×
21.06.2020
220.018.28fa

Результат интеллектуальной деятельности: Способ гидравлического разрыва нефтяного, газового или газоконденсатного пласта

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтегазодобывающей промышленности и может быть применено для увеличения продуктивности добывающих или приемистости нагнетательных скважин, а именно как способ гидравлического разрыва нефтяного, газового или газоконденсатного пласта (ГРП) с использованием легкого расклинивающего наполнителя-проппанта. ГРП осуществляют с использованием расклинивающего наполнителя-проппанта, представляющего собой материал из метатезис-радикально сшитой смеси олигоциклопентадиенов. Перфорацию проводят в зоне с максимальным нефте- и газонасыщением. ГРП проводят в четыре этапа, где на первом этапе проводят закачку технической воды с плотностью, равной плотности материала из метатезис-радикально сшитой смеси олигоциклопентадиенов. На втором этапе, когда расстояние от интервала перфорации до верхнего обводненного пропластка составляет менее 3 м, проводят закачку технической воды с плотностью большей, чем плотность материала из метатезис-радикально сшитой смеси олигоциклопентадиенов или закачку нефтяного дистиллята, в случае, когда расстояние от интервала перфорации до нижнего обводненного пропластка составляет менее 3 м, с добавлением проппанта в количестве 1/3 ч от его общей массы, с постепенным увеличением их массовой концентрации в смеси от 40 до 300 кг/м. На третьем этапе проводят закачку технической воды с плотностью, равной плотности материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, с добавлением оставшихся 2/3 ч от общей массы проппанта, рассчитанной для закачки. Частицы проппанта добавляют в техническую воду с постепенным увеличением их массовой концентрации от 300 до 800 кг/м. На четвертом этапе проводят продавку смеси жидкости с проппантом технической водой с плотностью, равной плотности материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, в объеме, равном объему скважины до верхних отверстий перфорации. Технический результат заключается в повышении нефте-, газо- или газоконденсатоотдачи после выполнения ГРП за счет избирательного перфорирования пласта в зоне с максимальным нефте- или газонасыщением и контролируемого развития трещины ГРП по высоте. 3 пр.

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для увеличения продуктивности добывающих или приемистости нагнетательных скважин, а именно как способ гидравлического разрыва нефтяного, газового или газоконденсатного пласта (ГРП) с использованием легкого расклинивающего наполнителя-проппанта, истинная плотность которого близка плотности воды.

Известен способ гидравлического разрыва пласта в скважине, включающий перфорацию стенок скважины в интервале пласта каналами глубиной не менее протяженности зоны концентрации напряжений в породах от ствола скважины, спуск колонны труб с пакером, посадку пакера над кровлей перфорированного продуктивного пласта, закачку в подпакерную зону гелированной жидкости разрыва для проведения ГРП, создание в подпакерной зоне давления гидроразрыва пласта и продавку в образовавшуюся трещину пласта гелированной жидкости разрыва с крепителем трещин. Согласно изобретению перед проведением ГРП колонну труб заполняют технологической жидкостью, определяют общий объем гелированной жидкости разрыва по аналитическому выражению. Затем производят ГРП. При этом сначала закачивают гелированную жидкость разрыва без добавления крепителя для создания трещины. Затем закачивают оставшийся объем гелированной жидкости разрыва с крепителем трещин. В качестве крепителя трещин применяют легкий проппант фракции 20/40 меш, постепенно увеличивая концентрацию проппанта в жидкости разрыва от 200 кг/м3 до 1000 кг/м3. В качестве гелированной жидкости разрыва применяют линейный гель с одновременным добавлением боратного сшивателя и деструктора. Боратный сшиватель вводят в линейный гель с концентрацией от 2,0 до 4,0 л/м3, достаточной для полной сшивки гелированной жидкости разрыва у зоны перфорации скважины. Деструктор вводят с постепенным повышением концентрации на 0,15 кг/м3, начиная с концентрации 1,0 кг/м3. После завершения закачки гелированной жидкости разрыва с крепителем трещин в колонну труб производят их продавку в пласт технологической жидкостью. Производят выдержку в течение времени, необходимого для спада давления закачки на 70-80% от давления продавки в пласт гелированной жидкости разрыва с крепителем трещин, распакеровывают пакер, извлекают его и колонну труб на поверхность. RU 2485306 С1, опубл. 20.06.2013.

