание излучению...
Тип: Изобретение
Номер охранного документа: 0002625635
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.e199

Стенд для испытаний на ударные воздействия

Изобретение относится к испытательной технике, в частности к устройствам для испытаний на ударные воздействия различных приборов и оборудования. Стенд состоит из силового каркаса в виде прямоугольной рамы на ножках с продольными направляющими для установки через амортизаторы подпружиненной...
Тип: Изобретение
Номер охранного документа: 0002625639
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.e19a

Устройство для промера распределения поля инфракрасной поверхностной электромагнитной волны над её треком

Изобретение относится к области исследования поверхности металлов и полупроводников и касается устройства для промера распределения поля инфракрасной поверхностной электромагнитной волны (ПЭВ) над ее треком. Устройство содержит источник монохроматического излучения, элемент преобразования...
Тип: Изобретение
Номер охранного документа: 0002625641
Дата охранного документа: 17.07.2017
29.12.2017
№217.015.f388

Способ приготовления металл-нанесенного катализатора для процесса фотокаталитического окисления монооксида углерода

Изобретение относится к области разработки способа получения катализатора на основе высокодисперсного диоксида титана с нанесенными наночастицами благородного металла, проявляющего активность под действием ультрафиолетового излучения в реакции фотокаталитического окисления монооксида углерода...
Тип: Изобретение
Номер охранного документа: 0002637120
Дата охранного документа: 30.11.2017
29.12.2017
№217.015.f5f2

Способ приготовления катализатора гидродеоксигенации алифатических кислородсодержащих соединений

Изобретение относится к способу получения катализатора для гидродеоксигенации органических кислородсодержащих соединений, а именно растительных масел, животных жиров, сложных эфиров жирных кислот, свободных жирных кислот, с образованием н-алканов - компонентов дизельного топлива. Способ...
Тип: Изобретение
Номер охранного документа: 0002637117
Дата охранного документа: 30.11.2017
Showing 1-1 of 1 item.
21.12.2019
№219.017.efc6

Водная эмульсия на основе диметоксинитробензиловых эфиров арахидоновой кислоты

Изобретение относится к области коллоидной химии и фотохимии и может быть использовано для научных исследований в области оптики, биологии и медицины. Водная эмульсия образована гидрофобным веществом (диметоксинитробензиловый эфир арахидоновой кислоты). Данные вещества под воздействием...
Тип: Изобретение
Номер охранного документа: 0002709620
Дата охранного документа: 19.12.2019
+ добавить свой РИД