×
20.04.2023
223.018.4cda

Результат интеллектуальной деятельности: Способ легирования кристаллов сульфида цинка железом или хромом

Вид РИД

Изобретение

Аннотация: Изобретение относится к области выращивания кристаллов. Способ легирования кристаллов сульфида цинка железом или хромом включает смешивание порошков сульфида цинка и порошка моносульфида легирующего металла с последующим выращиванием кристалла из расплава вертикальной зонной плавкой. Способ позволяет получать кристаллы ZnS с однородным распределением легирующей добавки по их длине и концентрацией легирующего металла (железа или хрома), совпадающей с его содержанием в исходной загрузке. 1 ил., 1 табл., 6 пр.

Изобретение относится к области выращивания кристаллов.

Кристаллы сульфида цинка, легированные железом или хромом применяются для изготовления пассивных модуляторов в резонаторах лазеров ближнего инфракрасного диапазона, а также для изготовления активных элементов таких лазеров.

Известен способ легирования кристаллов селенида цинка и сульфида цинка железом [S. Mirov, A. Gallian, A. Martinez, V. Fedorov. Saturable absorbers for Q- switching of middle infrared laser cavities. Patent Application Publication US 2080101423 A1] - аналог, в котором на поверхность кристаллического ZnSe или ZnS наносится пленка железа, а собственно легирование производится путем диффузионного отжига. К недостаткам этого способа можно отнести неоднородное распределение легирующей добавки по толщине изделия, характерное для диффузионных методов легирования, а также сложность многостадийного процесса, включающего рост кристалла, нанесение пленки железа и собственно диффузионное легирование.

Известен способ легирования кристаллов халькогенидов цинка хромом или железом [С.С.Балабанов, Е.М. Гаврищук, В.Б. Иконников, С.А. Родин, Д.В. Савин. Способ получения легированных халькогенидов цинка. Международная заявка WO 2016024877 А1]-прототип, в котором на поверхность халькогенида цинка наносят пленку хрома или железа, затем на этой пленке формируют слой халькогенида цинка методом химического осаждения из газовой фазы и полученную трехслойную структуру подвергают диффузионному отжигу. Основной недостаток этого способа - неоднородное распределение легирующей добавки по толщине изделия, характерное для диффузионных методов легирования. В легированных железом кристаллах сульфида цинка, полученных по способу-прототипу, отношение текущей концентрации металла (железа или кобальта) Сme к максимальной Сmax меняется на два порядка от края изделия к его середине даже при небольшой (5-8 мм) толщине изделия. К недостаткам способа-прототипа следует отнести и сложность многостадийного процесса.

Задачей предлагаемого решения является создание способа легирования кристаллов сульфида цинка железом или хромом, в котором распределение легирующей добавки в кристалле является однородным.

Поставленная задача решается в предлагаемом способе легирования кристаллов сульфида цинка железом или хромом за счет того, что легирующий металл добавляют в порошок сульфида цинка в виде порошка моносульфида железа или моносульфида хрома, а затем проводят выращивание кристалла вертикальной зонной плавкой.

Введение легирующих добавок в виде моносульфидов металлов обеспечивает валовое содержание железа или хрома в кристаллах совпадающее с содержанием добавок в исходной загрузке, что подтверждается данными, приведенными в Таблице, где концентрация Fe и Сr во всех случаях измерена в центре кристалла (как по длине, так и по радиусу). Это обусловлено близкими скоростями испарения ZnS, FeS и CrS, что предотвращает концентрирование или разбавление лигатуры в процессе роста за счет потерь ZnS на испарение, характерных для роста кристаллов ZnS из расплава.

Применение вертикальной зонной плавки позволяет выращивать кристаллы без радиального распределения легирующей добавки. При этом эффективные коэффициенты распределения железа, хрома и кобальта при вертикальной зонной плавке невелики, что обеспечивает не более чем двукратное изменение концентрации по длине кристалла в направлении роста, что экспериментально подтверждено в кристаллах длиной до 200 мм и диаметром до 40 мм.

Пример 1.

Порошки ZnS и FeS смешивают таким образом, чтобы концентрация железа в загрузке составляла 2,5×1017 см3. Полученную смесь порошков загружают в тигель и помещают в установку для выращивания кристаллов. Проводят процесс вертикальной зонной плавки. Выращенный кристалл извлекают, в середине кристалла (по длине) вырезают пластину толщиной 2 мм, которую полируют с двух сторон. Снимают спектр пропускания инфракрасного излучения пластинки и рассчитывают коэффициент поглощения на длине волны 2,8 мкм. Определяют концентрацию железа по зависимости коэффициента поглощения от концентрации. Найденная величина концентрации составляет 2,61×1017 см-3 (Таблица, строка 1).

