×
13.01.2017
217.015.823a

СПОСОБ НАНЕСЕНИЯ МАССИВОВ УГЛЕРОДНЫХ НАНОТРУБОК НА МЕТАЛЛИЧЕСКИЕ ПОДЛОЖКИ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к нанотехнологии и может быть использовано для изготовления автоэлектронных эмиттеров. Углеродные нанотрубки осаждают на металлические подложки в дуговом реакторе в рабочей атмосфере на основе инертного газа, содержащей водород 8-10 об.% и гелий - остальное. Металлические подложки закреплены на дисковом катоде на расстоянии 10d-12d от оси дугового разряда, где d - диаметр графитового стержня анода. Полученные углеродные нанотрубки не содержат примесей сажи и фуллеренов, имеют хороший контакт с подложкой. Упрощается аппаратурное оформление процесса. 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к области получения углеродных наноструктур, а именно массивов углеродных нанотрубок на металлических подложках.

Углеродные наноматериалы имеют широкий спектр применения. Одно из важных направлений их практического использования - это создание автоэлектронных эмиттеров на основе массивов углеродных нанотрубок на токопроводящих подложках.

Известен способ нанесения углеродных нанотрубок на металлические подложки [Wu Z. Transparent conductive carbon nanotube films. Science, 2004, v. 305, p. 1273-1276] - аналог. Нанотрубки наносят на металлические подложки из растворов путем вакуумной фильтрации через мембрану с последующим удалением поверхностно-активных веществ. Основным недостатком аналога является сложность, которая обусловлена необходимостью изготовления наноструктурированных мембран и приготовления жидких растворов углеродных нанотрубок. Кроме того, следует отметить плохую воспроизводимость процесса, а также загрязнение массива углеродных нанотрубок поверхностно-активными веществами.

Известен способ нанесения углеродных нанотрубок на металлические подложки [Kaempgen М. Sonochemical optimization of the conductivity of single wall carbon nanotube networks. Adv. Mater., 2008, v. 20, p. 616-620]. Нанотрубки наносят на металлические подложки ультразвуковым распылением жидких растворов. Создание раствора на основе смеси углеродных нанотрубок и поверхностно-активных веществ для получения высококачественных пленок требует значительных усилий, поэтому сложность процесса является основным недостатком аналога. Следует отметить, что загрязнение углеродных нанотрубок поверхностно-активными веществами и веществом растворителя также нужно отнести к недостаткам процесса-аналога.

Наиболее близким по технической сущности к предлагаемому является способ нанесения углеродных нанотрубок на металлическую подложку (Патент RU 2471706, кл. С01В 31/02, 10.01.2013 г.), позволяющий осаждать упорядоченные массивы УНТ на подложки из электротехнических нелегированных сталей в атмосфере инертного газа. Изготавливаемые на этом устройстве структуры «подложка - массив УНТ» являются токопроводящими.

Однако эти структуры не пригодны для изготовления автоэлектронных эмиттеров по причине плохого контакта металлическая подложка - углеродные нанотрубки и показывают плохие характеристики в части, касающейся срока службы и плотности тока. Заявленное устройство позволяет размещать подложки исключительно вблизи дуги, и для поиска оптимального расстояния для получения токопроводящих структур, пригодных для изготовления автоэлектронных эмиттеров, требуется специальное приспособление, позволяющее перемещать металлические подложки (изготовление катода с большим количеством отверстий для крепления подложек на разных расстояниях приводит к изменению потоков углеродсодержащего пара и отсутствию нанотрубок в слое сажи на металлических подложках).

Задачей предлагаемого способа является упрощение процесса нанесения массивов углеродных нанотрубок на металлические подложки без примеси сажи и фуллеренов, что обеспечивало бы хороший контакт углеродных нанотрубок с металлической подложкой и получение структуры, пригодной для изготовления автоэлектронных эмиттеров.

Эта задача решается в способе нанесения массивов углеродных нанотрубок на металлические подложки, включающем осаждение углеродных нанотрубок на металлические подложки в дуговом реакторе в рабочей атмосфере на основе инертного газа, при этом металлические подложки закреплены на дисковом катоде на расстоянии 10d-12d от оси дугового разряда, где d - диаметр графитового стержня анода, а рабочей атмосферой является смесь, содержащая водород 8-10 об.% и гелий - остальное.

Сепарация нанотрубок от примесей (углеродных наночастиц, сажи и фуллеренов) основана на разном парциальном давлении углеродных наноматериалов в плазме дугового разряда в атмосфере гелия и, как следствие, на наличии градиента концентрации этих примесей в объеме, окружающем дуговой разряд. В атмосфере гелия на расстоянии 10d-12d от оси дугового разряда, где d - диаметр графитового стержня анода, на металлические подложки преимущественно конденсируются сажа, фуллерены и углеродные нанотрубки. Дальнейшие опыты показали, что получение массивов углеродных нанотрубок на металлических подложках без примеси сажи и фуллеренов возможно при введении в атмосферу гелия 8-10% (об.) водорода.

