×
13.06.2019
219.017.813c

Результат интеллектуальной деятельности: Способ получения микросфер полимерного проппанта

Вид РИД

Изобретение

Аннотация: Изобретение относится к проппантам из полимерных материалов, применяемым при добыче нефти и газа методом гидравлического разрыва пласта. В способе получения микросфер полимерного проппанта, включающем приготовление полимерной матрицы на основе метатезис-радикально сшитой смеси олигоциклопентадиенов, содержащей компоненты: полимерный стабилизатор, радикальный инициатор, рутениевый катализатор метатезисной полимеризации дициклопентадиена, перемешивание полученной жидкой полимерной матрицы, формирование микросфер, отделение их, нагревание в инертной среде и выделение целевого продукта, жидкую полимерную матрицу перемешивают до достижения значения вязкости в диапазоне 10-100 сП, формирование микросфер осуществляют, подавая полимерную матрицу погружением ее в водный раствор поливинилового спирта, используемого в качестве стабилизатора, используя трубку, конец которой помещают в емкость с водным раствором поливинилового спирта, при объемном отношении от 1:2 до 1:6, перемешивая и диспергируя в течение 10-60 мин с образованием эмульсии, которую нагревают до температуры 95-100°С в течение 30-90 мин и выдерживают при заданной температуре в течение 5-10 мин с образованием микросфер, полученную суспензию охлаждают, отделяют микросферы фильтрацией, отмывают от остатков стабилизатора, высушивают, нагревают в атмосфере инертного газа в течение 30-90 мин и после охлаждения выделяют целевой продукт с размером частиц 0,5-1,4 мм. Изобретение развито в зависимом пункте формулы. Технический результат - повышение качества и выхода микросфер. 1 з.п. ф-лы, 8 пр.

Изобретение относится к области химии высокомолекулярных соединений, а именно к проппантам из полимерных материалов с повышенными требованиями к физико-механическим свойствам, применяемых при добыче нефти и газа методом гидравлического разрыва пласта в качестве расклинивающего агента, применяемого при добыче нефти и газа методом гидравлического разрыва пласта.

Суспензионная полимеризация широко распространенный способ получения полимеров по реакции радикальной полимеризации. Для таких мономеров как метилметакрилат, стирол и их сополимеров суспензионная полимеризация промышленно реализована в виде многотоннажных производств.

Известен способ суспензионной полимеризации дициклопентадиена (ДЦПД) по механизму метатезиса с получением микросфер из полидициклопентадиена (ПДЦПД), включающий смешивание ДЦПД с катализатором и диспергирование смеси в этиленгликоле, содержащем поверхностно-активные вещества (ПАВ) при продувании дисперсии инертным газом. Е. Khosravi, Т. Szymanska-Buzar (Eds.) Ring Opening Metathesis Polymerisation and Related Chemistry: State of the Art and Visions for the New Century, Proceedings of the NATO Advanced Study Institute, held in Polaica-Zdroj, Poland, 3-15 September 2000, p. 44, 2002.

Недостатком способа является низкое качество получаемых микросфер, не менее 82% которых имеет размер меньше 1 мкм, а также необходимость продувания реакционной среды инертным газом для предотвращения окисления продуктов полимеризации. Эти недостатки обусловлены видом применяемых катализаторов и используемой средой, в которой частично растворяется ДЦПД.

Известен способ суспензионной полимеризации ДЦПД по механизму метатезиса с получением пористых микросфер из ПДЦПД. A.D. Martina, R. Graf, J.G. Hilborn Macroporous poly(dicyclopentadiene) beads. Journal of Applied Polymer Science, v. 96, p. 407-415, 2005.

Недостатком способа является низкое качество получаемых микросфер, имеющих размер в диапазоне 200-600 мкм. Эти недостатки обусловлены применением как видом используемых катализаторов, так и введением в мономерную смесь порогена, препятствующего формированию монолитной структуры гранул.

