×
14.05.2023
223.018.56bc

Результат интеллектуальной деятельности: Способ проведения повторного управляемого гидравлического разрыва пласта в горизонтальных скважинах

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтедобывающей промышленности и может быть применено для повышения эффективности разработки нефтяных залежей. Способ проведения повторного управляемого гидравлического разрыва пласта в горизонтальной скважине с ранее выполненным многостадийным гидравлическим разрывом включает выявление на основе текущих физико-динамических и геомеханических характеристик пласта и пластового флюида как минимум одной трещины с низкой эффективностью эксплуатации, обусловленной низкой проницаемостью. Остановку эксплуатации скважины и закачку в нее жидкости с забойным давлением, не превышающим давление разрыва пласта. При этом предварительно осуществляют численный расчет напряженно-деформированного состояния во всех трещинах скважины методом конечных элементов и определяют давления смыкания трещин в зависимости от изменения пластового давления в районе портов компоновки скважины. Закачку осуществляют до того момента времени, пока давления смыкания трещин с высокой проницаемостью станут выше, чем в выявленной трещине с низкой проницаемостью. Затем закачку жидкости в скважину останавливают и выполняют операцию гидравлического разрыва пласта, приводящего к течению геля гидроразрыва в область пониженных давлений смыкания и последующей раскольматации трещины с низкой проницаемостью и низкой эффективностью эксплуатации, после чего горизонтальную скважину запускают в работу. Технический результат заключается в повышении эффективности извлечения нефти из горизонтальной скважины с множественными трещинами ГРП за счет проведения повторного управляемого ГРП, обеспечивающего преобразование напряженно-деформированного состояния пласта для раскольматации трещины с низкой эффективностью эксплуатации. 6 ил.

Изобретение относится к нефтедобывающей промышленности, и может быть применено для повышения эффективности разработки нефтяных залежей.

Один из эффективных методов разработки залежей нефти заключается в бурении горизонтальных скважин с применением многостадийного гидравлического разрыва пласта (ГРП), в результате чего вдоль горизонтального участка ствола создается множество трещин ГРП, которые позволяют повышать охват пласта разработкой. На практике, некоторые трещины могут не обладать значительными проводящими характеристиками как после проведения операции ГРП, по причине образования неоднородного поля пластового давления в области инициации трещины, литологической гетерогенности пласта, а также технологических причин, так и после определенного периода эксплуатации, в результате кольматации трещины механическими пластовыми разностями. Поэтому возникает необходимость в стимуляции данных трещин, что предлагается с помощью описываемой технологии повторного ГРП.

Известен способ проведения повторного «слепого» ГРП в горизонтальных скважинах (Цивелев К.В., Смирнов К.В., Михайлов Д.Н. Анализ применимости повторного многостадийного гидроразрыва пласта в горизонтальных скважинах // Научно-технический сборник «Вести газовой науки», т. 33, №1, 2018, стр. 21-25), включающий проведение ГРП в виде закачки геля гидроразрыва и проппантной пачки в горизонтальную скважину без изоляции портов компоновки.

Недостатком способа является неконтролируемое воздействие на ранее созданные трещины, что в результате может привести к увеличению геометрических размеров одной из трещин, в росте которой нет необходимости. Таким образом, проведение операции может привести к риску прорыва разросшейся трещины ГРП в фронт нагнетания жидкости или в трещину авто-ГРП нагнетательной скважины.

Также известен способ проведения повторного ГРП в горизонтальных скважинах с использованием компоновки хвостовика с управляемыми муфтами (Шестаков С.А., Белов А.В., Корепанов А.А., Гаренских Д.А. Успешный опыт проведения 20-стадийного ГРП без подъема ГНКТ на поверхность в России // Научно-практический журнал «Время колтюбинга, время ГРП», №1, 2017, стр. 14-21). Технологией предусматривается проведение селективных ГРП в скважинах, в которых открытие и закрытие портов гидроразрыва регулируется с помощью гибкой насосно-компрессорной трубы (НКТ).

К преимуществу данной технологии относится возможность контролировать последовательность стадий при проведении операций многостадийного ГРП, а также исключение необходимости выполнения спуско-подъемных операций, что сокращает время на выполнение работ.

Недостатком способа является высокая стоимость компоновки хвостовика, сервиса услуг и специальной устьевой арматуры, установка которой предусмотрена технологией.

Известен способ проведения повторного ГРП в горизонтальных добывающих скважинах с помощью применения отклоняющего реагента и изолирующего пакера (патент РФ №2663844, МПК Е21В 43/26, 43/14, опубликован 10.08.2018). Технологией предусматривается селективная стимуляция одного из портов гидроразрыва в скважине с уже имеющимся многостадийным ГРП с помощью изоляции других портов гидроизолирующим химическим реагентом со стороны забоя и набухающим пакером со стороны устья скважины.