Известен способ гидравлического разрыва пласта в скважине, включающий перфорацию в интервале пласта, спуск колонны труб с пакером, посадку пакера, закачку в подпакерную зону гелированной жидкости разрыва, заполнение колонны технологической жидкостью, определение общего объема гелированной жидкости разрыва, создание в подпакерной зоне давления гидроразрыва пласта и продавку в образовавшуюся трещину пласта гелированной жидкости разрыва с проппантом, выдержку в течение времени, необходимого для спада давления на 70%, распакеровку и извлечение пакера с колонной труб из скважины. После определения общего объема гелированной жидкости разрыва закачивают в скважину по колонне труб гелированную жидкость разрыва - линейный гель - до образования трещин разрыва в пласте, оставшийся объем гелированной жидкости разрыва после образования трещин разрыва в пласте разделяют на две части: сшитый гель и линейный гель, циклически производят поочередную закачку сначала линейного, а затем сшитого геля с добавлением проппанта в 3-5 циклов. Причем линейный гель закачивают равными порциями с расходом 4-6 м3/мин и концентрацией проппанта 400 кг/м3, а сшитый гель закачивают со ступенчатым увеличением объема закачки от 3 до 7 м3 с расходом 1-2 м3/мин и концентрацией проппанта 1200 кг/м3. При этом в последние порции линейного и сшитого гелей с проппантом добавляют стекловолокно в количестве 1,5% от веса проппанта в каждой из последних порций линейного и сшитого гелей. RU 2522366 С1, опубл. 10.07.2013.

Известен способ распространения трещины в подземных формациях, включающий закачку суспензии микропроппанта в скважину, расположенную в подземном пласте, содержащем первичные трещины в ближней зоне и вторичные трещины в дальней зоне, при последовательно увеличивающемся и уменьшающемся расходе закачки суспензии микропроппанта в скважину при распространении в дальней зоне вторичных трещин в подземном пласте в течение двух или более циклов обработки, причем каждый цикл обработки включает в себя как увеличение, так и уменьшение расхода закачки суспензии микропроппанта в стволе скважины, а суспензия микропроппанта включает в себя жидкость для гидроразрыва и микропроппант, имеющий средний размер частиц 150 микрометров или менее. СА 3038512, опубл. 03.05.2018.

Недостатками указанных аналогов являются:

- высокая стоимость проведения операции ГРП, связанная с необходимостью применения дорогостоящих химических компонентов для приготовления жидкости разрыва;

- технологическая сложность осуществления ГРП, связанная с необходимостью чередовать стадии закачки сшитого и линейного гелей с одновременным изменением расхода закачки.

Наиболее близким по технической сущности является способ гидравлического разрыва нефтяного или газового пласта с использованием расклинивающего наполнителя, включающий нагнетание в нефтяной пласт жидкости с высокой скоростью и добавление в жидкость расклинивающего наполнителя, в качестве расклинивающего наполнителя применяют материал ПолиДиЦиклоПентаДиен (полиДЦПД), который является легким проппантом, что обеспечивает более низкое трение при закачивании наполнителя в скважину при сохранении хорошей проницаемости трещины. RU 2386025 С1, опубл. 10.04.2010. Недостатками заявленного способа являются:

- низкая нефтеотдача после выполнения ГРП вследствие того, что не учитывается текущее насыщение обрабатываемого пласта;

- высокий риск неконтролируемого развития трещины ГРП по высоте и получения обводнения скважины при наличии выше или нижележащего водонасыщенного пласта.

Технической задачей изобретения является создание простого и надежного способа гидравлического разрыва пласта, использующего легкий полимерный проппант повышенной прочности, полученный в результате метатезисной и радикальной полимеризации смеси олигоциклопентадиенов. Олигоциклопентадиены представляют собой смесь димеров, тримеров, тетрамеров циклопентадиена, полученную в результате термической олигомеризации дициклопентадиена при температуре от 150 до 220°С.

Технический результат, достигаемый от реализации заявленного технического решения, заключается в повышении нефте-, газо- или газоконденсатоотдачи после выполнения ГРП за счет избирательного перфорирования пласта в зоне с максимальным нефте- или газонасыщением и контролируемого развития трещины ГРП по высоте.