Известный способ получения микросфер полимерного проппанта включает получение жидкой полимерной смеси путем последовательного смешивания дициклопентадиена чистотой не менее 98% с полимерным стабилизатором, полимерным модификатором, радикальным инициатором и катализатором. Полученную полимерную смесь выдерживают при температуре 10-50°С в течение 1-40 мин. Далее вводят в виде ламинарного потока в предварительно нагретую не ниже температуры смеси воду, содержащую катионные или анионные поверхностно-активные вещества. Сферы образуются при постоянном перемешивании жидкой среды. Образовавшиеся микросферы отделяют от раствора, нагревают до температуры 150-340°С и выдерживают при данной температуре в течение 1-360 мин. RU 2528834 С1, опубл. 20.09.2014.

Недостатком этого способа выступает необходимость введения мономерной смеси в виде ламинарного потока в водную фазу, и применение в качестве стабилизаторов катионных или анионных ПАВ. Первое, удлиняет общее время процесса, второе, приводит к увеличению содержания фракций микросфер ПДЦПД с размером частиц менее 0,1 мм.

Известен способ получения полимерного проппанта, предложенный в патентной заявке US 2016/0046856 А1, опубл. 18.02.2016.

Недостатком предложенного решения являются: необходимость введения в мономерную смесь наполнителя, дополнительной стадии подготовки и выделения наполнителя, использование в качестве стабилизатора смеси поливинилового спирта с гидроксидом натрия и хлоридом магния. Необходимость введения и подготовки наполнителя усложняет и удлиняет процесс получения микросфер, а применение смешанного стабилизатора приводит к увеличению загрязнения сточных вод после проведения полимеризации.

Наиболее близким к предлагаемому является способ получения микросфер полимерного проппанта из полимерной матрицы на основе метатезис-радикально сшитой смеси олигоциклопентадиенов. Полимерная матрица содержит компоненты, масс %: полимерный стабилизатор - 0,1-3,0, радикальный инициатор - 0,1-4,0, рутениевый катализатор метатезисной полимеризации дициклопентадиена - 0,001-0,02, смесь олигоциклопентадиенов - остальное. Получают матрицу путем нагрева ДЦПД до температуры 150-220°С и выдержки его при данной температуре в течение 15-360 мин. Далее смесь олигомеров охлаждают до комнатной температуры и последовательно вводят в нее полимерные стабилизаторы, радикальные инициаторы и катализатор. Полученную полимерную матрицу перемешивают при температуре 0-35°С в течение 1-40 мин, после чего вводят в виде ламинарного потока в водный раствор загустителя, содержащий ПАВ, имеющий вязкость 5-500 сП и температуру 5-50°С, при постоянном перемешивании жидкости. Полученные микросферы отделяют и нагревают в среде инертной жидкости до температуры 150-340°С, выдерживают при данной температуре в течение 1-360 мин, получая микросферы полимерного проппанта. RU 2552750 С1, опубл. 10.06.2015.

Недостатком способа выступает необходимость введения мономерной смеси в виде ламинарного потока в водную фазу, и необходимость применения одновременно с катионными или анионными ПАВ водорастворимых полимеров в качестве загустителя. Первое, удлиняет общее, время процесса, второе, удорожает микросферы ПДЦПД и приводит к увеличению загрязнения сточных вод после проведения полимеризации.

Техническая задача изобретения заключается в разработке способа получения микросфер полимерного проппанта путем метатезисной полимеризации ДЦПД в водной суспензии в присутствии защитного коллоида.

Технический результат, достигаемый при реализации настоящего изобретения, заключается в повышении качества и выхода полимерных микросфер за счет снижения содержания нецелевых фракций с диаметром менее 0,5 мм и более 1,4 мм. Выход целевой фракции с размером частиц 0,5-1,4 мм составляет не менее 75 масс%. Повышение качества получаемых полимерных микросфер, выражается в том, что не менее 90 масс% частиц, средний размер которых находится в диапазоне 0,5-1,4 мм, имеют сферичность не менее 0,9, а также в уменьшении количества микросфер с газовыми включениями.