Недостатками данного способа являются: финансовые затраты на оборудование для подачи химических компонентов в НКТ для создания гидроизолирующей пробки; химические компоненты могут закольматировать трещину, созданную при повторном ГРП в предыдущей стадии; требуются дополнительные временные и финансовые ресурсы на удаление гидроизолирующего материала путем закачки растворителя или очистки забоя скважины; обломки пород, образованные в результате бурения, могут препятствовать повторному активированию изолирующего пакера в кольцевом пространстве между скважиной и НКТ; не выработаны достоверные критерии отклонения потока при изоляции высокопроводящих трещин реагентом.

Задачей изобретения является создание способа стимуляции трещин многостадийного ГРП, к которым приток добываемого флюида отсутствует или является незначительным по причинам кольматации, слабого раскрытия ввиду уплотненности окружающих горных пород, неоднородности пластового давления.

Техническим результатом изобретения является повышение эффективности извлечения нефти из горизонтальной скважины с множественными трещинами ГРП, за счет увеличения давлений смыкания трещин посредством управляемой закачки в скважину жидкости.

Задача изобретения решается и технический результат достигается способом проведения повторного управляемого гидравлического разрыва пласта в горизонтальной скважине с ранее выполненным многостадийным гидравлическим разрывом, включающий выявление на основе текущих физико-динамических и геомеханических характеристик пласта и пластового флюида как минимум одной трещины с низкой эффективностью эксплуатации, обусловленной низкой проницаемостью, остановку эксплуатации скважины и закачку в нее жидкости с забойным давлением, не превышающим давление разрыва пласта, при этом предварительно осуществляют численный расчет напряженно-деформированного состояния во всех трещинах скважины методом конечных элементов и определяют давления смыкания трещин в зависимости от изменения пластового давления в районе портов компоновки скважины, а закачку осуществляют до того момента времени, пока давления смыкания трещин с высокой проницаемостью станут выше чем в выявленной трещине с низкой проницаемостью, затем закачку жидкости в скважину останавливают и выполняют операцию гидравлического разрыва пласта, приводящего к течению геля гидроразрыва в область пониженных давлений смыкания и последующей раскольматации трещины с низкой проницаемостью и низкой эффективностью эксплуатации, после чего горизонтальную скважину запускают в работу.

Достижение технического результата в изобретении обусловлено искусственным преобразованием напряженно-деформированного состояния пласта в области работающих трещин ГРП и повышением давлений смыкания посредством изменения пластового давления, которое энергетически воздействует на скелет горной породы.

В результате нагнетания жидкости в добывающую скважину давление в области трещин с высокой проницаемостью начнет увеличиваться, что, соответственно, повлияет на рост давлений смыкания в области этих трещин. В свою очередь в трещине с низкой проницаемостью давление смыкания будет оставаться практически неизменным и через определенный промежуток времени окажется ниже ввиду низкой приемистости. При достижении момента времени, в который давление смыкания работающих трещин превысит не менее чем на 10% давление смыкания трещины с низкой проницаемостью, останавливают закачку жидкости и выполняют операцию по гидравлическому разрыву пласта. Инициация трещины произойдет в области пониженных значений давления смыкания, то есть в трещине с низкой проницаемостью, что приведет к улучшению ее фильтрационных характеристик и повышению добычи скважины.

Оценку необходимого времени проведения нагнетания жидкости в добывающую скважину проводят на основании расчета давлений смыкания в точке инициации трещины.

Способ осуществляют следующим образом:

1. На основе физико-динамических и геомеханических характеристик пласта и флюида выявляют горизонтальные добывающие скважины с многостадийным ГРП, в которых падение добычи связано с понижением проницаемости одной или нескольких трещин..

2. Останавливают данную скважину и производят нагнетание жидкости с забойным давлением ниже давления разрыва пласта, что приведет к изменению градиента пластового давления и локальному увеличению давлений смыкания трещин ГРП, обладающих высокой проницаемостью.

3. Останавливают нагнетание жидкости в момент времени, когда давления смыкания трещин с высокой проницаемостью будут превосходить значение давления смыкания трещины с низкой проницаемостью. Расчеты давлений смыкания в зависимости от изменения поля пластового давления предварительно проводят в геомеханическом симуляторе методом конечных элементов.