Технический результат достигается тем, что в способе гидравлического разрыва нефтяного, газового или газоконденсатного пласта с использованием легкого расклинивающего наполнителя, включающего нагнетание в нефтяной, газовый или газоконденсатный пласт жидкости и добавление в жидкость расклинивающего наполнителя-проппанта, согласно изобретению, используют расклинивающий наполнитель-проппант, представляющий собой материал из метатезис-радикально сшитой смеси олигоциклопентадиенов, предварительно в скважине проводят комплекс геофизических исследований по определению текущего насыщения, по результатам которых проводят избирательную перфорацию в зоне с максимальным нефте- или газонасыщением, далее проводят гидравлический разрыв пласта в четыре этапа, где на первом этапе проводят закачку технической воды с плотностью, равной плотности материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, без добавления проппанта, на втором этапе, в случае, когда расстояние от интервала перфорации до верхнего обводненного пропластка составляет менее 3 м, проводят закачку технической воды с плотностью большей, чем плотность материала из метатезис-радикально сшитой смеси олигоциклопентадиенов с добавлением проппанта в количестве 1/3 ч от его общей массы, рассчитанной для закачки, причем частицы проппанта добавляют в техническую воду с постепенным увеличением их массовой концентрации в смеси от 40 до 300 кг/м3, а в случае, когда расстояние от интервала перфорации до нижнего обводненного пропластка составляет менее 3 м, проводят закачку нефтяного дистиллята с добавлением проппанта в количестве 1/3 ч от его общей массы, рассчитанной для закачки, причем частицы проппанта добавляют в нефтяной дистиллят с постепенным увеличением их массовой концентрации в смеси от 40 до 300 кг/м3, на третьем этапе проводят закачку технической воды с плотностью, равной плотности материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, с добавлением оставшихся 2/3 ч от общей массы проппанта, рассчитанной для закачки, причем частицы проппанта добавляют в техническую воду с постепенным увеличением их массовой концентрации в смеси от 300 до 800 кг/м3, на четвертом этапе проводят продавку смеси жидкости с проппантом технической водой с плотностью, равной плотности материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, в объеме, равном объему скважины до верхних отверстий перфорации.

Гидроразрыв пласта осуществляют, используя наполнитель-проппант, представляющий собой материал, полученный в результате метатезисной и радикальной полимеризации смеси олигоциклопентадиенов, в виде сферических гранул, полученный по способам, изложенным в патентных публикациях: RU 2523320, RU 2552750.

Способ гидравлического разрыва пласта с применением легкого проппанта осуществляют следующим образом.

Перед проведением ГРП в скважине проводят ГИС методом импульсного нейтрон-нейтронного каротажа (ИННК) для определения текущего насыщения пласта. Далее по результатам ГИС проводят избирательную перфорацию в зоне с максимальным нефте- или газонасыщением пласта с плотностью 20 перфорационных отверстий на 1 погонный метр и диаметром входных отверстий 12 мм. Перфорацию проводят любым известным способом, например, как описано в RU 2358100 С1, опубл. 10.06.2009.

Далее в скважину спускают колонну насосно-компрессорных труб (НКТ) с пакером, причем ниже пакера устанавливают хвостовик - одну или две НКТ. Пакер в скважине устанавливают таким образом, чтобы нижний конец хвостовика находился на уровне верхних отверстий перфорации. Далее проводят ГРП в четыре этапа. На первом этапе проводят закачку технической воды с плотностью, равной плотности материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, без добавления проппанта. Причем техническую воду закачивают с расходом, достаточным для создания в пласте хотя бы одной трещины разрыва. Необходимый расход, а также объем закачки определяют с использованием специально разработанной программы для ЭВМ «Симулятор гидроразрыва пласта РН-ГРИД 2017» (свидетельство №2017663051, дата регистрации: 23.11.2017).

На втором этапе, в зависимости от наличия выше или ниже интервала перфорации обводненного пропластка, проводят закачку технической воды или нефтяного дистиллята с добавлением проппанта в количестве 1/3 ч от его общей массы, рассчитанной для закачки, причем частицы проппанта добавляют в техническую воду или нефтяной дистиллят с постепенным увеличением их массовой концентрации от 40 до 300 кг/м3. В случае, когда расстояние от интервала перфорации до обводненного пропластка, расположенного сверху, составляет менее 3 м, проводят закачку технической воды с плотностью, большей, чем плотность материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, а в случае, когда расстояние от интервала перфорации до обводненного пропластка, расположенного снизу, составляет менее 3 м, проводят закачку нефтяного дистиллята.

Опытным путем было установлено, что в случае, когда расстояние от интервала перфорации до обводненного пропластка, расположенного сверху, составляет менее 3 м, закачка технической воды с плотностью, большей, чем плотность материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, содержащей проппант с массовой концентрацией в смеси от 40 до 300 кг/м3 будет способствовать всплытию и скапливанию проппанта в верхней части трещины ГРП и как следствие отклонению развития трещины ГРП вниз. В случае, когда расстояние от интервала перфорации до обводненного пропластка, расположенного снизу, составляет менее 3 м, закачка нефтяного дистиллята, содержащего проппант с массовой концентрацией от 40 до 300 кг/м3 будет способствовать оседанию и скапливанию проппанта в нижней части трещины ГРП и как следствие отклонению развития трещины ГРП вверх.