Технический результат достигается тем, что в способе, предусматривающем приготовление полимерной матрицы на основе метатезис-радикально сшитой смеси олигоциклопентадиенов, содержащей компоненты: полимерный стабилизатор, радикальный инициатор, рутениевый катализатор метатезисной полимеризации дициклопентадиена, перемешивание полученной полимерной матрицы, формирование микросфер, отделение их, нагревание в инертной среде и выделение целевого продукта, согласно изобретению, жидкую полимерную матрицу перемешивают дл достижения значения вязкости в диапазоне 10-100 сП, формирование микросфер осуществляют, подавая полимерную матрицу погружением ее в водный раствор поливинилового спирта, используемого в качестве стабилизатора, используя трубку, конец которой помещают в емкость с водным раствором поливинилового спирта при объемном отношении от 1:2 до 1:6, перемешивая и диспергируя в течение 10-60 мин с образованием эмульсии, которую нагревают до температуры 95-100°С в течение 30-90 мин и выдерживают при заданной температуре в течение 5-10 мин с образованием микросфер, полученную суспензию охлаждают, отделяют микросферы фильтрацией, отмывают от остатков стабилизатора, высушивают микросферы, нагревают в атмосфере инертного газа в течение 30-90 мин и выделяют целевой продукт с размером частиц 0,5-1,4 мм. При этом, в качестве стабилизатора используют водный раствор поливинилового спирта при концентрации 0,001-1,0 масс% (марки 18/11 по ГОСТ 10779-78).

Получают микросферы полимерного проппанта следующим образом.

Готовят полимерную матрицу на основе ДЦПД, используя компоненты полимерной матрицы и катализаторы метатезисной полимеризации, описанные в RU 2552750 С1. Полимерную матрицу перемешивают до достижения вязкости 10-100 сП и подают ее, погружая в водный раствор поливинилового спирта, используя трубку, нижний конец которой погружен в водный раствор стабилизатора. Объемное отношение полимерная матрица:раствор стабилизатора от 1:2 до 1:6. Смешение полимерной матрицы заданной вязкости с водной фазой стабилизатора позволяет провести диспергирование полимерной матрицы, сформировав капли с узким распределением по размерам таким образом, чтобы средний размер капель лежал в диапазоне 0,8-1,2 мм (определение среднего размера капель основано на визуальной оценке, например с помощью цифровой фотокамеры, подключенной к персональному компьютеру). Образовавшуюся эмульсию капель полимерной матрицы в водном растворе стабилизатора нагревают до температуры 95-100°С в течение 30-90 мин и выдерживают при заданной температуре в течение 5-10 мин. В процессе выдержки жидкие капли полимерной матрицы превращаются в твердые микросферы. Полученную суспензию микросфер охлаждают, микросферы отделяют от раствора фильтрацией, отмывают от остатков стабилизатора трехкратным объемом воды и сушат. Далее микросферы нагревают в атмосфере инертного газа до температуры 150-340°С. В качестве инертного газа предпочтительно использовать аргон или азот. После выделяют на вибросите целевую фракцию с размером частиц 0,5-1,4 мм.

Результат классифицируется по следующим характеристикам:

Содержание микросфер фракции (0,5-1,4 мм), масс%:

- А более 75

- Б от 50 до 75

- В менее 50

Сферичность (по диаграмме Крумбьена-Шлосса):

- А более 0,9

- Б от 0,5 до 0,9

- В менее 0,5

Содержание микросфер с газовыми включениями (гравитационное разделение в 7%-ном растворе хлорида натрия), масс%:

- А менее 10

- Б от 10 до 20

- В более 20.

Способ иллюстрируют следующие примеры.

Пример 1.

Готовят полимерную матрицу следующим образом. ДЦПД нагревают в автоклаве до температуры 170°С, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. Далее в полученную смесь олигоциклопентадиенов вносят стабилизаторы: тетракис[метилен(3,5-ди-трет-бутил-4-гидроксигидроциннамат)]метан (0,30 масс %), трис(2,4-ди-трет-бутилфенил)фосфит (0,40 масс %), бис(2,2,6,6-тетраметил-4-пиперидинил)себацинат (0,40 масс %) и радикальные инициаторы: дикумилпероксид (2,0 масс %) и 2,3-диметил-2,3-дифенил-бутан (2,0 масс %). После растворения стабилизаторов и инициаторов при температуре 25°С, добавляют при перемешивании катализатор метатезисной полимеризации - [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]дихлоро(о-N,N-диэтил-аминометил фенилметилен)рутений (0,01 масс %) с получением жидкой полимерной матрицы.