Массивы углеродных нанотрубок на металлических подложках, полученные предложенным способом, являются токопроводящими и пригодны для изготовления автоэлектронных эмиттеров, что подтверждается вольт-амперными характеристиками Фиг. 1, снятыми при комнатной температуре. На Фиг. 1 кривая 1 получена при повышении напряжения, кривая 2 - при понижении напряжения от 1000 В.

Примеры.

1. Осаждение массивов углеродных нанотрубок на металлические подложки проводили в процессе горения дуги в атмосфере смеси, содержащей водород - 7% (об.) и гелий (остальное), металлические подложки закреплены на дисковом катоде на расстоянии 11d от оси дугового разряда (где d - диаметр графитового стержня анода). В результате измерения вольт-амперных характеристик полученных массивов углеродных нанотрубок на металлических подложках эмиссионный ток не наблюдался. Полученные структуры не пригодны для изготовления автоэлектронных эмиттеров.

2. Осаждение массивов углеродных нанотрубок на металлические подложки проводится в процессе горения дуги в атмосфере смеси, содержащей водород - 11% (об.) и гелий (остальное), металлические подложки закреплены на дисковом катоде на расстоянии 11d от оси дугового разряда (где d - диаметр графитового стержня анода). В результате измерения вольт-амперных характеристик полученных массивов углеродных нанотрубок на металлических подложках эмиссионный ток не наблюдался. Полученные структуры не пригодны для изготовления автоэлектронных эмиттеров.

3. Осаждение массивов углеродных нанотрубок на металлические подложки проводится в процессе горения дуги в атмосфере смеси, содержащей водород - 10% (об.) и гелий (остальное), металлические подложки закреплены на дисковом катоде на расстоянии 11d от оси дугового разряда (где d - диаметр графитового стержня анода). В результате измерения вольт-амперных характеристик полученных массивов углеродных нанотрубок на металлических подложках эмиссионный ток наблюдался. Полученные структуры пригодны для изготовления автоэлектронных эмиттеров.

4. Осаждение массивов углеродных нанотрубок на металлические подложки проводится в процессе горения дуги в атмосфере смеси, содержащей водород - 10% (об.) и гелий (остальное), металлические подложки закреплены на дисковом катоде на расстоянии 9,5d от оси дугового разряда (где d - диаметр графитового стержня анода). В результате измерения вольт-амперных характеристик полученных массивов углеродных нанотрубок на металлических подложках эмиссионный ток не наблюдался. Полученные структуры не пригодны для изготовления автоэлектронных эмиттеров.

5. Осаждение массивов углеродных нанотрубок на металлические подложки проводится в процессе горения дуги в атмосфере смеси, содержащей водород - 10% (об.) и гелий (остальное), металлические подложки закреплены на дисковом катоде на расстоянии 12,5d от оси дугового разряда (где d - диаметр графитового стержня анода). В результате измерения вольт-амперных характеристик полученных массивов углеродных нанотрубок на металлических подложках эмиссионный ток не наблюдался. Полученные структуры не пригодны для изготовления автоэлектронных эмиттеров.

6. Осаждение массивов углеродных нанотрубок на металлические подложки проводится в процессе горения дуги в атмосфере смеси, содержащей водород - 10% (об.) и гелий (остальное), металлические подложки закреплены на дисковом катоде на расстоянии 10d от оси дугового разряда (где d - диаметр графитового стержня анода). В результате измерения вольт-амперных характеристик полученных массивов углеродных нанотрубок на металлических подложках эмиссионный ток наблюдался. Полученные структуры пригодны для изготовления автоэлектронных эмиттеров.

Способ нанесения массивов углеродных нанотрубок на металлические подложки для автоэлектронных эмиттеров, включающий осаждение углеродных нанотрубок на металлические подложки в дуговом реакторе в рабочей атмосфере на основе инертного газа, отличающийся тем, что металлические подложки закреплены на дисковом катоде на расстоянии 10d-12d от оси дугового разряда, где d - диаметр графитового стержня анода, а рабочей атмосферой является смесь, содержащая водород - 8-10 об.% и гелий - остальное.
СПОСОБ НАНЕСЕНИЯ МАССИВОВ УГЛЕРОДНЫХ НАНОТРУБОК НА МЕТАЛЛИЧЕСКИЕ ПОДЛОЖКИ
Источник поступления информации: Роспатент

Showing 1-10 of 94 items.
10.01.2013
№216.012.1846

Устройство для получения массивов углеродных нанотрубок на металлических подложках