На третьем этапе проводят закачку технической воды с плотностью, равной плотности материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, с добавлением оставшихся 2/3 ч от общей массы проппанта, рассчитанной для закачки, причем частицы проппанта присутствуют в технической воде с массовой концентрацией в смеси от 300 до 800 кг/м3.

На четвертом этапе проводят продавку смеси жидкости с проппантом технической водой без добавления проппанта с плотностью, равной плотности материала из метатезис-радикально сшитой смеси олигоциклопентадиенов в объеме, равном объему скважины до верхних отверстий перфорации.

Известно, что на развитие трещины ГРП по высоте в первую очередь оказывает влияние вязкость закачиваемой жидкости. Чем больше вязкость, тем большую высоту будет иметь трещина. В то же время, скорость осаждения частиц проппанта в жидкости, пропорциональна разности плотностей между жидкостью и проппантом и обратно пропорциональна вязкости жидкости. Поэтому вязкость жидкости повышают из условия обеспечения эффективного переноса проппанта вдоль трещины ГРП.

Однако в условиях близко расположенных обводненных пропластков контроль вязкости жидкости важен для регулирования развития трещины по высоте. В случае проведения ГРП с обычным расклинивающим наполнителем, например алюмосиликатным проппантом по ГОСТ 51761-2013, снижать вязкость жидкости можно лишь до определенного предела. В случае проведения ГРП по предлагаемому способу в качестве жидкости можно применять обычную техническую воду или нефтяной дистиллят, так как плотность материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, составляет 0,95-1,06 г/см3. Частицы проппанта будут обладать нейтральной плавучестью в жидкости с плотностью 1,0-1,06 г/см3, всплывать в жидкости с плотностью 1,1-1,14 г/см3 (пластовая минерализованная вода) или тонуть в нефтяном дистилляте с плотностью 0,86 г/см3.

Необходимая ширина трещины гидроразрыва достигается путем поддержания расхода закачки, рассчитываемого по программе для ЭВМ «РН-ГРИД». Управление развитием трещины вверх или вниз достигается за счет применения жидкости с различной плотностью. Для отклонения трещины вниз в качестве жидкости применяется техническая вода с плотностью, большей, чем плотность материала из метатезис-радикально сшитой смеси олигоциклопентадиенов с добавлением проппанта в количестве 1/3 ч от его общей массы, рассчитанной для закачки, причем частицы проппанта добавляют в техническую воду с постепенным увеличением их массовой концентрацией от 40 до 300 кг/м3. Для отклонения трещины вверх в качестве жидкости применяется нефтяной дистиллят с добавлением проппанта в количестве 1/3 ч от его общей массы, рассчитанной для закачки, причем частицы проппанта добавляют в нефтяной дистиллят с постепенным увеличением их массовой концентрацией от 40 до 300 кг/м3.

Примеры конкретного выполнения.

Пример 1.

Скважина глубиной 2800 м вскрыла нефтяные продуктивные пласты в интервале 2736,8,4-2749,6 м по вертикали. По результатам импульсного нейтрон-нейтронного каротажа в интервале 2724,8-2734,8 м определили обводненный пропласток, в интервале 2737,2-2743,6 м определили зону с максимальным нефтенасыщением. Выполнили перфорацию в зоне с максимальным нефтенасыщением с плотностью 20 перфорационных отверстий на 1 погонный метр и диаметром входных отверстий 12 мм.

Исходя из геологических условий, при помощи программы для ЭВМ «Симулятор гидроразрыва пласта РН-ГРИД 2017» рассчитали необходимый расход закачки и общую массу закачиваемого проппанта. Необходимый расход закачки составил 5 м3/мин, масса проппанта 10000 кг. Истинная плотность проппанта, изготовленного из материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, составила 1,06 г/см3.

В скважину спустили пакер с якорем на колонне НКТ с условным диаметром 89 мм. Ниже пакера установили хвостовик - две трубы НКТ. Пакер в скважине посадили таким образом, чтобы нижний конец хвостовика находился на уровне верхних отверстий перфорации. Произвели ГРП в следующей последовательности.

В скважину по колонне НКТ с высоким расходом закачали техническую воду с плотностью 1,06 г/см3 без добавления проппанта.

Далее, не прерывая закачки, для отклонения трещины вниз, закачали техническую воду с плотностью 1,14 г/см3 с добавлением проппанта в количестве 3300 кг, причем частицы проппанта добавляли в техническую воду с постепенным увеличением их массовой концентрации в смеси от 40 до 300 кг/м3.

Далее, не прерывая закачки, закачали техническую воду с плотностью 1,06 г/см3 с добавлением оставшихся 6700 кг проппанта, причем частицы проппанта добавляли в техническую воду с постепенным увеличением их массовой концентрации от 300 до 800 кг/м3.