Полученную жидкую полимерную матрицу перемешивают до достижения вязкости 10 сП и подают ее, погружая в 0,05%-ный водный раствор поливинилового спирта, используя трубку, конец которой помещают в емкость с водным раствором стабилизатора. Объемное отношение полимерная матрица : раствор стабилизатора 1:2. Далее включают механическое перемешивание и диспергируют полимерную матрицу в водном растворе стабилизатора в течение 10 мин. Образовавшуюся эмульсию капель в водном растворе стабилизатора нагревают до температуры 95°С в течение 30 мин и выдерживают при заданной температуре в течение 5 мин с образованием микросфер. Полученную суспензию микросфер охлаждают, твердые микросферы отделяют от раствора фильтрацией, отмывают от остатков стабилизатора трехкратным объемом воды и сушат. Высушенные микросферы нагревают в атмосфере азота до температуры 150°С в течение 90 мин. После охлаждения выделяют на вибросите целевую фракцию с размером частиц 0,5-1,4 мм.

Получают микросферы полимерного проппанта с выходом 99 масс %, содержание целевой фракции (Б), сферичность (А), содержание микросфер с газовыми включениями (Б).

Пример 2.

Полимерную матрицу готовят как описано в примере 1, но используют катализатор метатезисной полимеризации - [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]дихлоро(о-N,N-метилэтил-аминометилфенилметилен)рутений (0,01 масс %). Полученную жидкую полимерную матрицу перемешивают до достижения вязкости 100 сП и подают ее, погружая в 0,001%-ный водный раствор поливинилового спирта, используя трубку, конец которой помещают в емкость с водным раствором стабилизатора. Объемное отношение полимерная матрица : раствор стабилизатора 1:2. Далее включают механическое перемешивание и диспергируют полимерную матрицу в водном растворе стабилизатора в течение 10 мин. Образовавшуюся эмульсию капель в водном растворе стабилизатора нагревают до 100°С в течение 30 мин и выдерживают при заданной температуре в течение 10 мин с образованием микросфер. После этого полученную суспензию микросфер охлаждают, твердые микросферы отделяют от раствора фильтрацией, отмывают от остатков стабилизатора трехкратным объемом воды и сушат. Высушенные микросферы нагревают в атмосфере азота до температуры 200°С в течение 80 мин. После охлаждения выделяют на вибросите целевую фракцию с размером частиц 0,5-1,4 мм.

Получают микросферы полимерного проппанта с выходом 99 масс %, содержание целевой фракции (Б), сферичность (Б), содержание микросфер с газовыми включениями (А).

Пример 3.

Полимерную матрицу готовят как описано в примере 2. Полученную жидкую полимерную матрицу перемешивают до достижения вязкости 40 сП и подают ее, погружая в 0,1%-ный водный раствор поливинилового спирта, используя трубку, конец которой помещают в водный раствор стабилизатора. Объемное отношение полимерная матрица : раствор стабилизатора 1:4. Далее включают механическое перемешивание и диспергируют полимерную матрицу в водном растворе стабилизатора в течение 30 мин. Образовавшуюся эмульсию капель в водном растворе стабилизатора нагревают до температуры 100°С в течение 30 мин и выдерживают при заданной температуре в течение 10 мин с образованием микросфер. Полученную суспензию микросфер охлаждают, микросферы отделяют от раствора фильтрацией, отмывают от остатков стабилизатора трехкратным объемом воды, сушат и нагревают в атмосфере аргона до температуры 175°С в течение 30 мин. После охлаждения выделяют на вибросите целевую фракцию с размером частиц 0,5-1,4 мм.

Получают микросферы полимерного проппанта с выходом 99 масс %, содержание целевой фракции (А), сферичность (А), содержание микросфер с газовыми включениями (А).

Пример 4.

Полимерную матрицу готовят как описано в примере 2. После перемешивания до достижения вязкости 100 сП ее подают, погружая в 0,2%-ный водный раствор поливинилового спирта, используя трубку, конец которой помещают в емкость с водным раствором стабилизатора. Объемное отношение полимерная матрица : раствор стабилизатора 1:6. Далее включают механическое перемешивание и диспергируют полимерную матрицу в водном растворе стабилизатора в течение 10 мин. Образовавшуюся эмульсию капель в водном растворе стабилизатора нагревают до температуры 95°С в течение 60 мин и выдерживают при заданной температуре в течение 10 мин с образованием микросфер. После этого полученную суспензию микросфер охлаждают, микросферы отделяют от раствора фильтрацией, отмывают от остатков стабилизатора трехкратным объемом воды и сушат. Высушенные микросферы нагревают в атмосфере азота до температуры 330°С в течение 60 мин. После охлаждения выделяют на вибросите целевую фракцию с размером частиц 0,5-1,4 мм.