Изобретение относится к нанотехнологии. Устройство для получения массивов углеродных нанотрубок (УНТ) на металлических подложках состоит из двух электродов 7 и 8, расположенных соосно и перемещаемых навстречу друг другу водоохлаждаемыми штоками 8 и 9, скользящих графитовых токоподводов 11 и 12,...
Тип: Изобретение
Номер охранного документа: 0002471706
Дата охранного документа: 10.01.2013
10.02.2013
№216.012.2477

Устройство и способ с речевым интерфейсом определения водолазом направления на источник тонального звукового сигнала

Использование: для определения водолазом направления на источник тонального звукового сигнала. Сущность: сигнал источника принимается на две ненаправленные антенны, расстояние между которыми λ/4. Сигнал от первой антенны подается на вход сумматора, сигнал от второй антенны последовательно...
Тип: Изобретение
Номер охранного документа: 0002474837
Дата охранного документа: 10.02.2013
10.04.2013
№216.012.3480

Способ определения глубины погружения приводняющегося объекта

Использование: для измерения глубины погружения приводняющегося объекта с использованием гидролокатора ближнего действия, установленного на движущемся носителе относительно горизонта его движения. Сущность: с помощью гидролокатора производят излучение зондирующих сигналов гидролокатором, прием...
Тип: Изобретение
Номер охранного документа: 0002478983
Дата охранного документа: 10.04.2013
20.06.2013
№216.012.4cb3

Способ получения монокристаллов теллурида галлия (ii)

Изобретение относится к технологии получения кристаллов GaTe, которые могут быть использованы в нелинейной оптике, а именно для оптических преобразователей частоты ИК и ТГц диапазонов. Кристаллы теллурида галлия (II) выращивают вертикальной зонной плавкой в графитовых тиглях под давлением...
Тип: Изобретение
Номер охранного документа: 0002485217
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4cb4

Способ получения кристаллов вольфрамата натрия-висмута

Изобретение относится к области выращивания из расплава нелегированных кристаллов вольфрамата натрия-висмута NaBi(WO), являющегося перспективным материалом для Черепковских детекторов. Выращивание кристаллов осуществляют методом Чохральского в воздушной атмосфере со скоростью вытягивания 4-5...
Тип: Изобретение
Номер охранного документа: 0002485218
Дата охранного документа: 20.06.2013
27.10.2013
№216.012.783c

Крионаконечник с сапфировым хладопроводом-облучателем

Изобретение относится к хирургическим инструментам, применяемым для локального замораживания и деструкции выделенных участков биологической ткани, и может быть использовано в общей и детской хирургии, в онкологии, дерматологии, отоларингологии, гинекологии, косметологии. Крионаконечник с...
Тип: Изобретение
Номер охранного документа: 0002496442
Дата охранного документа: 27.10.2013
20.01.2014
№216.012.98be

Устройство для визуализации электрических полей свч в пространстве

Использование: относится к области визуализации распределения в пространстве электрических полей СВЧ диапазона. Сущность: в установке визуализации СВЧ полей применены измерительная камера «открытого» типа из двух расположенных горизонтально параллельных медных дисков, антенна-зонд,...
Тип: Изобретение
Номер охранного документа: 0002504801
Дата охранного документа: 20.01.2014
27.03.2014
№216.012.adf5

Способ удаления опухолей мозга с выделением границ опухоли флуоресцентной диагностикой с одновременной коагуляцией и аспирацией и устройство для его осуществления

Группа изобретений относится к медицине. Устройство включает сапфировый зонд с продольными каналами, в которых размещены оптические волокна, одни из которых предназначены для подачи излучения, возбуждающего флуоресценцию и коагулирующего излучения в зону деструкции ткани от присоединенных...
Тип: Изобретение
Номер охранного документа: 0002510248
Дата охранного документа: 27.03.2014
10.06.2014
№216.012.d04b

Способ эксфолиации слоистых кристаллических материалов

Изобретение относится к нанотехнологиям. Способ включает эксфолиацию заготовок из слоистых кристаллических материалов, закрепленных с одной стороны на опоре из глипталя, с использованием клейкой ленты, глипталь по окончании эксфолиации растворяют в ацетоне, где образуется взвесь кристаллических...
Тип: Изобретение
Номер охранного документа: 0002519094
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d5ae

Способ получения слоев карбида кремния

Изобретение относится к области получения карбида кремния, используемого в полупроводниковой промышленности в качестве материала для радиопоглощающих покрытий, диодов, светодиодов, солнечных элементов и силовых вентилей. Карбид кремния получают перемещением ленты углеродной фольги в...
Тип: Изобретение
Номер охранного документа: 0002520480
Дата охранного документа: 27.06.2014
Showing 1-10 of 72 items.
10.01.2013
№216.012.1846