Далее, не прерывая закачки, произвели продавку смеси технической водой с плотностью 1,06 г/см3 в объеме, равном объему скважины до верхних отверстий перфорации.

В результате получили трещину ГРП с преимущественным развитием вниз.

С целью оценки фактической геометрии трещины ГРП и подтверждения факта преимущественного развития трещины вниз выполнили моделирование и адаптацию проведенного процесса в программе для ЭВМ «Симулятор гидроразрыва пласта РН-ГРИД 2017» с использование фактических данных закачки (давление и расход). По результатам моделирования было установлено, что развитие трещины в вышележащий водонасыщенный пласт не произошло. Лабораторный анализ притока добываемой нефти также показал, что добыча ведется только с целевого пласта ГРП, вода из нецелевого пласта отсутствует.

Пример 2.

Скважина глубиной 2800 м вскрыла газовые продуктивные пласты в интервале 2737,6-2743,5 м по вертикали. По результатам импульсного нейтрон-нейтронного каротажа, в интервале 2745,8-2756,0 м определили обводненный пропласток, в интервале 2738,0-2743,0 м определили зону с максимальной газонасыщением. Выполнили перфорацию в зоне с максимальным газонасыщением с плотностью 20 перфорационных отверстий на 1 погонный метр и диаметром входных отверстий 12 мм.

Исходя из геологических условий, при помощи программы для ЭВМ «Симулятор гидроразрыва пласта РН-ГРИД 2017», рассчитали необходимый расход закачки и общую массу закачиваемого проппанта. Необходимый расход закачки составил 4,7 м3/мин, масса проппанта 10000 кг. Истинная плотность проппанта, изготовленного из материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, составила 1,06 г/см3.

В скважину спустили пакер с якорем на колонне НКТ с условным диаметром 89 мм. Причем ниже пакера установили хвостовик - две трубы НКТ. Пакер в скважине посадили таким образом, чтобы нижний конец хвостовика находился на уровне верхних отверстий перфорации. Произвели ГРП в следующей последовательности.

В скважину по колонне НКТ с высоким расходом закачали техническую воду с плотностью 1,06 г/см3 без добавления проппанта.

Далее, не прерывая закачки, для отклонения трещины вверх, закачали нефтяной дистиллят с плотностью 0,86 г/см3 с добавлением проппанта в количестве 3300 кг, причем частицы проппанта добавляли в нефтяной дистиллят с постепенным увеличением их массовой концентрацией в смеси от 40 до 300 кг/м3.

Далее, не прерывая закачки, закачали техническую воду с плотностью 1,06 г/см3 с добавлением оставшихся 6700 кг проппанта, причем частицы проппанта добавляли в техническую воду с постепенным увеличением их массовой концентрацией в смеси от 300 до 800 кг/м3.

Далее, не прерывая закачки, произвели продавку смеси технической водой с плотностью 1,06 г/см3 в объеме, равном объему скважины до верхних дыр перфорации.

В результате получили трещину ГРП с преимущественным развитием вверх.

С целью оценки фактической геометрии трещины ГРП и подтверждения факта преимущественного развития трещины вверх выполнили моделирование и адаптацию проведенного процесса в программе для ЭВМ «Симулятор гидроразрыва пласта РН-ГРИД 2017» с использование фактических данных закачки (давление и расход). По результатам моделирования было установлено, что развитие трещины в нижележащий водонасыщенный пласт не произошло. Лабораторный анализ притока добываемого газа также показал, что добыча ведется только с целевого пласта ГРП, вода из нецелевого пласта отсутствует.

Пример 3.

Скважина глубиной 2850 метров вскрыла газоконденсатные продуктивные пласты в интервале 2747,6-2753,5 метров по вертикали. По результатам импульсного нейтрон-нейтронного каротажа, в интервале 2755,8-2766,0 метров определили обводненный пропласток, в интервале 2748,0-2753,0 метров определили зону с максимальным газонасыщением. Выполнили перфорацию в зоне с максимальным газонасыщением с плотностью 20 перфорационных отверстий на 1 погонный метр и диаметром входных отверстий 12 мм.

Исходя из геологических условий, при помощи программы для ЭВМ «Симулятор гидроразрыва пласта РН-ГРИД 2017», рассчитали необходимый расход закачки и общую массу закачиваемого пропанта. Необходимый расход закачки составил 5,3 м3/мин, масса пропанта 12000 кг. Истинная плотность пропанта, изготовленного из олигоциклопентадиена, составила 1,06 г/см3.