Получают микросферы полимерного проппанта с выходом 99 масс %, содержание целевой фракции (В), сферичность (В), содержание микросфер с газовыми включениями (А).

Пример 5.

Готовят полимерную матрицу следующим образом. ДЦПД нагревают в автоклаве до температуры 170°С, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы: тетракис[метилен(3,5-ди-трет-бутил-4-гидроксигидроциннамат)]метан (0,30 масс %), трис(2,4-ди-трет-бутилфенил)фосфит (0,40 масс %), бис(2,2,6,6-тетраметил-4-пиперидинил)себацинат (0,40 масс %) и радикальные инициаторы дитретбутилпероксид (1,5 масс %), 2,3-диметил-2,3-дифенил-бутан (2,5 масс %). После растворения стабилизаторов и инициаторов при температуре 25°С добавляют при перемешивании катализатор метатезисной полимеризации - [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]дихлоро(о-N,N-метилэтил-аминометилфенилметилен)рутений (0,01 масс %) с получением жидкой полимерной матрицы. Полученную жидкую полимерную матрицу перемешивают до достижения вязкости 10 сП и подают ее, погружая в 0,001%-ный водный раствор поливинилового спирта, используя трубку, конец которой помещают в емкость с водным раствором стабилизатора. Объемное отношение полимерная матрица : раствор стабилизатора 1:2. Далее включают механическое перемешивание и диспергируют полимерную матрицу в водном растворе стабилизатора в течение 5 мин. Образовавшуюся эмульсию капель в водном растворе стабилизатора нагревают до температуры 100°С в течение 30 мин и выдерживают при заданной температуре в течение 10 мин с образованием микросфер. Полученную суспензию микросфер охлаждают, микросферы отделяют от раствора фильтрацией, отмывают от остатков стабилизатора трехкратным объемом воды и сушат. Высушенные микросферы нагревают в атмосфере аргона до температуры 340°С в течение 80 мин. После охлаждения выделяют на вибросите целевую фракцию с размером частиц 0,5-1,4 мм.

Получают сферические микросферы полимерного проппанта с выходом 99 масс %, содержание целевой фракции (В), сферичность (А), содержание микросфер с газовыми включениями (В).

Пример 6.

Готовят полимерную матрицу следующим образом. ДЦПД нагревают в автоклаве до температуры 170°С, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы: тетракис[метилен(3,5-ди-трет-бутил-4-гидроксигидроциннамат)]метан (0,30 масс %), трис(2,4-ди-трет-бутилфенил)фосфит (0,40 масс %), бис(2,2,6,6-тетраметил-4-пиперидинил)себацинат (0,40 масс %) и радикальные инициаторы дитретбутилпероксид (1,5 масс %), 2,3-диметил-2,3-дифенил-бутан (2,5 масс %). После растворения стабилизаторов и инициаторов при температуре 25°С добавляют при перемешивании катализатор метатезисной полимеризации - [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]дихлоро(о-N,N-метилэтил-аминометилфенил метилен)рутений (0,02 масс %) с получением жидкой полимерной матрицы.

Полученную жидкую полимерную матрицу перемешивают до достижения вязкости 15 сП. После этого подают ее, погружая в 1,0%-ный водный раствор поливинилового спирта, используя трубку, конец которой помещают в емкость с водным раствором стабилизатора. Объемное отношение полимерная матрица : раствор стабилизатора 1:6. Далее включают механическое перемешивание и диспергируют полимерную матрицу в водном растворе стабилизатора в течение 60 мин. Образовавшуюся эмульсию капель в водном растворе стабилизатора нагревают до температуры 95°С в течение 90 мин и выдерживают при заданной температуре в течение 10 мин с образованием микросфер. После этого полученную суспензию микросфер охлаждают, микросферы отделяют от раствора фильтрацией, отмывают от остатков стабилизатора трехкратным объемом воды и сушат. Высушенные микросферы нагревают в атмосфере аргона до температуры 175°С в течение 40 мин. После охлаждения выделяют на вибросите целевую фракцию с размером частиц 0,5-1,4 мм.