Пример 2.

Порошки ZnS и FeS смешивают таким образом, чтобы концентрация железа в за- грузке составляла 5,0×1018 см3. Полученную смесь порошков загружают в тигель и помещают в установку для выращивания кристаллов. Проводят процесс вертикальной зонной плавки. Выращенный кристалл извлекают, в середине кристалла (по длине) вырезают пластину толщиной 1 мм, которую полируют с двух сторон. Снимают спектр пропускания инфракрасного излучения пластинки и рассчитывают коэффициент поглощения на длине волны 2,8 мкм. Определяют концентрацию железа по зависимости коэффициента поглощения от концентрации. Найденная величина концентрации составляет 5,28×1018 см-3 (Таблица, строка 2).

Пример 3.

Порошки ZnS и FeS смешивают таким образом, чтобы концентрация железа в загрузке составляла 1,0×1019 см3. Полученную смесь порошков загружают в тигель и помещают в установку для выращивания кристаллов. Проводят процесс вертикальной зонной плавки. Выращенный кристалл извлекают, в середине кристалла (по длине) вырезают пластину толщиной 0,5 мм, которую полируют с двух сторон. Снимают спектр пропускания инфракрасного излучения пластинки и рассчитывают коэффициент поглощения на длине волны 2,8 мкм. Определяют концентрацию железа по зависимости коэффициента поглощения от концентрации. Найденная величина концентрации составляет 1,21×1019 см3 (Таблица, строка 3).

Пример 4.

Порошки ZnS и CrS смешивают таким образом, чтобы концентрация хрома в загрузке составляла 2,5×1017 см3. Полученную смесь порошков загружают в тигель и помещают в установку для выращивания кристаллов. Проводят процесс вертикальной зонной плавки. Выращенный кристалл извлекают, в середине кристалла (по длине) вырезают пластину толщиной 2 мм, которую полируют с двух сторон. Снимают спектр пропускания инфракрасного излучения пластинки и рассчитывают коэффициент поглощения на длине волны 1,7 мкм. Определяют концентрацию хрома по зависимости коэффициента поглощения от концентрации. Найденная величина концентрации составляет 2,58×1017 см-3 (Таблица, строка 4).

Пример 5.

Порошки ZnS и CrS смешивают таким образом, чтобы концентрация хрома в загрузке составляла 5×1018 см3. Полученную смесь порошков загружают в тигель и помещают в установку для выращивания кристаллов. Проводят процесс вертикальной зонной плавки. Выращенный кристалл извлекают, в середине кристалла (по длине) вырезают пластину толщиной 1 мм, которую полируют с двух сторон. Снимают спектр пропускания инфракрасного излучения пластинки и рассчитывают коэффициент поглощения на длине волны 1,7 мкм. Определяют концентрацию хрома по зависимости коэффициента поглощения от концентрации. Найденная величина концентрации составляет 5,21×1018 см-3 (Таблица, строка 5).

Пример 6.

Порошки ZnS и CrS смешивают таким образом, чтобы концентрация хрома в загрузке составляла 1,0×1019 см3. Полученную смесь порошков загружают в тигель и помещают в установку для выращивания кристаллов. Проводят процесс вертикальной зонной плавки. Выращенный кристалл извлекают, в середине кристалла (по длине) вырезают пластину толщиной 0,5 мм, которую полируют с двух сторон. Снимают спектр пропускания инфракрасного излучения пластинки и рассчитывают коэффициент поглощения на длине волны 1,7 мкм. Определяют концентрацию хрома по зависимости коэффициента поглощения от концентрации. Найденная величина концентрации составляет 1,19×1019 см-3 (Таблица, строка 6). На Фиг. 1 показаны (а) полированный образец из полученного кристалла ZnS:Cr и (б) оптические элементы, изготовленные из этого кристалла.