4. Проводят операцию повторного ГРП в горизонтальной скважине, в результате которой жидкость гидроразрыва направится в область пониженных давлений смыкания, что приведет к раскрытию трещины с низкой проницаемостью, после чего горизонтальную скважину запускают в работу.

Осуществление способа иллюстрируется следующими материалами.

Фиг. 1 - Схема горизонтального ствола (вид сверху) во время добычи флюида с графиком минимальных давлений смыкания.

Фиг. 2 - Схема горизонтального ствола (вид сверху) во время закачки жидкости.

Фиг. 3 - График изменения давлений смыкания на портах многостадийного ГРП в зависимости от времени нагнетания жидкости в скважину.

Фиг. 4 - Схема горизонтального ствола (вид сверху) на момент проведения ГРП с графиком минимальных давлений смыкания.

Фиг. 5 - Сравнение дебитов нефти за период времени пять лет в скважине с учетом и без учета проведения повторного управляемого ГРП.

Фиг. 6 - График прироста добычи нефти от повторного управляемого ГРП в зависимости от эффективной нефтенасыщенной толщины пласта.

На схемах (фиг. 1, 2, 4) обозначено: 1 - скважина с множественными трещинами ГРП, 2 - пласт, 3 - порты ГРП, 4 - линии тока флюида, 5 - продуктивная трещина ГРП, 6 - закольматированная трещина ГРП.

Пример реализации изобретения.

В качестве объекта разработки рассматривается залежь нефти с низкопроницаемым коллектором. Типичная залежь характеризуется следующими геолого-геофизическими параметрами: глубина залегания - 2600 м, эффективная нефтенасыщенная толщина варьирует от 2,5 до 30 м (от центральной к краевой частям); коэффициент проницаемости - 0,0025 мкм2, коэффициент пористости - 0,15 д.ед., коэффициент нефтенасыщенности - 0,6 д.ед., начальное пластовое давление - 26,7 МПа, вязкость нефти в пластовых условиях - 1,5 сП, плотность нефти в пластовых условиях - 870 кг/м3, давление насыщения газом - 11,6 МПа, газовый фактор - 70 м3/т. Для участка залежи создана гидродинамическая модель с горизонтальной добывающей скважиной и трещинами ГРП, и геомеханическая модель. Коэффициент анизотропии напряжений Σminmax=0.95, коэффициент пороэластичности α=0.7, коэффициент Пуассона ν=0.25, модуль Юнга E=15 ГПа.

На фиг. 1 приведена горизонтальная скважина, добывающая флюид в течение полугода. В скважине был проведен многостадийный ГРП и созданы пять трещин. В текущем предположении центральная трещина №3 работает неэффективно, т.е. добыча нефти из нее минимальна. Определение эффективности эксплуатации каждой трещины ГРП осуществляется с помощью различных известных методов: например проведение профилеметрии с помощью Y-образной насадки на НКТ, трассерных исследований. В приведенном примере реализации способа для определения эффективности эксплуатации каждой трещины использовался расчет на математической модели, т.е. рассчитана искусственная скважина в реальных условиях.

Ввиду неэффективной работы трещины №3 в скважине согласно изобретению проводят операцию повторного управляемого ГРП. Перед проведением операции был выполнен предварительный расчет давлений смыкания в геомеханическом симуляторе. Значения давлений смыкания равны 198 атм. в районе работающих трещин и 263 атм. в неработающей трещине. В случае проведения неконтролируемого ГРП на данном этапе гель гидроразрыва будет устремляться в сторону портов со сниженными значениями давлений смыкания, что приведет к росту уже имеющихся трещин.

Оценив значения давлений смыкания, произвели закачку жидкости в добывающую скважину с забойным давлением ниже давления разрыва пласта для обеспечения постепенного увеличения градиента давления и давлений смыкания в области трещин №1, 2, 4, 5 (фиг. 2). В текущих расчетах давление закачки принято равным 350 атм. Нагнетание жидкости выполняли до момента времени, пока давление смыкания в области трещин №1, 2, 4, 5 не превысило давление смыкания в неработающей трещине №3 в среднем на 10%. В моделируемых геолого-физических условиях пласта данное условие достигнуто за 12 дней закачки жидкости (фиг. 3).

В момент достижения условия искусственного уменьшения давления смыкания трещины №3 относительно давлений трещин №1, 2, 4, 5 нагнетание жидкости останавливали и выполняли операцию ГРП (фиг. 4). В данном случае происходит раскрытие и закрепление трещины №3, что приводит к увеличению текущего дебита нефти и суммарной добычи скважины (фиг. 5). Селективность данной операции достигается посредством изменения гидродинамических и геомеханических характеристик пласта в области портов компоновки.