Получают микросферы полимерного проппанта с выходом 97 масс %, содержание целевой фракции (В), сферичность (А), содержание микросфер с газовыми включениями (Б).

Пример 7.

Полимерную матрицу готовят как описано в примере 2. Полученную жидкую полимерную матрицу перемешивают до достижения вязкости 90 сП и подают ее, погружая в 0,001%-ный водный раствор поливинилового спирта, используя трубку, конец которой помещают в емкость с водным раствором стабилизатора. Объемное отношение полимерная матрица : раствор стабилизатора 1:2. Далее включают механическое перемешивание и диспергируют полимерную матрицу в водном растворе стабилизатора в течение 20 мин. Образовавшуюся эмульсию капель в водном растворе стабилизатора нагревают до температуры 95°С в течение 30 мин и выдерживают при заданной температуре в течение 10 мин с образованием микросфер. Полученную суспензию микросфер охлаждают с образованием микросфер, микросферы отделяют от раствора фильтрацией, отмывают от остатков стабилизатора трехкратным объемом воды и сушат. Высушенные микросферы нагревают в атмосфере азота до температуры 250°С в течение 30 мин. После охлаждения выделяют на вибросите целевую фракцию с размером частиц 0,5-1,4 мм.

Получают микросферы полимерного проппанта с выходом 99 масс %, содержание целевой фракции (В), сферичность (В), содержание микросфер с газовыми включениями (В).

Пример 8.

Полимерную матрицу готовят как описано в примере 2. Полученную жидкую полимерную матрицу перемешивают до достижения вязкости 20 сП и подают ее, погружая в 0,5%-ный водный раствор поливинилового спирта, используя трубку, конец которой погружен в водный раствор стабилизатора. Объемное отношение полимерная матрица : раствор стабилизатора 1:4. Далее включают механическое перемешивание и диспергируют полимерную матрицу в водном растворе стабилизатора в течение 60 мин. Образовавшуюся эмульсию капель в водном растворе стабилизатора нагревают до температуры 100°С в течение 30 мин и выдерживают при заданной температуре в течение 20 мин с образованием микросфер. После этого полученную суспензию микросфер охлаждают, микросферы отделяют от раствора фильтрацией, отмывают от остатков стабилизатора трехкратным объемом воды и сушат. Микросферы нагревают в атмосфере аргона до температуры 200°С в течение 45 мин. После охлаждения выделяют на вибросите целевую фракцию с размером частиц 0,5-1,4 мм.

Получают микросферы полимерного проппанта с выходом 98 масс %, содержание целевой фракции (В), сферичность (А), содержание микросфер с газовыми включениями (А).

Как видно из примеров данная технология позволяет получать микросферы полимерного проппанта из ПДЦПД более высокого качества и более простым способом.

Источник поступления информации: Роспатент

Showing 1-10 of 63 items.
26.08.2017
№217.015.e958

Катализатор изодепарафинизации углеводородного сырья с10+ для получения низкозастывающих масел и дизельных топлив и способ получения низкозастывающих масел и топлив с его использованием

Изобретение относится к области катализа и нефтепереработки, в частности к составу и способу приготовления катализатора изодепарафинизации, а также способу получения низкозастывающих масел или дизельных топлив путем преимущественной изомеризации н-парафинов углеводородного сырья с...
Тип: Изобретение
Номер охранного документа: 0002627770
Дата охранного документа: 11.08.2017
19.01.2018
№218.016.08a3

Гидравлическое масло арктического назначения

Гидравлическое масло арктического назначения с улучшенными низкотемпературными свойствами, предназначено для использования в гидравлических системах строительно-дорожных машин, экскаваторах, бульдозерах, снегоходах, буровых установках и другой технике, которая должна сохранять работоспособность...
Тип: Изобретение
Номер охранного документа: 0002631659
Дата охранного документа: 26.09.2017
20.01.2018
№218.016.15bc

Способ получения депрессорной присадки к дизельному топливу и депрессорная присадка к дизельному топливу