В скважину спустили пакер с якорем на колонне НКТ с условным диаметром 89 мм. Причем ниже пакера установили хвостовик - две трубы НКТ. Пакер в скважине посадили таким образом, чтобы нижний конец хвостовика находился на уровне верхних отверстий перфорации. Произвели ГРП в следующей последовательности.

В скважину по колонне НКТ с высоким расходом закачали техническую воду с плотностью 1,06 г/см3 без добавления пропанта.

Далее, не прерывая закачки, для отклонения трещины вверх, закачали нефтяной дистиллят с плотностью 0,86 г/см3 с добавлением пропанта в количестве 3600 кг, причем частицы пропанта добавляли в нефтяной дистиллят с постепенным увеличением их массовой концентрацией в смеси от 40 до 300 кг/м3.

Далее, не прерывая закачки, закачали техническую воду с плотностью 1,06 г/см3 с добавлением оставшихся 8400 кг пропанта, причем частицы пропанта добавляли в техническую воду с постепенным увеличением их массовой концентрацией в смеси от 300 до 800 кг/м3.

Далее, не прерывая закачки, произвели продавку смеси технической водой с плотностью 1,06 г/см3 в объеме, равном объему скважины до верхних дыр перфорации.

В результате получили трещину ГРП с преимущественным развитием вверх.

С целью оценки фактической геометрии трещины ГРП и подтверждения факта преимущественного развития трещины вверх выполнили моделирование и адаптацию проведенного процесса в программе для ЭВМ «Симулятор гидроразрыва пласта РН-ГРИД 2017» с использование фактических данных закачки (давление и расход). По результатам моделирования было установлено, что развитие трещины в нижележащий водонасыщенный пласт не произошло. Лабораторный анализ притока добываемого газоконденсата также показал, что добыча ведется только с целевого пласта ГРП, вода из нецелевого пласта отсутствует.

Предложенный способ ГРП с применением легкого проппанта, изготовленного из материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, позволяет снизить стоимость, а также упростить сам процесс проведения операции ГРП за счет применения дешевых материалов и создания простого и эффективного способа гидравлического разрыва пласта. В то же время предложенный способ позволяет повысить нефте-, газо- или газоконденсатоотдачу после выполнения ГРП за счет избирательного перфорирования пласта в зоне с максимальным нефте- или газонасыщением и контролируемого развития трещины ГРП по высоте.

Способ гидравлического разрыва нефтяного, газового или газоконденсатного пласта, включающий нагнетание в пласт жидкости с высоким расходом, добавление в жидкость расклинивающего наполнителя-проппанта, отличающийся тем, что расклинивающий наполнитель-проппант, представляет собой материал из метатезис-радикально сшитой смеси олигоциклопентадиенов, причем перед проведением гидравлического разрыва пласта в скважине проводят комплекс геофизических исследований по определению текущего насыщения, по результатам которых проводят избирательную перфорацию в зоне с максимальным нефте- и газонасыщением, далее проводят гидравлический разрыв пласта в четыре этапа, где на первом этапе проводят закачку технической воды с плотностью, равной плотности материала из метатезис-радикально сшитой смеси олигоциклопентадиенов без добавления проппанта, на втором этапе, в случае, когда расстояние от интервала перфорации до верхнего обводненного пропластка составляет менее 3 м, проводят закачку технической воды с плотностью, большей, чем плотность материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, с добавлением проппанта в количестве 1/3 ч от его общей массы, рассчитанной для закачки, причем частицы проппанта добавляют в техническую воду с постепенным увеличением их массовой концентрации в смеси от 40 до 300 кг/м, а в случае, когда расстояние от интервала перфорации до нижнего обводненного пропластка составляет менее 3 м, проводят закачку нефтяного дистиллята с добавлением проппанта в количестве 1/3 ч. от его общей массы, рассчитанной для закачки, причем частицы проппанта добавляют в нефтяной дистиллят с постепенным увеличением их массовой концентрации в смеси от 40 до 300 кг/м, на третьем этапе проводят закачку технической воды с плотностью, равной плотности материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, с добавлением оставшихся 2/3 ч. от общей массы проппанта, рассчитанной для закачки, причем частицы проппанта добавляют в техническую воду с постепенным увеличением их массовой концентрации в смеси от 300 до 800 кг/м, на четвертом этапе проводят продавку смеси жидкости с проппантом технической водой с плотностью, равной плотности материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, в объеме, равном объему скважины до верхних отверстий перфорации.
Источник поступления информации: Роспатент

Showing 1-10 of 63 items.
26.08.2017
№217.015.e958

Катализатор изодепарафинизации углеводородного сырья с10+ для получения низкозастывающих масел и дизельных топлив и способ получения низкозастывающих масел и топлив с его использованием