С помощью вариации эффективной нефтенасыщенной толщины в гидродинамической модели по скважине с проведенной технологией повторного управляемого ГРП установлено значение прироста добычи нефти в сравнении с той же скважиной, в которой стимуляция не проводилась, т.е. происходило падение темпа добычи. Так, например, для пласта с эффективной толщиной 10 метров прирост составит 5,8 тыс. тонн, для толщины 20 метров - 11,5 тыс. тонн, для толщины 30 метров - 17,3 тыс. тонн за пять лет (фиг. 6).

Таким образом, предложенное изобретение позволяет повысить эффективность извлечения нефти из горизонтальной скважины с множественными трещинами ГРП за счет проведения повторного управляемого ГРП, обеспечивающего преобразование напряженно-деформированного состояния пласта для раскольматации трещины с низкой эффективностью эксплуатации.

Способ проведения повторного гидравлического разрыва пласта в горизонтальной скважине с ранее выполненным многостадийным гидравлическим разрывом, включающий выявление на основе текущих физико-динамических и геомеханических характеристик пласта и пластового флюида как минимум одной трещины с низкой эффективностью эксплуатации, обусловленной низкой проницаемостью, остановку эксплуатации скважины и закачку в нее жидкости с забойным давлением, не превышающим давление разрыва пласта, при этом предварительно осуществляют численный расчет напряженно-деформированного состояния во всех трещинах скважины методом конечных элементов и определяют давления смыкания трещин в зависимости от изменения пластового давления в районе портов компоновки скважины, а закачку осуществляют до того момента времени, пока давления смыкания трещин с высокой проницаемостью станут выше, чем в выявленной трещине с низкой проницаемостью, затем закачку жидкости в скважину останавливают и выполняют операцию гидравлического разрыва пласта, приводящего к течению геля гидроразрыва в область пониженных давлений смыкания и последующей раскольматации трещины с низкой проницаемостью и низкой эффективностью эксплуатации, после чего горизонтальную скважину запускают в работу.
Источник поступления информации: Роспатент

Showing 31-40 of 63 items.
20.12.2018
№218.016.a9e2

Способ гидрирования ацетона в изопропиловый спирт

Настоящее изобретение относится к способу гидрирования ацетона в изопропиловый спирт, который широко используется в качестве октаноповышающей добавки к бензинам, противообледенительной жидкости, растворителя при производстве поверхностно-активных веществ, пластификаторов, присадок к маслам,...
Тип: Изобретение
Номер охранного документа: 0002675362
Дата охранного документа: 19.12.2018
18.01.2019
№219.016.b114

Способ приготовления катализатора гидроочистки нефтяных фракций в сульфидной форме (варианты)

Предложено три варианта способа приготовления катализатора гидроочистки нефтяных фракций в сульфидной форме. Один из вариантов способа приготовления катализатора гидроочистки нефтяных фракций в сульфидной форме осуществляется формованием соэкструзией смеси гидроксида алюминия, оксида молибдена...
Тип: Изобретение
Номер охранного документа: 0002677285
Дата охранного документа: 16.01.2019
19.01.2019
№219.016.b1a4

Устройство для доставки приборов в горизонтальную скважину на основе скважинной торпеды

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для доставки в горизонтальные скважины. Средство перемещения приборов имеет форму скважинной торпеды, корпус которой содержит камеру, разбитую на герметичные отсеки. Гребные винты установлены на противоположных...
Тип: Изобретение
Номер охранного документа: 0002677503
Дата охранного документа: 17.01.2019
23.02.2019
№219.016.c6f6

Способ определения профиля притока в низкодебитных горизонтальных скважинах с многостадийным гидроразрывом пласта

Изобретение относится к области геофизических исследований нефтедобывающих скважин на нефтяных месторождениях с низкопроницаемыми коллекторами в условиях неоднозначности замеров, выполненных на притоке флюида в забойных условиях, в частности, к определению профиля притока флюидов, поступающих в...
Тип: Изобретение
Номер охранного документа: 0002680566
Дата охранного документа: 22.02.2019
14.03.2019
№219.016.df02

Способ определения линейных ресурсов углеводородных отложений нетрадиционного резервуара юрской высокоуглеродистой формации

Изобретение относится к способам и методам петрофизических и геохимических исследований коллекции керна нетрадиционного резервуара юрской высокоуглеродистой формации (ЮВУФ) и может быть использовано при определении линейных ресурсов нефти и газа, технически извлекаемых из ЮВУФ, с учетом их...
Тип: Изобретение
Номер охранного документа: 0002681801
Дата охранного документа: 12.03.2019
11.04.2019
№219.017.0b4d