Изобретение относится к области нефтепереработки и нефтехимии. Описан способ получения депрессорной присадки к дизельному топливу. Проводят реакцию радикальной сополимеризации малеинового ангидрида и широкой фракции 1-олефинов C-C при соотношении исходных реагентов от 1:0,92 до 1:3,7. Реакцию...
Тип: Изобретение
Номер охранного документа: 0002635107
Дата охранного документа: 09.11.2017
04.04.2018
№218.016.36aa

Способ получения мезопористой наноструктурированной пленки металло-оксида методом электростатического напыления

Изобретение может быть использовано при изготовлении металлооксидных солнечных элементов, сенсоров, систем запасания энергии, катализаторов. Для получения мезопористой наноструктурированной пленки металлооксида методом электростатического напыления напыляемый материал помещают в контейнер с...
Тип: Изобретение
Номер охранного документа: 0002646415
Дата охранного документа: 05.03.2018
10.05.2018
№218.016.3c8d

Способ получения диспергирующей присадки к дизельному топливу и диспергирующая присадка к дизельному топливу

Изобретение относится к области нефтепереработки и нефтехимии, в частности к способу получения диспергирующей присадки к дизельному топливу. Проводят реакцию метатезисной сополимеризации функционализированного норборнена и циклоолефина и 1-гексена в качестве агента переноса цепи в присутствии...
Тип: Изобретение
Номер охранного документа: 0002647858
Дата охранного документа: 21.03.2018
10.05.2018
№218.016.4120

Сенсибилизированный красителем металлооксидный солнечный элемент

Изобретение относится к области солнечной фотоэнергетики, в частности к созданию устройств для прямого преобразования солнечной энергии в электрическую с использованием сенсибилизированных красителем металлооксидных солнечных элементов (МО СЭ). Наиболее успешно настоящее изобретение может быть...
Тип: Изобретение
Номер охранного документа: 0002649239
Дата охранного документа: 30.03.2018
09.06.2018
№218.016.5f51

Способ получения синтетической нефти

Настоящее изобретение относится к способу получения синтетической нефти из продуктов синтеза Фишера-Тропша, включающий гидрирование смеси синтетических углеводородов в реакторе с неподвижным слоем никельсодержащего катализатора в токе газа гидрирования, включающего моноксид углерода и водород....
Тип: Изобретение
Номер охранного документа: 0002656601
Дата охранного документа: 06.06.2018
11.06.2018
№218.016.614c

Фотосенсибилизатор для солнечных элементов

Изобретение относится к области солнечной энергетики, в частности к фотосенсибилизаторам для металлоксидных солнечных элементов. Фотосенсибилизатор представляет собой 4-[(Е)-[(2Е)-3-[4-(диметиламино)фенил]проп-2-ен-1-илиден]амино]бензойную кислоту. Фотосенсибилизатор получают одностадийным...
Тип: Изобретение
Номер охранного документа: 0002657084
Дата охранного документа: 08.06.2018
01.07.2018
№218.016.697c

Способ получения циклопентана

Изобретение относится к способу получения циклопентана, включающему последовательно осуществляемые частичное и исчерпывающее гидрирование циклопентадиена в растворителе в присутствии катализатора. Способ характеризуется тем, что частичное гидрирование ведут при температуре 10…40°С, давлении...
Тип: Изобретение
Номер охранного документа: 0002659227
Дата охранного документа: 29.06.2018
10.07.2018
№218.016.6ee7

Способ определения величины максимального горизонтального напряжения нефтегазового пласта

Изобретение относится к нефтегазовой промышленности и может быть использовано для определения величины максимального горизонтального напряжения в продуктивных пластах нефтегазовых месторождений для выбора оптимальной технологии бурения и эксплуатации скважин. Способ включает проведение...
Тип: Изобретение
Номер охранного документа: 0002660702
Дата охранного документа: 09.07.2018
Showing 1-10 of 57 items.
10.11.2013
№216.012.7d89

Способ получения n,n-диарилзамещенных 2-трихлорометилимидазолидинов

Настоящее изобретение относится к области органической химии, а именно к способу получения N,N-диарилзамещенных 2-трихлорометилимидазолидинов, который заключается во взаимодействии 2,4,6-триметиланилина или 2,4-диизопропиланилина или 2,4-диметиланилина с триэтилортоформиатом в присутствии...
Тип: Изобретение
Номер охранного документа: 0002497810
Дата охранного документа: 10.11.2013
10.05.2014
№216.012.c15b