Изобретение относится к области катализа и нефтепереработки, в частности к составу и способу приготовления катализатора изодепарафинизации, а также способу получения низкозастывающих масел или дизельных топлив путем преимущественной изомеризации н-парафинов углеводородного сырья с...
Тип: Изобретение
Номер охранного документа: 0002627770
Дата охранного документа: 11.08.2017
19.01.2018
№218.016.08a3

Гидравлическое масло арктического назначения

Гидравлическое масло арктического назначения с улучшенными низкотемпературными свойствами, предназначено для использования в гидравлических системах строительно-дорожных машин, экскаваторах, бульдозерах, снегоходах, буровых установках и другой технике, которая должна сохранять работоспособность...
Тип: Изобретение
Номер охранного документа: 0002631659
Дата охранного документа: 26.09.2017
20.01.2018
№218.016.15bc

Способ получения депрессорной присадки к дизельному топливу и депрессорная присадка к дизельному топливу

Изобретение относится к области нефтепереработки и нефтехимии. Описан способ получения депрессорной присадки к дизельному топливу. Проводят реакцию радикальной сополимеризации малеинового ангидрида и широкой фракции 1-олефинов C-C при соотношении исходных реагентов от 1:0,92 до 1:3,7. Реакцию...
Тип: Изобретение
Номер охранного документа: 0002635107
Дата охранного документа: 09.11.2017
04.04.2018
№218.016.36aa

Способ получения мезопористой наноструктурированной пленки металло-оксида методом электростатического напыления

Изобретение может быть использовано при изготовлении металлооксидных солнечных элементов, сенсоров, систем запасания энергии, катализаторов. Для получения мезопористой наноструктурированной пленки металлооксида методом электростатического напыления напыляемый материал помещают в контейнер с...
Тип: Изобретение
Номер охранного документа: 0002646415
Дата охранного документа: 05.03.2018
10.05.2018
№218.016.3c8d

Способ получения диспергирующей присадки к дизельному топливу и диспергирующая присадка к дизельному топливу

Изобретение относится к области нефтепереработки и нефтехимии, в частности к способу получения диспергирующей присадки к дизельному топливу. Проводят реакцию метатезисной сополимеризации функционализированного норборнена и циклоолефина и 1-гексена в качестве агента переноса цепи в присутствии...
Тип: Изобретение
Номер охранного документа: 0002647858
Дата охранного документа: 21.03.2018
10.05.2018
№218.016.4120

Сенсибилизированный красителем металлооксидный солнечный элемент

Изобретение относится к области солнечной фотоэнергетики, в частности к созданию устройств для прямого преобразования солнечной энергии в электрическую с использованием сенсибилизированных красителем металлооксидных солнечных элементов (МО СЭ). Наиболее успешно настоящее изобретение может быть...
Тип: Изобретение
Номер охранного документа: 0002649239
Дата охранного документа: 30.03.2018
09.06.2018
№218.016.5f51

Способ получения синтетической нефти

Настоящее изобретение относится к способу получения синтетической нефти из продуктов синтеза Фишера-Тропша, включающий гидрирование смеси синтетических углеводородов в реакторе с неподвижным слоем никельсодержащего катализатора в токе газа гидрирования, включающего моноксид углерода и водород....
Тип: Изобретение
Номер охранного документа: 0002656601
Дата охранного документа: 06.06.2018
11.06.2018
№218.016.614c

Фотосенсибилизатор для солнечных элементов

Изобретение относится к области солнечной энергетики, в частности к фотосенсибилизаторам для металлоксидных солнечных элементов. Фотосенсибилизатор представляет собой 4-[(Е)-[(2Е)-3-[4-(диметиламино)фенил]проп-2-ен-1-илиден]амино]бензойную кислоту. Фотосенсибилизатор получают одностадийным...
Тип: Изобретение
Номер охранного документа: 0002657084
Дата охранного документа: 08.06.2018
01.07.2018
№218.016.697c

Способ получения циклопентана

Изобретение относится к способу получения циклопентана, включающему последовательно осуществляемые частичное и исчерпывающее гидрирование циклопентадиена в растворителе в присутствии катализатора. Способ характеризуется тем, что частичное гидрирование ведут при температуре 10…40°С, давлении...
Тип: Изобретение
Номер охранного документа: 0002659227
Дата охранного документа: 29.06.2018
10.07.2018
№218.016.6ee7

Способ определения величины максимального горизонтального напряжения нефтегазового пласта