Депрессорно-диспергирующая присадка к дизельному топливу, способ ее получения и способ получения депрессорного и диспергирующего компонентов депрессорно-диспергирующей присадки

Изобретение описывает депрессорно-диспергирующую присадку к дизельному топливу, которая содержит смесь депрессорного и диспергирующего компонентов, при этом в качестве депрессорного компонента применяется полимерное соединение, полученное реакцией радикальной сополимеризации малеинового...
Тип: Изобретение
Номер охранного документа: 0002684412
Дата охранного документа: 09.04.2019
11.04.2019
№219.017.0b52

Способ получения синтетической нефти из природного/попутного нефтяного газа и компактная установка для получения синтетической нефти из природного/попутного нефтяного газа

Изобретение относится к нефтехимии. Изобретение касается способа получения синтетической нефти из природного/попутного нефтяного газа, пригодной для транспортировки по магистральным нефтепроводам совместно с природной нефтью. Исходный сырьевой газ смешивают с водой, полученную водогазовую...
Тип: Изобретение
Номер охранного документа: 0002684420
Дата охранного документа: 09.04.2019
11.04.2019
№219.017.0b65

Способ получения катализатора гидроочистки дизельных фракций и катализатор, полученный этим способом

Изобретение относится к способу получения катализатора гидроочистки дизельных фракций. Гидроксид алюминия в форме бемита или псевдобемита смешивают с порошками оксида молибдена, кобальта углекислого основного или никеля углекислого основного, взятых в массовом соотношении от 1,7:1 до 2,3:1....
Тип: Изобретение
Номер охранного документа: 0002684422
Дата охранного документа: 09.04.2019
19.04.2019
№219.017.294f

Способ получения фосфорномолибденовых кислот

Изобретение может быть использовано в производстве гетерогенных катализаторов гидроочистки нефтяных фракций. Для получения фосфорномолибденовых кислот оксид молибдена смешивают с водным раствором 0,28-1,86%-ной фосфорной кислоты в мольном отношении MoO к НРО, равном 12:1. Полученный раствор...
Тип: Изобретение
Номер охранного документа: 0002685207
Дата охранного документа: 16.04.2019
13.06.2019
№219.017.813c

Способ получения микросфер полимерного проппанта

Изобретение относится к проппантам из полимерных материалов, применяемым при добыче нефти и газа методом гидравлического разрыва пласта. В способе получения микросфер полимерного проппанта, включающем приготовление полимерной матрицы на основе метатезис-радикально сшитой смеси...
Тип: Изобретение
Номер охранного документа: 0002691226
Дата охранного документа: 11.06.2019
Showing 11-14 of 14 items.
24.11.2019
№219.017.e566

Способ полимерного заводнения в слабосцементированном коллекторе

Изобретение относится к нефтяной и газовой промышленности, конкретно к разработке месторождений со слабосцементированным коллектором. В способе полимерного заводнения в слабосцементированном коллекторе, включающем закачку в нагнетательные скважины водного раствора полимера заданной...
Тип: Изобретение
Номер охранного документа: 0002706978
Дата охранного документа: 21.11.2019
21.06.2020
№220.018.28fa

Способ гидравлического разрыва нефтяного, газового или газоконденсатного пласта

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для увеличения продуктивности добывающих или приемистости нагнетательных скважин, а именно как способ гидравлического разрыва нефтяного, газового или газоконденсатного пласта (ГРП) с использованием легкого...
Тип: Изобретение
Номер охранного документа: 0002723817
Дата охранного документа: 17.06.2020
21.06.2020
№220.018.296a

Способ гидроразрыва нефтяного, газового или газоконденсатного пласта

Изобретение относится к гидроразрыву нефтяного, газового и газоконденсатного пласта. В способе гидроразрыва нефтяного, газового или газоконденсатного пласта, включающем закачивание в пласт несущей жидкости гидроразрыва, добавление к несущей жидкости гидроразрыва расклинивающего полимерного...
Тип: Изобретение
Номер охранного документа: 0002723806
Дата охранного документа: 17.06.2020
18.07.2020
№220.018.3494

Способ разработки многопластовой нефтяной залежи с применением гидравлического разрыва пласта

Изобретение относится к нефтедобывающей промышленности и может быть применено при разработке многопластовой нефтяной залежи с применением гидравлического разрыва пласта (ГРП). Способ включает закачку вытесняющего агента через нагнетательные скважины, отбор пластовых флюидов через добывающие...
Тип: Изобретение
Номер охранного документа: 0002726694
Дата охранного документа: 15.07.2020
+ добавить свой РИД