Способ получения изделий из полидициклопентадиена центробежным формованием

Изобретение относится к химии, к полимерным материалам. Описан способ получения полимерных изделий на основе полидициклопентадиена центробежным формованием, включающий смешивание дициклопентадиена с рутенийсодержащим катализатором и модифицирующими добавками, помещение смеси в форму, вращение...
Тип: Изобретение
Номер охранного документа: 0002515248
Дата охранного документа: 10.05.2014
20.07.2014
№216.012.e0be

Полимерный проппант и способ его получения

Изобретение относится к нефте-, газодобычи с применением проппантов. Способ получения проппанта включает получение смеси олигоциклопентадиенов путем нагрева дициклопентадиена до температуры 150-220°С и выдержки при данной температуре в течение 15-360 мин, охлаждение смеси до 20-50°С,...
Тип: Изобретение
Номер охранного документа: 0002523320
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e0bf

Материал для проппанта и способ его получения

Изобретение относится к производству проппантов, используемых при добыче нефти и газа. Способ получения материала для проппанта включает получение смеси олигоциклопентадиенов с содержанием тримеров и тетрамеров 5-60 мас.% путем нагрева дициклопентадиена до температуры 150-220°С и выдержки при...
Тип: Изобретение
Номер охранного документа: 0002523321
Дата охранного документа: 20.07.2014
10.08.2014
№216.012.e631

Полимерный проппант повышенной термопрочности и способ его получения

Группа изобретений относится к нефте-, газодобыче с использованием проппантов из полимерных материалов. Способ получения полимерного проппанта повышенной термопрочности, включающий смешивание дициклопентадиена с, по крайней мере, одним из метакриловых эфиров, выбранных из приведенной группы, и,...
Тип: Изобретение
Номер охранного документа: 0002524722
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e7bd

Каталитическая система процесса тримеризации этилена в альфа-олефины

Изобретение относится к технологии селективного получения 1-гексена тримеризацией этилена. Изобретение направлено на повышение селективности катализатора по 1-гексену при сохранении высокой производительности каталитической системы и одновременном понижении количества побочно образующихся...
Тип: Изобретение
Номер охранного документа: 0002525118
Дата охранного документа: 10.08.2014
27.08.2014
№216.012.f013

Композиционный материал на основе полидициклопентадиена, состав для получения матрицы и способ получения композиционного материала

Изобретение относится к химии высокомолекулярных соединений, в частности к композиционным материалам на основе полидициклопентадиена. Композиционный материал на основе полидициклопентадиена включает кремнийсодержащий неорганический наполнитель и полимерную матрицу, содержащую...
Тип: Изобретение
Номер охранного документа: 0002527278
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.f0c2

Полимерный материал для проппанта и способ его получения

Настоящее изобретение относится к полимерному материалу для проппанта, представляющему собой метатезис-радикально сшитую смесь олигоциклопентадиенов и эфиров метилкарбоксинорборнена. Также описан способ получения такого материала, включающий получение смеси олигоциклопентадиенов и эфиров...
Тип: Изобретение
Номер охранного документа: 0002527453
Дата охранного документа: 27.08.2014
20.09.2014
№216.012.f619

Микросферы из полидициклопентадиена и способ их получения

Изобретение относится к технологии получения полимерных микросфер из полидициклопентадиена. Получают микросферы со сферичностью не менее 0,9, средний размер которых находится в диапазоне 0,25-1,1 мм, с объемной плотностью в диапазоне 0,4-0,7 г/см. Способ получения микросфер включает получение...
Тип: Изобретение
Номер охранного документа: 0002528834
Дата охранного документа: 20.09.2014
20.03.2015
№216.013.3312

Композиция для приготовления полимерной матрицы, содержащей полидициклопентадиен для получения композиционного материала, композиционный материал на основе полидициклопентадиена и способ его получения

Изобретение относится к химии высокомолекулярных соединений, в частности к композиционным материалам и технологии их получения с использованием полидициклопентадиена. Композиция для приготовления полимерной матрицы содержит, масс. %: полимерный модификатор 0,5-20,0, радикальный инициатор...
Тип: Изобретение
Номер охранного документа: 0002544549
Дата охранного документа: 20.03.2015
+ добавить свой РИД