Способ легирования кристаллов сульфида цинка железом или хромом, отличающийся тем, что легирующий металл добавляют в порошок сульфида цинка в виде порошка моносульфида железа или моносульфида хрома, а затем проводят выращивание кристалла вертикальной зонной плавкой.
Источник поступления информации: Роспатент

Showing 11-20 of 91 items.
27.06.2014
№216.012.d9fb

Способ получения наноалмазов при пиролизе метана в электрическом поле

Изобретение может быть использовано в медицине при производстве препаратов для послеоперационной поддерживающей терапии. Проводят термическое разложение метана в герметичной камере на подложках из кремния или никеля при давлении 10-30 Торр и температуре 1050-1150 °С. Нагрев осуществляют...
Тип: Изобретение
Номер охранного документа: 0002521581
Дата охранного документа: 27.06.2014
10.12.2014
№216.013.0cf2

Система автоматической классификации гидролокатора ближнего действия

Изобретение относится к области гидроакустики и может быть использовано для построения систем классификации объектов, обнаруженных гидролокаторами ближнего действия. Технический результат - обеспечение классификации объекта, обнаруженного гидролокатором ближней обстановки, в автоматическом...
Тип: Изобретение
Номер охранного документа: 0002534731
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1328

Генератор субтерагерцового и терагерцового излучения на основе оптического транзистора

Изобретение относится к области генерации электромагнитного излучения в субтерагерцовом и терагерцовом диапазонах частот. Генератор субтерагерцового и терагерцового излучения включает источник лазерного излучения, электрическую цепь с источниками напряжения и импедансной нагрузкой, и оптически...
Тип: Изобретение
Номер охранного документа: 0002536327
Дата охранного документа: 20.12.2014
20.03.2015
№216.013.3499

Люминесцентное литий-боратное стекло

Изобретение относится к области люминесцентных стекол для преобразования ультрафиолетового излучения в белый цвет. Техническим результатом изобретения является создание люминесцентного стекла с высокой прозрачностью в видимом диапазоне. Люминесцентное литий-боратное стекло на основе тетрабората...
Тип: Изобретение
Номер охранного документа: 0002544940
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.3f8e

Ампула для выращивания кристаллов в условиях микрогравитации

Изобретение относится к технологическому оборудованию, предназначенному для выращивания кристаллов в условиях микрогравитации. Ампула содержит герметичный корпус 1 из кварцевого стекла и коаксиально размещенный в нем герметичный кварцевый тигель 4 с загрузкой селенида галлия 5 и графитовые...
Тип: Изобретение
Номер охранного документа: 0002547758
Дата охранного документа: 10.04.2015
10.06.2015
№216.013.51b3

Устройство для выращивания из расплава тугоплавких волокон со стабилизацией их диаметра

Изобретение относится к производству профилированных высокотемпературных волокон тугоплавких оксидов, гранатов, перовскитов. Устройство содержит ростовую камеру 1 с установленными в ней тиглем 2 для расплава с формообразователем 3, нагреватель 4 тигля 2, экраны 5, затравкодержатель 6, средство...
Тип: Изобретение
Номер охранного документа: 0002552436
Дата охранного документа: 10.06.2015
10.07.2015
№216.013.5c65

Способ обработки гидроакустического сигнала шумоизлучения объекта

Настоящее изобретение относится к области гидроакустики и может быть использовано для разработки гидроакустической аппаратуры различного назначения. Способ позволяет автоматически обнаруживать гидроакустические сигналы шумоизлучения объектов. Способ обработки гидроакустического сигнала...
Тип: Изобретение
Номер охранного документа: 0002555194
Дата охранного документа: 10.07.2015
20.11.2015
№216.013.914f

Способ изготовления контактного электродного материала с контролируемой пористостью для батарей твердооксидных топливных элементов

Изобретение относится к области твердооксидных топливных элементов (ТОТЭ) планарной конструкции, а именно к сборке отдельных мембранно-электродных блоков и деталей токовых коллекторов (интерконнекторов) в батареи для увеличения снимаемой мощности. Задачей настоящего изобретения является...
Тип: Изобретение
Номер охранного документа: 0002568815
Дата охранного документа: 20.11.2015
10.01.2016
№216.013.9ea0

Холодный катод

Изобретение относится к области получения углеродных наноструктур, а именно слоев углеродных нанотрубок на металлических подложках, применяемых в качестве холодных катодов (автоэлектронных источников эмиссии). Технический результат - создание простого в изготовлении холодного катода без...
Тип: Изобретение
Номер охранного документа: 0002572245
Дата охранного документа: 10.01.2016
20.01.2016
№216.013.a220

Композиция углеродной заготовки для получения sic/c/si керамики и способ получения sic/c/si изделий

Изобретение относится к получению керамики на основе SiC/C/Si, которая может быть использована для производства конструкционных изделий, используемых в нефтедобывающей и нефтеперерабатывающей, химической, металлургической и пищевой промышленности, ВПК, ЖКХ. Технический результат изобретения -...
Тип: Изобретение
Номер охранного документа: 0002573146
Дата охранного документа: 20.01.2016
Showing 11-20 of 49 items.
10.05.2016
№216.015.3dca