Устройство для получения массивов углеродных нанотрубок на металлических подложках

Изобретение относится к нанотехнологии. Устройство для получения массивов углеродных нанотрубок (УНТ) на металлических подложках состоит из двух электродов 7 и 8, расположенных соосно и перемещаемых навстречу друг другу водоохлаждаемыми штоками 8 и 9, скользящих графитовых токоподводов 11 и 12,...
Тип: Изобретение
Номер охранного документа: 0002471706
Дата охранного документа: 10.01.2013
10.02.2013
№216.012.2477

Устройство и способ с речевым интерфейсом определения водолазом направления на источник тонального звукового сигнала

Использование: для определения водолазом направления на источник тонального звукового сигнала. Сущность: сигнал источника принимается на две ненаправленные антенны, расстояние между которыми λ/4. Сигнал от первой антенны подается на вход сумматора, сигнал от второй антенны последовательно...
Тип: Изобретение
Номер охранного документа: 0002474837
Дата охранного документа: 10.02.2013
10.04.2013
№216.012.3480

Способ определения глубины погружения приводняющегося объекта

Использование: для измерения глубины погружения приводняющегося объекта с использованием гидролокатора ближнего действия, установленного на движущемся носителе относительно горизонта его движения. Сущность: с помощью гидролокатора производят излучение зондирующих сигналов гидролокатором, прием...
Тип: Изобретение
Номер охранного документа: 0002478983
Дата охранного документа: 10.04.2013
20.06.2013
№216.012.4cb3

Способ получения монокристаллов теллурида галлия (ii)

Изобретение относится к технологии получения кристаллов GaTe, которые могут быть использованы в нелинейной оптике, а именно для оптических преобразователей частоты ИК и ТГц диапазонов. Кристаллы теллурида галлия (II) выращивают вертикальной зонной плавкой в графитовых тиглях под давлением...
Тип: Изобретение
Номер охранного документа: 0002485217
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4cb4

Способ получения кристаллов вольфрамата натрия-висмута

Изобретение относится к области выращивания из расплава нелегированных кристаллов вольфрамата натрия-висмута NaBi(WO), являющегося перспективным материалом для Черепковских детекторов. Выращивание кристаллов осуществляют методом Чохральского в воздушной атмосфере со скоростью вытягивания 4-5...
Тип: Изобретение
Номер охранного документа: 0002485218
Дата охранного документа: 20.06.2013
27.10.2013
№216.012.783c

Крионаконечник с сапфировым хладопроводом-облучателем

Изобретение относится к хирургическим инструментам, применяемым для локального замораживания и деструкции выделенных участков биологической ткани, и может быть использовано в общей и детской хирургии, в онкологии, дерматологии, отоларингологии, гинекологии, косметологии. Крионаконечник с...
Тип: Изобретение
Номер охранного документа: 0002496442
Дата охранного документа: 27.10.2013
20.01.2014
№216.012.98be

Устройство для визуализации электрических полей свч в пространстве

Использование: относится к области визуализации распределения в пространстве электрических полей СВЧ диапазона. Сущность: в установке визуализации СВЧ полей применены измерительная камера «открытого» типа из двух расположенных горизонтально параллельных медных дисков, антенна-зонд,...
Тип: Изобретение
Номер охранного документа: 0002504801
Дата охранного документа: 20.01.2014
27.03.2014
№216.012.adf5

Способ удаления опухолей мозга с выделением границ опухоли флуоресцентной диагностикой с одновременной коагуляцией и аспирацией и устройство для его осуществления

Группа изобретений относится к медицине. Устройство включает сапфировый зонд с продольными каналами, в которых размещены оптические волокна, одни из которых предназначены для подачи излучения, возбуждающего флуоресценцию и коагулирующего излучения в зону деструкции ткани от присоединенных...
Тип: Изобретение
Номер охранного документа: 0002510248
Дата охранного документа: 27.03.2014
10.06.2014
№216.012.d04b

Способ эксфолиации слоистых кристаллических материалов

Изобретение относится к нанотехнологиям. Способ включает эксфолиацию заготовок из слоистых кристаллических материалов, закрепленных с одной стороны на опоре из глипталя, с использованием клейкой ленты, глипталь по окончании эксфолиации растворяют в ацетоне, где образуется взвесь кристаллических...
Тип: Изобретение
Номер охранного документа: 0002519094
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d5ae

Способ получения слоев карбида кремния

Изобретение относится к области получения карбида кремния, используемого в полупроводниковой промышленности в качестве материала для радиопоглощающих покрытий, диодов, светодиодов, солнечных элементов и силовых вентилей. Карбид кремния получают перемещением ленты углеродной фольги в...
Тип: Изобретение
Номер охранного документа: 0002520480
Дата охранного документа: 27.06.2014
+ добавить свой РИД