Изобретение относится к нефтегазовой промышленности и может быть использовано для определения величины максимального горизонтального напряжения в продуктивных пластах нефтегазовых месторождений для выбора оптимальной технологии бурения и эксплуатации скважин. Способ включает проведение...
Тип: Изобретение
Номер охранного документа: 0002660702
Дата охранного документа: 09.07.2018
Showing 1-10 of 123 items.
20.01.2013
№216.012.1d07

Способ вызова притока пластового флюида из скважины

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при освоении скважин, обеспечивает повышение эффективности освоения скважины. Сущность изобретения: способ включает спуск колонны насосно-компрессорных труб (НКТ) в скважину, снижение давления на продуктивный...
Тип: Изобретение
Номер охранного документа: 0002472925
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1d08

Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины

Изобретение относится к нефтегазодобывающей промышленности, в частности к способу гидравлического разрыва в горизонтальных стволах скважин продуктивных пластов. Задачей изобретения является повышение эффективности проведения гидравлического разрыва пород - ГРП. Сущность изобретения: способ...
Тип: Изобретение
Номер охранного документа: 0002472926
Дата охранного документа: 20.01.2013
27.01.2013
№216.012.2069

Способ гидравлического разрыва пласта в скважине

Изобретение относится к нефтегазодобывающей промышленности и может найти применение для повышения производительности как вновь вводимых, так и действующих добывающих и нагнетательных скважин. Обеспечивает повышение эффективности способа за счет увеличения радиуса дренирования скважины. Сущность...
Тип: Изобретение
Номер охранного документа: 0002473798
Дата охранного документа: 27.01.2013
27.05.2013
№216.012.44e0

Способ гидравлического разрыва пласта в скважине

Изобретение относится к нефтяной промышленности и может найти применение при гидравлическом разрыве пласта с близким расположением вод. Способ обеспечивает повышение эффективности гидроразрыва. Сущность изобретения: способ включает спуск в скважину колонны насосно-компрессорных труб - НКТ - с...
Тип: Изобретение
Номер охранного документа: 0002483209
Дата охранного документа: 27.05.2013
20.06.2013
№216.012.4d08

Способ вызова притока пластового флюида из скважины

Изобретение относится к нефтедобывающей промышленности и может быть использовано при освоении добывающих скважин. Способ вызова притока пластового флюида из скважины включает спуск в скважину колонны насосно-компрессорных труб (НКТ), снижение противодавления на продуктивный пласт за счет замены...
Тип: Изобретение
Номер охранного документа: 0002485302
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4d0a

Способ разработки залежи высоковязкой нефти или битума

Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение эффективности добычи высоковязкой нефти или битума за счет стабильного и непрерывного теплового воздействия на продуктивный пласт, а также за счет исключения попутно добываемой воды и конденсата в объеме...
Тип: Изобретение
Номер охранного документа: 0002485304
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4d0c

Способ гидравлического разрыва пласта в скважине

Изобретение относится к нефтегазодобывающей промышленности и может найти применение для повышения производительности как вновь вводимых, так и действующих добывающих и нагнетательных скважин за счет гидравлического разрыва пласта - ГРП. Обеспечивает повышение эффективности способа за счет...
Тип: Изобретение
Номер охранного документа: 0002485306
Дата охранного документа: 20.06.2013
27.09.2013
№216.012.6fa2

Способ изоляции зон водопритока в скважине

Изобретение относится к нефтегазодобывающей промышленности и предназначено для водоизоляционных работ в нефтедобывающих скважинах, эксплуатирующих продуктивные пласты с низкой температурой. Способ изоляции зон водопритока в скважине заключается в закачивании в изолируемый пласт разогретого до...
Тип: Изобретение
Номер охранного документа: 0002494229
Дата охранного документа: 27.09.2013
20.10.2013
№216.012.7685

Способ разработки нефтегазовой залежи с применением гидравлического разрыва пласта

(57) Изобретение относится к области разработки нефтяных и газовых месторождений с применением гидравлического разрыва пласта. Способ включает разработку нефтегазовой залежи с применением гидравлического разрыва пласта, причем на первом этапе разработки нефтегазовой залежи гидравлический разрыв...
Тип: Изобретение
Номер охранного документа: 0002496001
Дата охранного документа: 20.10.2013
27.10.2013
№216.012.7a52

Способ разработки нефтяных залежей с применением гидравлического разрыва пласта

Изобретение относится к нефтедобывающей промышленности и может быть применено при разработке нефтяных залежей с поддержанием пластового давления. Способ включает строительство нагнетательных и добывающих скважин, проведение направленных гидравлических разрывов с обеспечением гидравлической...
Тип: Изобретение
Номер охранного документа: 0002496976
Дата охранного документа: 27.10.2013
+ добавить свой РИД