Способ дифференциальной диагностики глиом головного мозга человека

Изобретение относится к области молекулярной биологии и медицины, в частности к онкологии. Из образца опухолевой ткани головного мозга выделяют суммарный пул РНК (в том числе содержащий и микроРНК) любым из известных способов. Далее проводят измерение уровней экспрессии 10 микроРНК, а именно...
Тип: Изобретение
Номер охранного документа: 0002583871
Дата охранного документа: 10.05.2016
27.05.2016
№216.015.426a

Способ увеличения размеров алмазов

Изобретение относится к области получения синтетических алмазов и может быть использовано в качестве детекторов ядерного излучения в счетчиках быстрых частиц, а также в ювелирном деле. Способ включает осаждение углерода на затравочные кристаллы алмазов при их нагреве в вакууме, при этом...
Тип: Изобретение
Номер охранного документа: 0002585634
Дата охранного документа: 27.05.2016
13.01.2017
№217.015.823a

Способ нанесения массивов углеродных нанотрубок на металлические подложки

Изобретение относится к нанотехнологии и может быть использовано для изготовления автоэлектронных эмиттеров. Углеродные нанотрубки осаждают на металлические подложки в дуговом реакторе в рабочей атмосфере на основе инертного газа, содержащей водород 8-10 об.% и гелий - остальное. Металлические...
Тип: Изобретение
Номер охранного документа: 0002601335
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.bfac

Способ изготовления изделия с фильтром для агрессивных жидкостей и газов

Изобретение относится к области химической технологии и может быть использовано для изготовления фильтров, способных применяться для очистки агрессивных жидкостей и газов от инородных включений при высоких температурах эксплуатации, в том числе диметилгидразина, используемого в качестве...
Тип: Изобретение
Номер охранного документа: 0002617105
Дата охранного документа: 20.04.2017
26.08.2017
№217.015.d8c0

Способ получения сульфида галлия (ii)

Изобретение относится к неорганической химии, а именно к получению сульфида галлия (II), являющегося перспективным материалом для полупроводниковой оптоэлектронной техники и инфракрасной оптики. Cинтез GaS проводили в замкнутом объеме из элементарных галлия и серы, взятых в стехиометрическом...
Тип: Изобретение
Номер охранного документа: 0002623414
Дата охранного документа: 26.06.2017
19.01.2018
№218.016.0759

Способ получения кремниевых мишеней для магнетронного распыления

Изобретение относится к литейному производству, в частности к получению кремниевых профильных отливок для мишеней магнетронного распыления. Шихту полупроводникового поликристаллического кремния расплавляют в графитовом тигле, который перемещают вертикально в полости нагревателя. В донном...
Тип: Изобретение
Номер охранного документа: 0002631372
Дата охранного документа: 21.09.2017
10.05.2018
№218.016.4af7

Способ интраоперационного забора биоптата глиомы и морфологически неизменной ткани головного мозга для молекулярно-генетических исследований

Изобретение относится к области медицины, в частности к онкологии. Предложен способ интраоперационного забора биоптата глиомы и морфологически неизмененной ткани головного мозга для молекулярно-генетических исследований. Под нейронавигационным контролем осуществляют доступ к опухоли. При...
Тип: Изобретение
Номер охранного документа: 0002651749
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4d2f

Способ выращивания кристаллов фуллерена с60

Изобретение может быть использовано в полупроводниковой оптоэлектронике. Навеску порошка исходного фуллерена С60 загружают в кварцевую ампулу, внутренняя поверхность которой покрыта пироуглеродом для защиты исходного порошка от воздействия УФ излучения. Затем проводят низкотемпературную...
Тип: Изобретение
Номер охранного документа: 0002652204
Дата охранного документа: 25.04.2018
09.08.2018
№218.016.78ff

Материал шпонки для высокотемпературных применений

Изобретение относится к области машиностроения и может быть использовано в устройствах, при работе которых возможно выделение большого количества тепла, приводящего к тепловому расширению шпонки и заклиниванию устройства. Композиционный материал шпонки представляет собой матрицу из...
Тип: Изобретение
Номер охранного документа: 0002663146
Дата охранного документа: 01.08.2018
20.02.2019
№219.016.c16c

Способ получения нанопорошка селенотеллурида цинка

Способ получения нанопорошка селенотеллурида цинка состава ZnSeTe относится к области получения сцинтилляционных материалов и может быть использован в нанотехнологиях, связанных с применением нанопорошков. Технический результат - получение нанопорошка селенотеллурида цинка состава ZnSeTe...
Тип: Изобретение
Номер охранного документа: 0002415805
Дата охранного документа: 10.04.2011
+ добавить свой РИД